Skip to main content

Protection Techniques of Secret Information in Non-tamper Proof Devices of Smart Home Network

  • Conference paper
Ubiquitous Intelligence and Computing (UIC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5061))

Included in the following conference series:

Abstract

The problem of revealing secret information in home network becomes critical when a physical capture of single device or more happen where the attacker can statically analyze the entire device’s memory. While the trusted platform module that assumes a tamper proof chip in each device is not a choice, we investigate other software-based solutions. This paper introduces several mechanisms and schemes in varying scenarios for secret information protection in non-tamper proof devices of the smart home environment. The mechanisms provided herein utilize the existence of several algorithms and techniques and building blocks that do not require an extra hardware while they are computation efficient on the typical home network devices. To demonstrate the value of contributions, an extensive analysis for different scenarios including security and cost estimations are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LG electronics: HomeNet (2007), http://www.lge.com/products/homenetwork/homenetwork.jsp

  2. Group, T.C.: Trusted computing platform alliance main specification version 1.1b (2003)

    Google Scholar 

  3. Sengodan, S., Edlund, R.Z.L.: On securing home networks. In: INET (2001)

    Google Scholar 

  4. Wallach, D.S., Balfanz, D., Dean, D., Felten, E.W.: Extensible security architectures for Java. In: 16th Symposium on Operating Systems Principles, pp. 116–128 (1997)

    Google Scholar 

  5. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  6. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22, 644 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  8. Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.K.: Pioneer: verifying code integrity and enforcing untampered code execution on legacy systems. In: Herbert, A., Birman, K.P. (eds.) SOSP, pp. 1–16. ACM (2005)

    Google Scholar 

  9. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.K.: Swatt: Software-based attestation for embedded devices. In: IEEE Symposium on Security and Privacy, p. 272. IEEE Computer Society (2004)

    Google Scholar 

  10. Shaneck, M., Mahadevan, K., Kher, V., Kim, Y.: Remote software-based attestation for wireless sensors. In: Molva, R., Tsudik, G., Westhoff, D. (eds.) ESAS 2005. LNCS, vol. 3813, pp. 27–41. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Nakamura, M., Tanaka, A., Igaki, H., Tamada, H.: Adapting legacy home appliances to home network systems usingweb services. In: ICWS, pp. 849–858 (2006)

    Google Scholar 

  12. Perrig, A., Stankovic, J.A., Wagner, D.: Security in wireless sensor networks. Commun. ACM 47, 53–57 (2004)

    Article  Google Scholar 

  13. Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: Spins: Security protocols for sensor networks. Wireless Networks 8, 521–534 (2002)

    Article  MATH  Google Scholar 

  14. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

    Google Scholar 

  15. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: A password-based protocol secure against dictionary attacks and password file compromise. In: ACM Conference on Computer and Communications Security, pp. 244–250 (1993)

    Google Scholar 

  16. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptology 1, 77–94 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frode Eika Sandnes Yan Zhang Chunming Rong Laurence T. Yang Jianhua Ma

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mohaisen, A. et al. (2008). Protection Techniques of Secret Information in Non-tamper Proof Devices of Smart Home Network. In: Sandnes, F.E., Zhang, Y., Rong, C., Yang, L.T., Ma, J. (eds) Ubiquitous Intelligence and Computing. UIC 2008. Lecture Notes in Computer Science, vol 5061. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69293-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69293-5_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69292-8

  • Online ISBN: 978-3-540-69293-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics