Skip to main content

The 2-Terminal-Set Path Cover Problem and Its Polynomial Solution on Cographs

  • Conference paper
  • 1385 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5059))

Abstract

In this paper we study a generalization of the path cover problem, namely, the 2-terminal-set path cover problem, or 2TPC for short. Given a graph G and two disjoint subsets \(\mathcal{T}^1\) and \(\mathcal{T}^2\) of V(G), a 2-terminal-set path cover of G with respect to \(\mathcal{T}^1\) and \(\mathcal{T}^2\) is a set of vertex-disjoint paths \(\mathcal{P}\) that covers the vertices of G such that the vertices of \(\mathcal{T}^1\) and \(\mathcal{T}^2\) are all endpoints of the paths in \(\mathcal{P}\) and all the paths with both endpoints in \(\mathcal{T}^1 \cup \mathcal{T}^2\) have one endpoint in \(\mathcal{T}^1\) and the other in \(\mathcal{T}^2\). The 2TPC problem is to find a 2-terminal-set path cover of G of minimum cardinality; note that, if \(\mathcal{T}^1 \cup \mathcal{T}^2\) is empty, the stated problem coincides with the classical path cover problem. The 2TPC problem generalizes some path cover related problems, such as the 1HP and 2HP problems, which have been proved to be NP-complete even for small classes of graphs. We show that the 2TPC problem can be solved in linear time on the class of cographs. The proposed linear-time algorithm is simple, requires linear space, and also enables us to solve the 1HP and 2HP problems on cographs within the same time and space complexity.

The research Project is co-funded by the European Union - European Social Fund (ESF) & National Sources, in the framework of the program ”Pythagoras II” of the 3rd Community Support Framework of the Hellenic Ministry of Education.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adhar, G.S., Peng, S.: Parallel algorithm for path covering, Hamiltonian path, and Hamiltonian cycle in cographs. In: Int’l Conference on Parallel Processing. Algorithms and Architecture, vol. III, pp. 364–365. Pennsylvania State Univ. Press (1990)

    Google Scholar 

  2. Arikati, S.R., Rangan, C.P.: Linear algorithm for optimal path cover problem on interval graphs. Inform. Process. Lett. 35, 149–153 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asdre, K., Nikolopoulos, S.D.: A linear-time algorithm for the k-fixed-endpoint path cover problem on cographs. Networks 50, 231–240 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Asdre, K., Nikolopoulos, S.D.: A polynomial solution for the k-fixed-endpoint path cover problem on proper interval graphs. In: 18th Int’l Conference on Combinatorial Algorithms (IWOCA 2007), Lake Macquarie, Newcastle, Australia (2007)

    Google Scholar 

  5. Asdre, K., Nikolopoulos, S.D., Papadopoulos, C.: An optimal parallel solution for the path cover problem on P 4-sparse graphs. J. Parallel Distrib. Comput. 67, 63–76 (2007)

    Article  MATH  Google Scholar 

  6. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes – A Survey. In: SIAM Monographs in Discrete Mathematics and Applications. SIAM, Philadelphia (1999)

    Google Scholar 

  7. Corneil, D.G., Lerchs, H., Stewart, L.: Complement reducible graphs. Discrete. Appl. Math. 3, 163–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Corneil, D.G., Perl, Y., Stewart, L.: A linear recognition algorithm for cographs. SIAM J. Comput. 14, 926–984 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Damaschke, P.: Paths in interval graphs and circular arc graphs. Discrete Math. 112, 49–64 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W.H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  11. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Academic Press, New York (1980); Annals of Discrete Mathematics 57, Elsevier (2004)

    MATH  Google Scholar 

  12. Hochstättler, W., Tinhofer, G.: Hamiltonicity in graphs with few P 4’s. Computing 54, 213–225 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hsieh, S.Y.: An efficient parallel strategy for the two-fixed-endpoint Hamiltonian path problem on distance-hereditary graphs. J. Parallel Distrib. Comput. 64, 662–685 (2004)

    Article  MATH  Google Scholar 

  14. Hung, R.W., Chang, M.S.: Linear-time algorithms for the Hamiltonian problems on distance-hereditary graphs. Theoret. Comput. Sci. 341, 411–440 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hung, R.W., Chang, M.S.: Solving the path cover problem on circular-arc graphs by using an approximation algorithm. Discrete. Appl. Math. 154, 76–105 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, R., Olariu, S., Pruesse, G.: An optimal path cover algorithm for cographs. Comput. Math. Appl. 30, 75–83 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. McConnell, R.M., Spinrad, J.: Modular decomposition and transitive orientation. Discrete Math. 201, 189–241 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Math. 156, 291–298 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nakano, K., Olariu, S., Zomaya, A.Y.: A time-optimal solution for the path cover problem on cographs. Theoret. Comput. Sci. 290, 1541–1556 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nikolopoulos, S.D.: Parallel algorithms for Hamiltonian problems on quasi-threshold graphs. J. Parallel Distrib. Comput. 64, 48–67 (2004)

    Article  MATH  Google Scholar 

  21. Srikant, R., Sundaram, R., Singh, K.S., Rangan, C.P.: Optimal path cover problem on block graphs and bipartite permutation graphs. Theoret. Comput. Sci. 115, 351–357 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Suzuki, Y., Kaneko, K., Nakamori, M.: Node-disjoint paths algorithm in a transposition graph. IEICE Trans. Inf. & Syst. E89-D, 2600–2605 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Franco P. Preparata Xiaodong Wu Jianping Yin

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Asdre, K., Nikolopoulos, S.D. (2008). The 2-Terminal-Set Path Cover Problem and Its Polynomial Solution on Cographs. In: Preparata, F.P., Wu, X., Yin, J. (eds) Frontiers in Algorithmics. FAW 2008. Lecture Notes in Computer Science, vol 5059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69311-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69311-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69310-9

  • Online ISBN: 978-3-540-69311-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics