Skip to main content

Analysing All Polynomial Equations in \({\mathbb Z_{2^w}}\)

  • Conference paper
Book cover Static Analysis (SAS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5079))

Included in the following conference series:

Abstract

In this paper, we present methods for checking and inferring all valid polynomial relations in \({\mathbb Z_{2^w}}\). In contrast to the infinite field ℚ, \({\mathbb Z_{2^w}}\) is finite and hence allows for finitely many polynomial functions only. In this paper we show, that checking the validity of a polynomial invariant over \({\mathbb Z_{2^w}}\) is, though decidable, only PSPACE-complete. Apart from the impracticable algorithm for the theoretical upper bound, we present a feasible algorithm for verifying polynomial invariants over \({\mathbb Z_{2^w}}\) which runs in polynomial time if the number of program variables is bounded by a constant. In this case, we also obtain a polynomial-time algorithm for inferring all polynomial relations. In general, our approach provides us with a feasible algorithm to infer all polynomial invariants up to a low degree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, T., Weispfenning, V.: Gröbner Bases – a computational approach to commutative algebra. Springer, New York (1993)

    MATH  Google Scholar 

  2. Colon, M.: Polynomial approximations of the relational semantics of imperative programs. Science of Computer Programming 64, 76–96 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hungerbühler, N., Specker, E.: A generalization of the smarandache function to several variables. Integers: Electronic Journal Combinatorial Number Theory 6 (2006)

    Google Scholar 

  4. Karr, M.: Affine Relationships Among Variables of a Program. Acta Informatica 6, 133–151 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  6. Müller-Olm, M., Rüthing, O.: On the complexity of constant propagation. In: Sands, D. (ed.) ESOP 2001 and ETAPS 2001. LNCS, vol. 2028, Springer, Heidelberg (2001)

    Google Scholar 

  7. Müller-Olm, M., Seidl, H.: Polynomial Constants are Decidable. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 4–19. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Müller-Olm, M., Petter, M., Seidl, H.: Interprocedurally analyzing polynomial identities. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 50–67. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Müller-Olm, M., Seidl, H.: Computing Polynomial Program Invariants. Information Processing Letters (IPL) 91(5), 233–244 (2004)

    Article  Google Scholar 

  10. Müller-Olm, M., Seidl, H.: Analysis of modular arithmetic. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444. Springer, Heidelberg (2005)

    Google Scholar 

  11. Müller-Olm, M., Seidl, H.: Analysis of modular arithmetic. ACM Transactions on Programming Languages and Systems (TOPLAS) 29(5) (2007)

    Google Scholar 

  12. Petter, M.: Berechnung von polynomiellen Invarianten. Master’s thesis, Technische Universität München, München (2004)

    Google Scholar 

  13. Rodríguez-Carbonell, E., Kapur, D.: An abstract interpretation approach for automatic generation of polynomial invariants. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, Springer, Heidelberg (2004)

    Google Scholar 

  14. Rodríguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial invariants of bounded degree using abstract interpretation. Science of Computer Programming 64, 54–75 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sankaranarayanan, S., Henry, Z.M., Sipma, B.: Non-linear loop invariant generation using gröbner bases. In: ACM SIGPLAN Principles of Programming Languages (POPL) (2004)

    Google Scholar 

  16. Shekhar, N., Kalla, P., Enescu, F., Gopalakrishnan, S.: Equivalence verification of polynomial datapaths with fixed-size bit-vectors using finite ring algebra. In: International Conference on Computer-Aided Design (ICCAD), pp. 291–296 (2005)

    Google Scholar 

  17. Singmaster, D.: On polynomial functions (mod m). Journal of Number Theory 6, 345–352 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wienand, O.: The Groebner basis of the ideal of vanishing polynomials. Journal of Symbolic Computation (JSC) (to appear, 2007); Preprint in arxiv math.AC/0801.1177

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

María Alpuente Germán Vidal

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seidl, H., Flexeder, A., Petter, M. (2008). Analysing All Polynomial Equations in \({\mathbb Z_{2^w}}\) . In: Alpuente, M., Vidal, G. (eds) Static Analysis. SAS 2008. Lecture Notes in Computer Science, vol 5079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69166-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69166-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69163-1

  • Online ISBN: 978-3-540-69166-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics