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Abstract 

Malicious users can exploit the correlation among data to infer sensitive information from a series of 

seemingly innocuous data accesses. Thus, we develop an inference violation detection system to protect 

sensitive data content. Based on data dependency, database schema and semantic knowledge, we con-

structed a semantic inference model (SIM) that represents the possible inference channels from any at-

tribute to the pre-assigned sensitive attributes. The SIM is then instantiated to a semantic inference graph 

(SIG) for query-time inference violation detection. For a single user case, when a user poses a query, the 

detection system will examine his/her past query log and calculate the probability of inferring sensitive 

information. The query request will be denied if the inference probability exceeds the pre-specified 

threshold. For multi-user cases, the users may share their query answers to increase the inference prob-

ability. Therefore, we develop a model to evaluate collaborative inference based on the query sequences 

of collaborators and their task-sensitive collaboration levels. Experimental studies reveal that information 

authoritativeness, communication fidelity and honesty in collaboration are three key factors that affect the 

level of achievable collaboration. An example is given to illustrate the use of the proposed technique to 

prevent multiple collaborative users from deriving sensitive information via inference. 

 

                                                        
1 This research is supported by NSF grant number IIS-03113283 
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1.  Introduction 

Access control mechanisms are commonly used to protect users from the divulgence of sensitive 

information in data sources. However, such techniques are insufficient because malicious users 

may access a series of innocuous information and then employ inference techniques to derive 

sensitive data using that information. 

To address this inference problem, we develop an inference detection system that resides at the 

central directory site. Because inference channels can be used to provide a scalable and system-

atic sound inference, we need to construct a semantic inference model (SIM) that represents all 

the possible inference channels from any attribute in the system to the set of pre-assigned sensi-

tive attributes. The SIM can be constructed by linking all the related attributes which can be de-

rived via attribute dependency from data dependency, database schema and semantic related 

knowledge. Based on the semantic inference model, the violation detection system keeps track of 

a user’s query history. When a new query is posed, all the channels where sensitive information 

can be inferred will be identified. If the probability to infer sensitive information exceeds a pre-

specified threshold, the current query request will then be denied. Therefore, our system can pre-

vent malicious users from obtaining sensitive information. 

This inference detection approach is based on the assumption that users are isolated and do not 

share information with one another. This assumption, however, may not be the case in a real-life 

situation. Most users usually work as a team, and each member can access the information inde-

pendently. Afterwards, the members may merge their knowledge together and jointly infer the 

sensitive information. Generalizing from a single-user to a multi-user collaborative system 

greatly increases the complexity of the inference detection system. 

For example, one of the sensitive attributes in the system can be inferred from four different 
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inference channels. There are two collaborators and each poses queries on two separate channels. 

Based on individual inference detection, neither of the users violates the inference threshold from 

their query answers. However, if the two users share information, then the aggregated knowledge 

from the four inference channels can cause an inference violation (see Section 7.2).  

This motivates us to extend our research from a single user to the multiple user case, where 

users may collaborate with each other to jointly infer sensitive data. We have conducted a set of 

experiments, using our inference violation detector as a test bed to understand the characteristics 

in collaboration as well as the effect on collaborative inference. From the experiments, we learn 

that for a given specific task, the amount of information that flows from one user to another de-

pends on the closeness of their relationships and the knowledge related to the task. Thus, col-

laborative inference for a specific task can be derived by tracking the query history of all the us-

ers together with their collaboration levels. 

This paper is organized as follows. Section 2 presents related work.  Section 3 introduces a 

general framework for the inference detection system, which includes the knowledge acquisition 

module, semantic inference model and violation detection module. Section 4 discusses how to 

acquire and represent knowledge that could generate inference channels. Section 5 integrates all 

possible inference channels into a Semantic Inference Model which can be instantiated and then 

mapped into a Bayesian network to reduce the computation complexity for data inference. As 

shown in Section 6, we are able to detect inference violation at query time for both individual 

user and multiple collaborative users. Section 7 presents an example to illustrate the use of the 

proposed technique for collaboration inference detection. Section 8 presents collaboration level 

experiments and their estimations. Section 9 discusses the robustness of inference detection and 

threshold determination via sensitivity analysis. Section 10 presents the conclusion. 
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2. Related Work 

Database inferences have been extensively studied. Many approaches to address the inference 

problem were presented in [FJ02]. Particularly, Delugach and Hinke used database schema and 

human-supplied domain information to detect inference problems during database design time 

[DH96, HD92, HDW96]. Garvey et al. developed a tool for database designers to detect and re-

move specific types of inference in a multilevel database system [GLQ92]. Both approaches use 

schema-level knowledge and do not infer knowledge at the data level. These techniques are also 

used during database design time and not at run time. However, Yip et al. pointed out the inade-

quacy of schema-level inference detection, and he identifies six types of inference rules from the 

data level that serve as deterministic inference channels [YL98]. In order to provide a multilevel 

secure database management system, an inference controller prototype was developed to handle 

inferences during query processing. Rule-based inference strategies were applied in this proto-

type to protect the security [TFC93]. Further, since data update can affect data inference, 

[FTE01] proposed a mechanism that propagates update to the user history files to ensure no 

query is rejected based on the outdated information. To reduce the time in examining the entire 

history log in computing inference, [TFE05] proposed to use a prior knowledge of data depend-

ency to reduce the search space of a relation and thus reduce the processing time for inference. 

Open inference techniques were proposed to derive approximate query answering when network 

partitions occurred in distributed databases.  Feasible open inference channels can be derived 

based on query and database schema [CCH94]. 

The previous work on data inference mainly focused on deterministic inference channels such 

as functional dependencies. The knowledge is represented as rules and the rule body exactly de-

termines the rule head. Although such rules are able to derive sound and complete inference, 
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much valuable non-deterministic correlation in data is ignored. For example, salary ranges may 

not deterministically depend on the ranks. Further, many semantic relationships, as well as data 

mining rules, can not be specified deterministically. To remedy this shortcoming, we propose a 

probabilistic inference approach to treat the query-time inference detection problem. The contri-

bution of the paper consists of: 1) Derive probabilistic data dependency, relational database 

schema and domain-specific semantic knowledge and represent them as probabilistic inference 

channels in a Semantic Inference Model. 2) Map the instantiated Semantic Inference Model into 

a Bayesian network for efficient and scalable inference computation. 3) Propose an inference de-

tection framework for multiple collaborative users.  

3.  The Inference Framework 

The proposed inference detection system consists of three modules, as shown in Figure 1: 

knowledge acquisition, semantic inference model (SIM), and security violation detection includ-

ing user social relation analysis. 

The Knowledge Acquisition module extracts data dependency knowledge, data schema knowl-

edge and domain semantic knowledge. Based on the database schema and data sources, we can 

extract data dependency between attributes within the same entity and among entities. Domain 

semantic knowledge can be derived by semantic links with specific constraints and rules. A se-

mantic inference model can be constructed based on the acquired knowledge. 

The Semantic Inference Model (SIM) is a data model that combines data schema, dependency 

and semantic knowledge. The model links related attributes and entities as well as semantic 

knowledge needed for data inference. Therefore SIM represents all the possible relationships 

among the attributes of the data sources. A Semantic Inference Graph (SIG) can be constructed 
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by instantiating the entities and attributes in the SIM. For a given query, the SIG provides infer-

ence channels for inferring sensitive information. 

 

Based on the inference channels derived from the SIG, violation detection combines the new 

query request with the request log, and it checks to see if the current request exceeds the pre-

specified threshold of information leakage. If there is collaboration according to collaboration 

analysis, the Violation Detection module will decide whether to answer a current query based on 

the acquired knowledge among the malicious group members and their collaboration level to the 

current user. 

4.  Knowledge Acquisition for Data Inference 

Since users may pose queries and acquire knowledge from different sources, we need to con-

struct a semantic inference model for the detection system to track user inference intention. The 

semantic inference model requires the system to acquire knowledge from data dependency, data-

base schema and domain-specific semantic knowledge. This section will discuss how to acquire 

that knowledge. 

4.1 Data Dependency  

Data dependency represents causal relationships and non-deterministic correlations between at-
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Fig. 1. The framework for an Inference Detection System 
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tribute values. Because of the non-deterministic nature, the dependency between two attributes A 

and B is represented by conditional probabilities pi|j=Pr(B=bi|A=aj). Thus, the non-deterministic 

data dependency is a more general representation  than the relational functional dependency or 

other types of deterministic relationships. There are two types of non-deterministic data depend-

encies as defined in the Probabilistic Relational Model [FGK99, GFK01]: dependency-within-

entity and dependency-between-related-entities, as defined in the following. 

Dependency-within-entity: Let A and B be two attributes in an entity E; if B depends on A, 

then for each instance of E, its value of attribute B depends on its value of attribute A with a 

probability value. To learn the parameter of dependency-within-entities from relational data, 

from a relational table that stores entity E, we can derive the conditional probabilities 

pi|j=Pr(B=bi|A=aj) via  a sequential scan of the table with a counting of the occurrences  of A, B,  

and co-occurrences of A and B. 

Dependency-between-related-entities: Let A be an attribute in entity E1 and C be an attribute 

in E2, and E1 and E2 are related by R, which is a relation that can be derived from database 

schema. If C depends on A, then only for related instances of E1 and E2, the value of attribute C 

in E2 instances depends on the value of attribute A in related instances of E1. Such dependency-

between-related-entities only exists for related instances of entities E1 and E2. The parameters of 

dependency-between-related-entities can be derived by first joining the two entity tables based 

on the relation R and then scanning and counting the frequency of occurrences of the attribute 

pair in the joined table. If two entities have an m-to-n relationship, then the associative entity ta-

ble can be used to join the related entity tables to derive dependency-between-related-entities 

[Dat95].  

4.2 Database Schema 

In relational databases, database designers use data definition language to define data schema. 
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The owners of the entities specify the primary key and foreign key pairs. Such pairing represents 

a relationship between two entities. If entity E1 has primary key pk, entity E2 has foreign key fk, 

and e1.pk=e2.fk, then dependency-between-related-entities from attribute A (in e1) to attribute C 

(in e2) can be derived. 

4.3 Domain-Specific Semantic Knowledge 

Other than data dependencies inside relational data sources, outside information such as domain 

knowledge can also be used for inferences. Specifically, domain-specific semantic relationships 

among attributes and/or entities can supplement the knowledge of malicious users and help their 

inference. For example, the semantic knowledge “can land” between Runway and Aircraft im-

plies that the length of Runway should be greater than the minimum Aircraft landing distance, 

and the width of Runway should be greater than the minimum width required by Aircraft. If we 

know the runway requirement of aircraft C-5, and C-5 “can land” in the instance of runway r, 

then the values of attributes length and width of r can be inferred from the semantic knowledge. 

Therefore, we want to capture the domain-specific semantic knowledge as extra inference chan-

nels in the Semantic Inference Model. 

Semantic knowledge among attributes is not defined in the database and may vary with con-

text. However, from a large set of semantic queries posed by the users, we can extract the seman-

tic constraints [ZC99]. For example, in the WHERE clause of the following query, clauses #3 

and #4 are the semantic conditions that specify the semantic relation “can land” between entity 

Runways and entity Aircrafts. Based on this query, we can extract semantic knowledge “can 

land” and integrate it into the Semantic Inference Model shown in Figure 3.2  

                                                        
2 Clearly, the set of the semantic queries may be incomplete, which can result in the semantic knowledge being 

incomplete as well.  However, additional semantic knowledge can be appended to the Semantic Inference Model as 
the system gains more semantic queries. The system can then reset to include the new knowledge. Otherwise, this 
will result in inference with knowledge update and is beyond the scope of this paper. 
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� Query: Find airports that can land a C-5 cargo plane. 

SELECT AP.APORT_NM 
FROM AIRCRAFTS AC, AIRPORTS AP, RUNWAYS R 
WHERE AC.AC_TYPE_NM = ‘C-5’ and                                                             #1  
AP.APORT_NM = R.APORT_NM and                                                               #2 
AC.WT_MIN_AVG_LAND_DIST_FT <= R.RUNWAY_LENGHT_FT and          #3 

    AC.WT_MIN_RUNWAY_WIDTH_FT <= R.RUNWAY_WIDTH_FT;                   #4 

5.  Semantic Inference Model 

The Semantic Inference Model (SIM) represents dependent and semantic relationships among at-

tributes of all the entities in the information system. As shown in Figure 2, the related attributes 

(nodes) are connected by three types of relation links: dependency link, schema link and seman-

tic link. 

 

Dependency link connects dependent attributes within the same entity or related entities. Con-

sider two dependent attributes A and B. Let A be the parent node and B be the child node. The 

degree of dependency from B to A can be represented by the conditional probabilities pi|j 

=Pr(B=bi|A=aj). The conditional probabilities of the child node given all of its parents are sum-

marized into a conditional probability table (CPT) that is attached to the child node. For instance, 

Figure 3b shows the CPT of the node “TAKEOFF_LANDING_CAPACITY” of the SIM in Fig-

ure 3a. The conditional probabilities in the CPT can be derived from the database content 

[FGK99, GFK01]. For example, the conditional probability Pr(B=bi|A=aj) can be derived by 

counting the co-occurrence frequency of the event B=bi and A=aj and dividing it by the occur-

                                                                                                                                                                                   
 

Fig. 2. A Semantic Inference Model. Entities are interconnected by schema relations (diamond) and semantic rela-
tions (hexagon). The related attributes (nodes) are connected by their data dependency, schema and semantic links.  

 

Schema relation 

 

Semantic relation 

Schema link 
Dependency link 

Semantic link 

Entity 

Attribute 

Attribute 

Attribute 

Attribute 

Attribute 

 

Attribute Attribute 

Attribute 

Entity Entity 



 10 

rence frequency of the event  A=aj.  

 
Schema link connects an attribute of the primary key to the corresponding attribute of the for-

eign key in the related entities. For example, in Figure 3a, APORT_NM is the primary key in 

AIRPORTS and foreign key of RUNWAYS. Therefore, we connect these two attributes via 

schema link.  

Semantic link connects attributes with a specific semantic relation. To evaluate the inference 

introduced by semantic links, we need to compute the CPT for nodes connected by semantic 

links. Let T be the target node of the semantic link, PS be the source node, and P1, …, Pn be the 

other parents of T, as shown in Figure 4a. The semantic inference from a source node to a target 

node can be evaluated as follows. 

If the semantic relation between the source and the target node is unknown or if the value of 

the source node is unknown, then the source and target node are independent. Thus, the semantic 

link between them does not help inference. To represent the case of the unknown semantic rela-

tionship, we need to introduce the attribute value “unknown” to the source node and set the value 
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Fig. 3a. A Semantic Inference Model example for Airports, Runways and Aircraft 

Fig. 3b. Conditional probability table (CPT) for the attribute “TAKEOFF_ LANDING_CAPACITY” 
summarizes its dependency on the four parent nodes. For example, Pr(Takeoff_landing_capacity=small | 
Parking_sq_ft=small, Elev_ft =low, Runway_length=short, Runway_width=narrow)=0.9. The conditional 
probabilities in the CPT can be derived from the database content. 
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of the source node to “unknown.” In this case, the source and target node are independent, i.e., 

Pr(T=ti|P1=v1, … Pn=vn, PS=unknown) = Pr(T=ti|P1=v1, … Pn=vn). When the semantic relation-

ship is known, the conditional probability of the target node is updated according to the semantic 

relationship and the value of the source node. If the value of the source node and the semantic re-

lation are known, then Pr(T=ti| P1= v1, … Pn= vn, PS=sj) can be derived from the specific seman-

tic relationship. For example, in Figure 4b, the semantic relationship determines that Pr(T=t1| 

P1, … Pn, PS=s1)=0.6 and Pr(T=t1| P1, … Pn, PS=s2)=0.8. 

 

For example, the semantic relation “can land” between Runway and Aircraft (Figure 5a) im-

plies that the length of Runway is greater than the minimum required Aircraft landing distance. 

So the source node is aircraft_min_land_dist, and the target node is runway_length. Both attrib-

utes can take three values: “short,” “medium” and “long.” First, we add value “unknown” to 

source node aircraft_min_land_dist and set it as a default value. Then we update the conditional 

probabilities of the target node to reflect the semantic relationship. Here, we assume that run-

way_length has an equal probability of being short, medium or long. When the source node is set 

to “unknown,” the runway_length is independent of aircraft_min_land_dist; when the source 

node has a known value, the semantic relation “can land” requires runway_length is greater than 

or equal to aircraft_min_land_dist. Thus, the corresponding CPT for the node runway_length is 

shown in Figure 5b. 

PS 
T 

P1 

Pn 

Target node 

…
 

Source node  

Fig. 4a. Target node T with semantic link from 
source node PS and dependency links from par-
ents P1, …, Pn.  

Fig. 4b. The CPT of target node T summarizes the condi-
tional probabilities of T given values of PS and P1, …, Pn. For 
example, Pr(T=t1 | PS=unknown, P1=v11 , Pn= vn1)=0.5. 
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5.1 Computation Complexity of Constructing Semantic Inference Model 

A SIM consists of linking related attributes (structure) and their corresponding conditional prob-

abilities (parameters). Given a relational database, the learning of a SIM can be decomposed into 

two tasks: parameter learning and structure learning. In the first task, we assume that the struc-

ture of the SIM is known, i.e., the links between attributes are fixed, and our goal is to derive the 

conditional probability tables for each attribute. Since the parameters of semantic link are deter-

mined by its semantic constraint, let us now consider the computation complexity on learning pa-

rameters of data dependencies. Consider that given structure S has m attributes, each attribute Ai 

in table Tj has a set of parents P(Ai). If all parents of Ai are in the same table with Ai, then the 

CPT of Ai can be derived by a single scan of Tj. If attribute Ai has a parent from related entity ta-

ble Tk, then scanning on the joined table of Tj and Tk is needed to derive the CPT of Ai. In the 

worst case, the parameters can be learned in )( i
i

nmO Π time, where m is the total number of at-

tributes in the model and ni is the size of the ith table. When the number of dependency-between 

related-entities is limited, the parameter learning can be reduced to approximately  

where mi (< m) is the number of attributes in the ith table. If the structure of the SIM is not given 

by domain experts, we can generate a set of candidate structures with their corresponding pa-

rameters, and select the one that best matches the data sources. Algorithms for searching good 

dependency structures can be found in [FGK99,GTK01].  

5.2 Semantic Inference Graph 

To perform inference at the instance level, we instantiate the SIM with specific entity instances 

Runway_ 
Length 

Aircraft_Min_ 
Land_Dist 

can land 

Fig. 5a. The semantic link “can land” between “Air-
craft_Min_Land_Dist” and “Runway_Length” 

Fig. 5b. Conditional Probability Table for Runway_length 
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i
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and generate a semantic inference graph (SIG), as shown in Figure 6. Each node in the SIG 

represents an attribute for a specific instance. To highlight the attributes of an entity instance, we 

group all the attributes of the instance into a rectangular box. Related attributes are then con-

nected via instance-level dependency links, instance-level schema links and instance-level se-

mantic links. The attribute nodes in SIG have the same CPT as in SIM because they are just in-

stantiated versions of the attributes in entities. As a result, the SIG represents all the instance-

level inference channels in the SIM. 

 

Instance-level dependency link: When a SIM is instantiated, the dependency-within-entity is 

transformed into dependency-within-instance in the SIG. Similarly, the dependency-between-

related-entities in the SIM is transformed into a dependency between two attributes in the related 

instances. This type of dependency is preserved only if two instances are related by the 

instantiated schema link. That is, if attribute B in instance e2 depends on attribute A in instance 

e1, and instances e1 and e2 are related by R denoted as R(e1, e2), then there is a dependency-

between-related-instances from B to A.  

Instance-level schema link: The schema links between entities in the SIM represent “key, 

foreign-key” pairs. At instance level, if the value of the primary key of an instance e1 is equal to 

the value of the corresponding foreign key in the other instance e2 which can be represented as 

R(e1, e2), then connecting these two attributes will represent the schema link at the instance level. 

Fig. 6. The Semantic Inference Graph for airport instance (LAX), with runway r1 and aircraft C-5. 
 

AIRPORT LAX: 

 
 
 
 
 
 
 
 

APORT_NM 
=“LAX” 

TAKEOFF_LANDI
NG_CAPACITY 

 

PARKING_ 
SQ_FT 

ELEV_FT 

RUNWAY r1: 

 
 

 

APORT_NM 
=“LAX” 

RUNWAY_ 
NM=r1 

RUNWAY_ 
LENGTH 

RUNWAY_ 
WIDTH 

AIRCRAFT C-5: 

 
 
 
 
 
 
 
 

AC_TYPE 
=“C-5” 

AC_MIN_RUN
WAY_WIDTH 

AC_MIN_LA
ND_DIST 

can land 

can land 



 14 

Otherwise, these two attributes are not connected.  

Instance-level semantic link: At the instance level, assigning the value of the source node to 

“unknown” disconnects the semantic link between the attributes of two instances. On the other 

hand, if two instances have a specific semantic relation, then the inference probability of the 

target node will be computed based on its CPT and the value of the source node. 

5.3 Evaluating Inference in Semantic Inference Graph (SIG) 

For a given SIG, there are attribute dependencies within an entity, between related entities, and 

semantic relationships among attributes. As a result, there are many feasible inference channels 

that can be formed via linking the set of dependent attributes. Therefore, we propose to map the 

SIG to a Bayesian network to reduce the computational complexity in evaluating user inference 

probability for the sensitive attributes. 

For any given node in a Bayesian network, if the value of its parent node(s) is known, then the 

node is independent of all its non-descending nodes in the network [HMW95, Hec96, Jen96, 

Pea88, Pea01]. This independence condition greatly reduces the complexity in computing the 

joint probability of nodes in the network. More specifically, let xi be the value of the node Xi, pai 

be the values of the parent nodes of Xi, then P(xi|pai) denotes the conditional probability of xi 

given pai where i=1,2,…,n. Thus, the joint probability of the variables xi is reduced to the prod-

uct of P (xi|pai): 

)(),,( 1 ii
i

n paxPxxP ∏=K
 (1) 

The probability for users to infer the sensitive node S=s given evidences Di=di, i=1, 2,…, n is: 

),,(

),,,(
),,|(

21

21
21

n

n
n dddP

dddsP
dddsP

K

K

K =  
(2) 

which can be further computed using Equation (1). Thus, the probability of inferring a sensitive 

node can be computed from the conditional probabilities in the network. Many algorithms have 

been developed to efficiently perform such calculations [Dec96, JLO90, LS88, ZP96, ZP94].  
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The Probabilistic Relational Model (PRM) is an extension of the Bayesian network that inte-

grates schema knowledge from relational data sources [FGK99, GTK01, GFK01]. Specifically, 

PRM utilizes a relational structure to develop dependency-between-related-entities. Therefore, in 

PRM an attribute can have two distinct types of parent-child dependencies: dependency-within-

entity and dependency-between-related-entities, which match the two types of dependency links 

in the SIM.  Since the semantic links in the SIM are similar to dependency links, we can convert 

each SIM to a PRM-based model. The corresponding Bayesian network can be generated after 

instantiating the model to instance level. Thus, for a given network, the probability of inferring a 

specific sensitive attribute can be evaluated via efficient Bayesian inference algorithms. In our 

test bed, we use SamIam [Sam], a comprehensive Bayesian network tool developed by the 

Automated Reasoning Group at UCLA, to compute the inference. The computation complexity 

for exact inference is mostly ))exp(( wnO ⋅ , where n is number of nodes and w is the tree-width of 

the network [CD05, CAD05, Dar01, Dec99, JLO90, ZP94] and is scalable.  

We have measured the elapse time for inference computation from our test bed. Since all the 

attribute nodes in the Bayesian network need to be re-evaluated, after posing each query, the 

time required for inference evaluation is almost constant3. For a sample Bayesian network with 

40 nodes and 28 edges, the elapse time for inference evaluation after a single user poses a ran-

dom query is around 16ms on a Dell desktop running Windows XP with 3.20GHz CPU and 2GB 

of RAM.  

                                                        
3 For a sequence of queries, only a selected subset of all attribute nodes in the Bayesian network needs to be re-

evaluated after each query, thus the computation time may be optimized for a large-sized network. The current im-
plementation of the SamIam does not provide this optimization feature. 
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6.  Inference Violation Detection for Individual User  

Semantic inference graphs provide an integrated view of the relationships among data attributes, 

which can be used to detect inference violation for sensitive nodes. In such a graph, the values of 

the attributes are set according to the answers of the previous posted queries. Based on the list of 

queries and the user who posted those queries, the value of the inference will be modified ac-

cordingly. If the current query answer can infer the sensitive information greater than the pre-

specified threshold, then the request for accessing the query answer will be denied [CC06]. 

Consider the example in Figure 3. Let the TAKEOFF_LANDING_ CAPACITY of any airport 

be the sensitive attribute, and it should not be inferred with probability greater than 70%. If the 

user has known that: 1) Aircraft C-5 can land in airport LAX runway r1; 2) C-5 has air-

craft_min_land_dist = long and aircraft_min_runway_width = wide. Then this user is able to in-

fer the sensitive attribute “LAX’s TAKEOFF_LANDING_ CAPACITY = large” via Equation 

(2) and (1) with probability 58.30%, as shown in Figure 7a. 

 

Fig. 7a. Example of inference violation detection for single user. This is a portion of the Bayesian network for the 
transportation mission planning. The probability distribution of each node is shown in a rectangular box. The values 
of the bold nodes are given by previous query answers; the probability values of sensitive nodes are inferred. 

Fig. 7b. Given the additional knowledge “LAX_Parking_Sq_Ft=large”, the probability for inferring the sensitive in-
formation “LAX_TAKEOFF_LANDING_ CAPACITY =large” is increased to 71.50%. 
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Now if the same user poses another query about the “Parking_sq_ft of LAX” and if this query 

is answered (as shown in Figure 7b, LAX_Parking_Sq_Ft=large), then the probability of infer-

ring LAX_TAKEOFF_LANDING_CAPACITY = large by this user will increase to 71.50%, 

which is higher than the pre-specified threshold. Thus, this query request should be denied. 

7.  Inference Violation Detection for Collaborative Users 

Generalizing from single-user to multi-user collaborative system greatly increases the complex-

ity and present two challenges for building the inference detection system. First, we need to es-

timate the effectiveness of collaboration among users, which involves such factors as the authori-

tativeness of the collaborators, the communication mode among collaborators and the honesty of 

the collaboration. In addition, we need to properly integrate the knowledge from collaborators on 

the inference channels for the inference probability computation. In this section, we will address 

these two challenges. 

7.1  Collaboration Effectiveness 

We shall define Collaboration Level (CL) as a metric for measuring the percentage of useful in-

formation flow from the information source to the recipient. The range of Collaboration Level is 

from 0 to 1, CL=0 and CL=1 represent none and all of the information is received by the recipi-

ent.  

Consider users A and B in Figure 8. User B has a collaborative level of 85% for the informa-

tion from A. Let QA and QB be the query answer set of user A and user B. User B can combine 

QA with his own previous query answer set QB and yield a higher inference probability for the 

sensitive node. For the example in Figure 7a, user B has past query answers QB = 

{C5_min_land_dist = long, C-5_min_rw_width = wide} and then combines this with his ac-

quired knowledge from user A: QA = {LAX_Park_Sqft = large}. Such collaboration increases the 
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inference probability for the sensitive node from 58.30% to 66.55%, as shown in Fig. 8. Note 

that because the collaborative level of B for information from A is 85%, it yields a lower infer-

ence probability than the case where user B queries directly about LAX_Parking_Sq_Ft, as in 

Fig. 7b. 

 

By a series of experimental studies, we find that the collaboration level depends on three com-

ponents: Authoritativeness of the information provider, A; Honesty of the collaboration, H; and 

Fidelity of the communication channel between the provider and recipient, F.  

Authoritativeness of the information provider represents how accurate is the information. If a 

provider is knowledgeable and has high reputation in the field related with the task, then he/she 

can provide more accurate information. 

Honesty represents the honesty level of the provider and the willingness of releasing his/her 

knowledge to the recipient. For example, if user A is very knowledgeable, in addition, A and B 

have a good communication channel; then both authoritativeness and fidelity of user A are high. 

However, A is not willing to release his full knowledge to B, as a result, the useful information 

cannot reach B for inference. Further, A can deceive B with false information. Thus, we shall use 

honesty measure as an indication of the honesty in collaboration.  

Fidelity measures the effectiveness of the communication between the provider and recipient. 

Poor mode of communication can cause information loss during the transmission, which reduces 

Fig. 8. Example of inference violation detection for multiple users. User B knows “C5_min_ land_dist=long” and 
“C5_min_rw_width=wide” from his past query answers. User B also has the knowledge from A “LAX_Park_Sqft 
=large” with collaborative level 85%. Thus, the probability for user B to infer the sensitive information (shown in 
double ellipses) “LAX_Takeoff_Landing_Capacity=large” increases to 66.55%. 

CLAB 

B 

A 

CLBA 
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the effectiveness of the collaboration. 

Authoritativeness measures how accurate the provider can supply information; honesty de-

scribes the willingness of the provider to release the accurate information; and fidelity measures 

the percentage of information transferred to the recipient due to the limitation of the communica-

tion mode. Once we estimate these three components for a set of users on a specific task, we can 

derive the collaboration level, as will be described in Section 8.3. 

7.2  Combining Knowledge from Collaborators 

In this section, we study the combination of knowledge from collaborators on different types of 

inference channels. Based on the users’ query history, there are two different types of collabora-

tive user pairs: Collaboration with non-overlap inference channels and Collaboration with over-

lap inference channels, as shown in Figure 9. 

Collaboration with non-overlap inference channels: In this case, the two users pose queries on 

different non-overlap inference channels. The inference probability will be computed based on 

their combined knowledge discounted by their collaborative level. 

For example, two collaborators A and B ask queries on non-overlap inference channels. In ad-

dition, the collaboration level from user A to user B is given by CLAB, and the collaboration level 

from B to A is CLBA. Therefore, to compute the inference probability to security attribute of user 

A, the query answers acquired by B (QB) can be combined with his/her own query answers (QA), 

but discounted by the collaborative level CLBA. On the other hand, to derive the inference prob-

ability of user B, A’s query answers (QA) are discounted by collaboration level CLAB and then 

combined with QB. Because QA and QB are from independent non-overlap inference channels, 

their inferences to sensitive node S are independent and can be directly combined.  Thus the in-

ference probability for the sensitive node can be computed based on the user’s knowledge from 

his past queries combined with his collaborator’s query answers discounted by their respective 
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collaborative level. 

 

 For example, two collaborators A and B ask queries on non-overlap inference channels. In ad-

dition, the collaboration level from user A to user B is given by CLAB, and the collaboration level 

from B to A is CLBA. Therefore, to compute the inference probability to security attribute of user 

A, the query answers acquired by B (QB) can be combined with his/her own query answers (QA), 

but discounted by the collaborative level CLBA. On the other hand, to derive the inference prob-

ability of user B, A’s query answers (QA) are discounted by collaboration level CLAB and then 

combined with QB. Because QA and QB are from independent non-overlap inference channels, 

their inferences to sensitive node S are independent and can be directly combined.  Thus the in-

ference probability for the sensitive node can be computed based on the user’s knowledge from 

his past queries combined with his collaborator’s query answers discounted by their respective 

collaborative level. 

 Collaboration with overlap inference channels: In this case, the query sets posed by the two 

users overlap on inference channels. Such overlap may cause the users to have inconsistent belief 

in the same attribute on the inference channel. Thus, we need to integrate the overlapping knowl-

edge according to the collaborative level to compute the appropriate inference probability. 

 For collaboration with overlap inference channels, the queries posed by user A and user B 

overlap on their inference channels. Since QA and QB may cause inconsistent belief on some at-

tribute nodes, these two query answer sets cannot be simply combined. For example, in Figure 

Inference chan-
nels to sensitive 

node S 

S S 

query 
by A 

query 
by B 

(a) Non-overlap inference 
channels 

(b) Overlapped inference 
channels 

X

Y

Fig. 9. Types of collaborative user pairs in the social network posing query sequence on the inference channels. 
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10(a), for attribute node X, QA indicates A has known X=x and B can believe it with collabora-

tion level ABCL  ( 1≤ABCL ). On the other hand, QB includes Y=y which can infer X=x with prob-

ability p. If ABCLp ≠ , then QA and QB can cause B to have inconsistent belief on attribute X. 

Without loss of generality, we assume p < CLAB for this example.  

 

One approach to reconcile such inconsistent belief is to assume B will always choose to 

maximize his inference probability. Therefore, as shown in Figure 10(b), B only follows A’s ad-

vice (X=x with prob.=CLAB) and ignore his own acquired knowledge (Y=y infers X=x with 

prob.=p). However, such a “max-inference” approach is not always correct, since people’s belief 

is often strengthened by the confirmation and reduced by the conflicting knowledge.  

To represent the integration of inconclusive belief, we introduce the concept of soft evidence 

in probability calculus [Dar03]. Soft evidence is inconclusive or unreliable information, as in the 

previous example, A tells B that X=x and B only believes it with CLAB ( 1<ABCL ). For user B, 

X=x is inconclusive knowledge, and therefore it needs to be set as soft evidence. To specify the 

soft evidence, we use the Virtual Evidence method developed in [Dar03]. As shown in the Figure 

10(c), this method first adds a virtual attribute node VA(X) to be the child of the attribute node X 

to represent the event of receiving the soft evidence of X, that is, A tells B about X=x. Then the 

conditional probability of the virtual node is determined by the reliability of the soft evidence. In 

S 

 X=x with 
Prob.= CLAB 
(CLAB>p) 

Y=y infers X=x 
with Prob.= p 

query 
by A 
query 
by B 

(a) QAand QB cause inconsistent belief on X. 
From QB (Y=y), B infers X=x with Prob.= p. 

From QA (X=x), B infers X=x with Prob.= CLAB. 

B’s belief on 
X=x with A’s 
collaboration S 

Believe X=x with 
Prob.= CLAB 

Ignore Y=y 

(b) Believe X=x with Prob.= CLAB 

yields  inaccurate  inference prob-
ability to S 

Fig. 10. A virtual node can be used in user B’s inference network to resolve inconsistent belief when user B and A 
overlap on their inference channels. 
 

S 

Belief of B on X=x is 
Prob.=Pr(X=x|Y=y, V=x) 

Y=y 

VA(X)=x 

(c) Introduce soft evidence for QA (X=x) by adding 
a virtual node VA(X) as the child of X. User B now 
believes X=x with Prob.=Pr(X=x|Y=y, VA(X)=x) 
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our example, both )|)(Pr( xXxXVA ==  and )|)(Pr( xXxXVA ==  are determined by user B’s 

collaboration level of information from A: CLAB. Thus, the soft evidence can be integrated into 

the user’s own knowledge. In the example, if originally B is ignorant about X, once A tells B 

about X=x, B will believe X=x with probability CLAB. If originally B can infer X with knowledge 

Y=y, then his current belief in X=x can be computed as ))(,|Pr( xXVyYxX A === . Thus, we 

are able to integrate query answers on overlapped inference channels from multiple collaborators 

based on their corresponding collaboration levels. 

7.3 An Example of Inference Violation Detection for Collaborative Users 

A set of data sources for transportation and related facilities is available for mission planning. 

Due to the classified nature of the data sources, users can only access limited amounts of infor-

mation. Malicious users want to identify whether a specific facility is capable of launching cer-

tain classified missions. However, the users are unable to access all the information that is re-

quired to derive the conclusion. Therefore, they apply inference techniques to infer the otherwise 

inaccessible information. In the following example, we shall demonstrate how our detection sys-

tem prevents these users from accessing the relevant information. 

As shown in Figure 11, the transportation and facility data sources consist of four types of in-

formation: 1) takeoff and landing activities and capacity of the airport, such as parking_area, 

runway_length, runway_width, aircraft landing requirements etc.; 2) equipment handling capac-

ity, such as weapons, human experts, loading facility; 3) airport cargo and warehouse capacity 

and activities, such as daily cargo handling capacity, warehouse space; and 4) fueling storage and 

consumption. Based on these entities and attributes, we can derive the dependency links between 

attributes, the schema links that join different aspects of information together for each airport. 

Furthermore, based on the following set of semantic queries:  
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• Query1: which airports can land a C-5 cargo plane? 

• Query2: which airports have the loading facility that can load weapon type HC-1? 

• Query3: which aircraft can carry weapon type HC-1? 

 

We can extract the semantic knowledge for “can land,” “can load” and “can carry” for semanti-

cally linking the related attributes, as shown in Figure 11. 

Based on these dependency links, schema links and semantic links, a reduced semantic infer-

ence model was constructed (Figure 11) to represent all the possible inference channels between 

data attributes for all the entities. There are four data sources which yield four main inference 

channels to the mission entity: takeoff_landing to launch_mission; fueling to launch_mission; 

cargo_handling to launch_mission and handle_capacity to launch_mission. Each of the main in-

ference channels consists of many local inference channels. To carry out the inference computa-

tion, we need to generate a semantic inference graph (SIG) by substituting the specific instance 

to the semantic inference model. The corresponding Bayesian network representation mapped 

Fig. 11. The SIM for a transportation mission planning example 
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from the SIG for airport “LAX” is shown in Figure 12. 

 
Let “Launch Mission?” be the sensitive attribute. The violation detection module examines 

each user’s past query log, as well as the current query request. The probability to infer “Launch 

Mission?” in the Bayesian network will be evaluated before answering each query. If answering 

the current query increases the certainty of inferring the sensitive attribute above the pre-

specified threshold, then the query will be denied. Let the pre-specified threshold for launch mis-

sion be 60%, and the users have prior knowledge of: 1) Aircraft C-5 can land in airport LAX; 

2)Airport LAX can load weapon HC-1. When user A poses the sequence of queries shown in 

Table1, each query answer will update his certainty of inferring the “Launch Mission? = yes” (as 

shown in the table). The same is true for user B when he poses the queries in Table2. 

Fig. 12. The Bayesian network for the mission planning example. The bold nodes represent user queried attributes. 
Knowledge from the query answers can be accumulated along the inference channels towards the sensitive attribute. 
The inference channels used by each query are labeled by its query identifier. The collaborative level from user A of 
85% is shown in the probability distribution boxes of QA(1), QA(2) and QA(3). When all the seven queries are an-
swered, user B can infer the sensitive attribute (shown in double ellipses) with a certainty of 64.15%. 
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Table 1. The inference probability of “Launch Mission? = yes” after answering user A’s queries. The probabilities 
are computed from the Bayesian network in Figure 12.  

Query Set of A QA(i) Answeri Pr(Launch_mission? = yes | answer1,…, answeri)  

(1) What is current_fuel_storage of airport LAX? large 52.01% 
(2) What is current_fuel_consumption of LAX? large 56.50% 
(3) What is cargo_handling_capacity of LAX? good 59.80% 

Table 2. The inference probability of “Launch Mission? = yes” after answering user B’s queries. The probabilities 
are computed from the Bayesian network in Figure 12. 

Query Set of B QB(i) Answeri Pr(Launch_mission?=yes | answer1,…, answeri)  

(1) What is the min_land_dist of aircraft C-5? long 50.31% 
(2) What is the min_rw_width of aircraft C-5? wide 50.85% 
(3) What is the parking_area_sq_ft of airport LAX? large 52.15% 
(4) What is the load_requirement of weapon type HC-1? high 57.15% 

Tables 1 and 2 are assuming that user A and user B do not collaborate. Neither A or B are get-

ting enough information to infer the sensitive attribute above the threshold, thus all the queries 

are answered. However, based on the questionnaires collected from these two users, we notice 

that they are collaborators with an 85% collaborative level from B to A for this specific “airport 

mission” task. Therefore, the knowledge from their query answers can be combined for collabo-

rative inference. If we examine their query set QA and QB on the SIM, we notice that they do not 

have overlapping inference channels. This is because QA focused on the fueling and cargo stor-

age of the airport while QB focused on the takeoff and landing activities and military instrument 

handling. Thus, users A and B belong to the “non-overlap inference channels” case as shown in 

Figure 9. We can directly integrate their knowledge from query set answers based on their social 

relation. Thus user B can integrate QA into QB and adjust the inference probability using their re-

spective collaborative level, as shown in Table3. 

From Table3, we note that the last query posed by user B will infer sensitive information with 

probability higher than the pre-specified threshold of 60%. Therefore, QB(4) should be denied by 

the violation detection module. In contrast, in the non-collaborative case as shown in Table1 and 

Table2, all the above queries can be answered. 
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Table 3. User B integrates user A’s query set QA into his own query set QB. The Bayesian network is used to com-
pute the inference probability in accordance with the posed query sequence and adjusted by the collaborative levels 
of the corresponding answers. 

Integrated Query Set of B (i) Answeri 
Collaborative 
Level ti (%) 

Pr(Launch_mission? =yes 
|t1*answer1,…, ti*answeri)  

QB(1)What is min_land_dist of aircraft C-5? long 100% 50.31% 
QB(2)What is min_rw_width of aircraft C-5? wide 100% 50.85% 
QA(1)What is current_fuel_storage of LAX? large 85% 52.39% 
QA(2)What is current_fuel_consumption of LAX? large 85% 55.54% 
QB(3)What is parking_area_sq_ft of LAX? large 100% 56.84% 
QA(3)What is cargo_handling_capacity of LAX? good 85% 59.15% 
QB(4)What is load_requirement of weapon HC-1? high 100% 64.15% 

7.4 N-Collaborators 

Therefore, for any two collaborative users, we can integrate one’s knowledge to the other and de-

tect their inference towards sensitive data. When any user poses a query, the system not only 

checks to see if the query requester can infer sensitive data above the threshold with a query an-

swer, it also checks the other team members to guarantee that the query answer will not indi-

rectly let them infer the sensitive attribute. We can iteratively generalize the above approach to 

an N-collaborator case. In general, when there are N collaborative users in the team, the violation 

detection system tracks the query posed by every team member. A query should be denied if the 

query answer will increase the certainty of any team member to infer the sensitive data above the 

pre-specified threshold. 

 

We can use the above greedy algorithm to efficiently decide to either answer or deny a query 

request from any team member. We first sort all N members by their inference probability to the 

1. Assume: current query request Q, malicious team M, sensitive data S, threshold of S is T; 
2. List(M) = sort team members M in descending order of inference probability to S; 
3. While(List(M) is not empty) { 
4.     m = first member in List(M) with highest inference probability; 
5.     max_col = the maximum collaborative level from any member in List(M) to the query requester; 
6.     real_col = m’s collaborative level to query requester; 
7.          If (m integrate answer to Q with max_col can get inference probability < T) 
8.          Then {answer query Q; goto end;} 
9.          Else  
10.                If (m integrate answer to Q with real_col can get inference probability >= T) 
11.                Then {deny query Q; goto end;} 
12.                Else { List(M) = List(M) – m;} 
13. } 

 An inference violation detection algorithm for N collaborative users 
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sensitive attribute and start with the member having the highest inference probability. We also 

compute every member’s collaborative level to the query requester and determine the max col-

laborative level. Suppose that the member with the highest inference probability integrates the 

current query answer adjusted by the maximum collaborative level and still cannot infer sensitive 

data above the threshold. Then we can stop checking the rest of the team members and answer 

the query. This is because no other member in the team will be able to make a higher inference. 

If the member with the highest inference probability integrates the query answer adjusted by his 

collaborative level to the requester and can infer the sensitive data above or equal to the thresh-

old, then we can stop checking and deny this query. Otherwise, we continue on to another mem-

ber with the next highest inference probability until a decision can be made. 

Since the system needs to evaluate the inference probability for every collaborator, the time 

required for inference evaluation increases as the number of collaborator increases. In our test 

bed on a sample Bayesian network with 40 nodes, after any user in a group of collaborators 

poses a random query, the time for inference evaluation ranges from 15ms for a single user to 

281ms for five collaborators when their CL=1. The inference evaluation time almost doubles 

when the CL is less than one because the system requires extra computation to insert virtual 

nodes. 

8.  Collaboration Level  

As stated in Section 7, information authoritativeness, honesty and communication channel fidel-

ity are three components of the collaboration level metrics. In this section we shall first conduct a 

set of experiments to validate the premise of the proposed metrics and then propose to integrate 

these three components to estimate the collaboration level. 
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8.1 Experimental Study of Collaboration Level 

Since authoritativeness, honesty and fidelity are user-sensitive, we used the students in one of the 

authors’ classes as test subjects. The experiment was used as homework for the class. A web in-

terface was developed for our inference test bed so that students could pose queries directly to 

the test bed and receive the answers.  

Before posing queries for inference, each student needed to register in the system and fill in 

the necessary background information, including their age, gender, major, year in school, courses 

taken, GPA, skills, interests, teamwork ability, social activities, friends in the class, etc. The in-

formation gave us clues about the information authoritativeness and certain aspect of the fidelity 

of the test subjects.  

8.1.1 Study the Effect of Authoritativeness and Fidelity 

In the first experiment, our goal is to see how authoritativeness and fidelity affect the collabora-

tion of multiple users. Based on the collected background information, we divided the class into 

five teams of four students to perform collaborative inference. The first team consisted of Ph.D. 

students with good knowledge in the database area, which should have good authoritativeness. 

The second team members were good friends, which provide good communication fidelity. The 

other three teams are randomly formed.  

In the test 1a, the teams were given the SIG structure based on the database, the security at-

tribute, but not the SIG parameters (CPTs) nor the threshold (75%) of the security attribute. Then 

we allowed each team to pose a fixed number of queries to infer the security attribute. The test 

bed computed their inference probability after each member posed the query. The system denied 

the query request if the posed queries exceeded the threshold. The four members in the team 

could collaborate in the best way possible to increase their inference probability of the security 

attribute. As shown in Figure 13 (1a), we observed that team2 reached the highest inference 
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probability. This is because they held meetings to discuss strategies of posing queries and voted 

if there was disagreement; therefore, their queries leveraged on each other to get better inference. 

This result reveals that communication fidelity plays a positive role in determining collaboration 

effectiveness. 

 

In the test 1b, we repeated the same experiment over these five teams. However, we let all the 

teams know the SIG structure, CPTs and the threshold value (65%) of the security attribute. As a 

result, this increased the authoritativeness of each team. With the same fixed number of queries, 

we noticed that with the additional knowledge of the CPTs and threshold of the security attribute, 

all the teams were able to ask better queries to improve their inference probability as close to the 

threshold as possible. Six queries were denied for four of the five teams due to the excess of the 

threshold during the process of this experiment. This experimental result reveals that the CL in-

creases with authoritativeness.  

In the second experiment, we investigated the collaboration effectiveness under controlled 

authoritativeness and communication fidelity. This experiment was carried out similar to ex-

periment 1, except it was conducted in another graduate class in the following quarter. Because 

of the small class size, we divided the students into three teams, each having three members.  

Experiment 1 
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Fig. 13. The inference results for Experiment 1. In experiment 1a, the teams were given the SIG structure but 
without the parameters (CPTs) and the threshold (75%) of the security node. In experiment 1b, the teams were 
given both the SIG structure and the CPTs and the inference threshold (65%) of the sensitive node. 
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To control the authoritativeness of the players, we gave each team different SIG. The first 

team was given the full SIG with four inference channels leading to the security attribute; the 

second team received half of the SIG with two channels which can maximally infer the security 

attribute with probability 75%; and the third team only had knowledge of one inference channel 

in the SIG that can infer the security attribute up to 60% inference probability. Therefore, for this 

inference task, the first team had authoritativeness value 1; the second team had authoritativeness 

0.75; and the authoritativeness of the third team was 0.6.  

To study the effect of fidelity, we controlled the mode of communication in each team. The 

first team was allowed to have “full fidelity.” Members were required to meet and discuss query 

strategies and exchange their query answers in making their selection of queries. The second 

team was allowed “limited fidelity” in which only member1 can tell member2 and member3 

about his/her query answers, but member2 and member3 could not communicate with each other 

and with member1. The third team had “restricted fidelity” because only member1 is allowed to 

tell member2 the query answers, but member2 and member 3 are forbidden to talk to each other 

and to member1. 

As shown in Figure 14, the inference result of team1 is higher than team2 and team2 is higher 

than team3. This set of experimental results confirm our premise that information authoritative-

ness and communication fidelity can both positively affect the collaboration performance, and 

therefore are two key components of the collaboration level.  

Among the six queries by each team, team1 had two queries denied; team2 and team3 had one 

query denied. These denied queries would have been answered if the collaboration within each 

team is unknown and the team members were treated as separate individuals. 
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8.1.2 Study the Effect of Honesty in Collaboration 

In the past two experiments, players in the same team are willing to release true knowledge to 

their teammates. The “honesty” for every information provider is one, i.e. totally willing to re-

lease true information. In the third experiment, we want to introduce a less honest scenario to test 

the effect of honesty to collaboration level. The third experiment was conducted based on the 

same three teams as in the second experiment. 

A proxy is introduced to study the “honesty” in the experiment. Users pose queries and receive 

answers from the proxy. As a result, the player cannot directly exchange the query answers with 

his/her team members. Thus, the proxy becomes the communication conduit among team mem-

bers and can alter the query answers to control the “honesty” in the experiment. 

For example, in the three teams of this experiment, the proxy used three different level of hon-

esty to transfer the query answers. For the first team, the proxy does not send the exact answer of 

the original query, but send the answer of the parent node of the original query in the inference 

channel. Thus it simulates the scenario of “unwilling collaboration” since the collaborators will 

have less knowledge for inference than the query requester himself. The loss of information can 

be measured as the inference probability from the “answered node” to the “original query node”. 

For the first group, based on the tested Bayesian network, the average loss of information by an-

swering “parent” node is 0.7418. For the third group, the proxy answers “grandparent” node of 

the original query, and the loss of information due to the less honesty can be measured as 0.6107. 

For the second group, the proxy gives the “opposite” answer of the original query node to the 

collaborators. For example, if the answer to the original query is “Fueling=good”, then the proxy 

sends the opposite answer “Fueling=poor” to the collaborators. This simulates the scenario that 

the information source is “deceptive” and misleads the collaborators to believe in the opposite. 
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 Since we use the same teams as in experiment 2, they have the same authoritativeness. Fur-

ther, the proxy sends query answers directly to members in each team, the fidelity values of the 

three teams are equal to one. 

 

 As shown in Figure 15, the first team has the highest “honesty in collaboration” among the 

three teams and yields the best inference result. The collaboration of the third team is less honest 

than team1; therefore their collaboration yields lower inference than team one. The members of 

the second team deceive each other, thus yields the lowest inference result. This experimental re-

sult reveals that the collaboration honesty does affect Collaboration Level. Less willingness to 

release information between collaborators reduces the collaboration effectiveness; and deception 

between collaborators causes negative effect in inference. Note H=1 represents honest collabora-

tion which maximizes the collaboration effectiveness and can be used for conservative collabora-

tive inference detection. Such over-protection may introduce false denial of legitimate queries. 

8.2 Estimating Authoritativeness, Fidelity and Honesty 

Estimation of Authoritativeness: Information authoritativeness represents the capability of the 

provider to supply accurate task-specific knowledge. This measurement can be derived based on 

the provider’s profile, such as education level, profession, experience with the specific area of 
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Fig.15. Inference result for Experiment 3. The infer-
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the task, and reputation etc. For example, the answers to a carefully designed questionnaire at 

registration can be used as input for the estimation. We can take a weighted sum of the answers 

to related questions to estimate the authoritativeness of a user. In addition, the authoritativeness 

can also be enhanced by information derived from the relationship between users. If many indi-

viduals (especially highly authoritative ones) indicate user ui as their reference in this field, then 

ui has a significant impact on others and therefore has a higher authority. The link-based analysis 

(such as page rank) can be used to derive the reputation of people [PB98, KSG03]. In general, 

authoritativeness of the information provider can be derived from user profiles and/or question-

naire answers; when such background information is not available or incomplete, we can com-

plement the authoritativeness from the provider’s reputation among users.  

Estimation of Fidelity: The fidelity measures the percentage of information sent by the pro-

vider that reaches the recipient side. Thus, fidelity depends on the quality of the communication 

channel and depends on the communication mode (e.g., face-to-face meeting, email or through a 

third party, etc.) 

Estimation of Honesty: The honesty represents the willingness and truthfulness of the informa-

tion release from the provider to the recipient. This is related with evaluation of trust in P2P net-

works [AD01, CDV02, KSG03, YW03a, YW03b, WL04, SBG05, XL04, DSC05 and MG06], 

which can be categorized by reputation-based or evidence-based approaches [LS07]. One ap-

proach is to use the reputation-based method as proposed in [YS02, YS03].  Honesty level is re-

cipient-dependent. Therefore, for a given task, the honesty between two collaborators should also 

be estimated based on their closeness or friendship for a specific task. Therefore the specific 

honesty of a provider to a specific recipient needs to be adjusted by the closeness between the 

collaborators for a given task. Further research in this area is needed. 
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8.3 Estimating Collaboration Level from a Training Set 

Since the collaboration level is user and task sensitive, we propose to use regression method to 

study the task and user specific relation between the Collaboration Level and its parameters. 

Specifically, for a group of users and a specific task, we can treat A, H, and F as the predictors 

and the Collaboration Level (CL) as the response variable. We can then learn the coefficients of 

these variables from the regressional model via the set of training data. 

As an example, let the results of collaborative inference from experiment2 and experiment3 

under controlled environment with selected A, H and F values (Table 4) be a training set. Since 

the inference result obtained by a team reflects the collaboration effectiveness under the corre-

sponding controlled environment, we can normalize the inference result (i.e. inference result of 

the security attribute divided by the threshold) as the estimate of CL. Using the six entries as the 

input for regression analysis, the CL can be fit by multiple regression method with residual sum 

of squares 310124.8 −× as shown in Table 4. Thus, we can estimate future collaboration level by 

substituting the parameters A, H and F into the regression model for similar users and tasks.  

Table 4. Based on the six training data points, regression analysis can integrate the three components into Collabo-
ration Level for future prediction. 

 A H F CL 

From Experiment2 Team1: 1 1 1 0.989 

From Experiment2 Team2: 0.75 1 0.33 0.901 

From Experiment2 Team3: 0.6 1 0.17 0.8034 

From Experiment3 Team1: 1 0.7418 1 0.9741 

From Experiment3 Team2: 0.75 0 1 0.4936 

From Experiment3 Team3: 0.6 0.6107 1 0.8132 

Regression model: 2075.01988.04948.01449.0 +⋅+⋅+⋅= FHACL  

Residual Sum of Squares:     310124.8 −⋅=rss  
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9.  Robustness in Inference Detection 

Usually security experts or database administrators have some idea of the required level of pro-

tection for each security attribute, but they can hardly give a quantitative measurement to de-

scribe such protection requirements. Further, in a large database system, the dependency rela-

tionship between the security attribute and other attributes is complicated. The inference towards 

security attribute computed from a Bayesian network depends on both the network topology 

(qualitative attribute dependencies) and the parameter of the network (conditional probabilities). 

If a small variation of a given parameter can trigger the inference probability to exceed the 

threshold, then the inference detection may not satisfy the robustness requirements. This moti-

vates us to find a methodology to systematically quantify the robustness of the threshold. 

Sensitivity measures the impact of small changes in a network parameter on a target probabil-

ity value or distribution [Las95]. In other words, a small change in the more sensitive attribute 

will cause a large impact on the inference probability. Therefore, the sensitivity values of attrib-

utes in the network provide an insight to the robustness of inference with respect to the changes 

in attribute parameter value. In this section, we propose to use the sensitivity analysis results to 

study the interrelationship between sensitive nodes and the security threshold. 

9.1 Sensitivity Definition 

“Sensitivity values are partial derivatives of output probabilities with respect to parameters being 

varied in the sensitivity analysis. They measure the impact of small changes in a network pa-

rameter on a target probability value or distribution” [Las95].  More formally, for a function f(x), 

the quantity: 
00

00

0)( )(

)())()((
lim

0 xxx

xfxfxf
xx −

−
→−

 is typically known as the sensitivity of f to x at x0, which 

is the ratio of relative change in output probability over the relative change in the parameter, 

where x0 is the initial value of X. If we consider the function to be the probability of security 
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node Y given the change of attribute node X, then the sensitivity for attribute X at probability 0x  

in a given network N with the initial probability of the security node inity  can be represented as: 
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The initial probability of the security node is the probability of Y at the state when the set of evi-

dence was given in the network. inity  represents the initial probability of Y, which is different 

from 0y that represents the probability of Y when 0xX = . According to this definition, in a Bayesian 

network, if minor changes to an attribute node’s probability can result in a significant change in 

the output probability of the security node, then this attribute node is considered highly sensitive.  

9.2 Adjust Security Threshold by Attribute Sensitivity Analysis 

To compute the sensitivity of attributes in an inference network, we first identify all inference 

channels toward each security node so that the sensitivity values for the attributes along the in-

ference channels can be computed. The inference channels include channels coming into the se-

curity node and those going out of the security node. For those out-going inference channels, we 

can treat them as if the channels are coming into the security node by reversing the edges along 

such channels and revising the corresponding conditional probabilities. This is because, in terms 

of inference, the security node can be thought of as the “sink” of all information. Regardless of 

whether the attribute is the ancestor or descendent of the security node, the inference is always 

from the attribute towards the security node. Thus, we can compute the attribute sensitivities on 

both in-coming and out-going inference channels. 

In a large-scale network, because of the large number of attributes, it is time-consuming to 

compute the sensitivity value for each attribute on the inference channels. However, for two at-

tribute nodes on the same inference channel, the node that is closer to the security node is more 

sensitive than the node that is farther from the security node at the same probability value. This 
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difference of sensitivity value between closer and farther nodes is intuitive as closer nodes gen-

erally contain more sensitive information and are more influential on the security node than that 

of farther nodes. The farther node influences the security node through the inference channel 

which includes the closer node. Therefore, the amount of change at the farther node has the 

equivalent effect of inferring the security node as a smaller (or equal) amount of change at the 

closer node. For example, in the inference channel in Figure 15(a), the closest attribute to secu-

rity node “LaunchMission?” is “Fueling.” The sensitivity of “Fueling” is greater than sensitivity 

of its parents “LAX_Fueling_Activity” for all x0, as shown in Figure 15(b). Similarly, the sensi-

tivity of “LAX_Fueling_Activity” is greater than the sensitivity of “Daily_Fuel_Consumption.” 

Each value of the security node is protected by a threshold. For example, we need threshold 

for “Launch_Mission=Yes” and another threshold for “Launch_Mission=No” so that the mali-

cious user cannot infer the exact value of this attribute above thresholds. When the data adminis-

trator proposes a threshold value based on the required protection level, he/she can check the 

sensitivity values of closest attributes on inference channels. If one of these inference channels is 

too sensitive which means a small change in the attribute value can resulted in  exceeding the 

threshold, then the threshold needs to be tightened to make it less sensitive. In the case that the 

threshold cannot be further lowered to satisfy the sensitivity constraints, we can block the access 

to the closest attribute to the security node on the most sensitive inference channel, so that the 

accessible nodes on that inference channel are less sensitive to the threshold of the security node. 
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10. Conclusion 

In this paper we present a technique that prevents users from inferring sensitive information from 

a series of seemingly innocuous queries. Compared to the deterministic inference approach in 

previous works, we include non-deterministic relations into inference channels for query-time in-

ference detection. Specifically, we extract possible inference channels from probabilistic data 

dependency, the database schema and the semantic knowledge and construct a semantic infer-

ence model (SIM). The SIM links represent the possible inference channels from any attribute to 

the set of pre-assigned sensitive attributes. The parameters of attributes in SIM can be computed 

in polynomial time in terms of the rows and columns of the relational table. The SIM is then in-

stantiated by specific instances and reduced to a semantic inference graph (SIG) for inference 

violation detection at query time. To reduce computation complexity for inference, the SIG can 

be mapped into a Bayesian network so that available Bayesian network tools can be used for 

evaluating the inference probability along the inference channels. Therefore, our proposed ap-

proach can be scalable to large systems.  

When a user poses a query, the detection system will examine his/her past query log and cal-

culate the probability of inferring sensitive information from answering the posed query. The 

query request will be denied if it can infer sensitive information with probability exceeding the 

LAX Fueling 
Activity 

Launch Mission? 

Fueling 

Daily Fuel 
Consumption 

Fig. 15(a). A portion of an inference channel 
in the Bayesian network from the example. 

x0 

Fig. 15(b). The sensitivity of corresponding attribute nodes 
in 15(a) to the security node at selected initial values x0. 
 



 39 

pre-specified threshold. We find Bayesian network is able to preserve the structure of inference 

channels, which is very useful in providing accurate and scalable inference violation detection. 

In the multiple-user inference environment, the users can share their query answers to collabo-

ratively infer sensitive information. Collaborative inference is related to the collaboration level 

as well as the inference channels of the user-posed queries. For inference violation detection, we 

developed a collaborative inference model that combines the collaborators’ query log sequences 

into inference channels to derive the collaborative inference of sensitive information.  

Sensitivity analysis of attributes in the Bayesian network can be used to study the sensitivity of 

the inference channels. Our study reveals that the nodes closer to the security node have stronger 

inference effect on the security node. Thus sensitivity analysis of these close nodes can assist 

domain experts to specify the threshold of the security node to ensure its robustness. 

User profiles and questionnaire data provide a good starting point for learning collaboration 

levels among collaborative users. However, gathering such information is complicated by the 

fact that the information may be incomplete and incorrect. In addition, the accuracy of such in-

formation is task-specific and user-community sensitive. We have constructed a testbed on the 

inference violation detection system to study the collaboration level for collaborative users. Our 

preliminary study reveals that information provider authoritativeness, communication fidelity 

and honesty in collaboration play key roles in the collaboration level. Further research and ex-

periments in generating training set to estimate and validate collaboration level are needed. 
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