Skip to main content

Using Eigenvalue Derivatives for Edge Detection in DT-MRI Data

  • Conference paper
Pattern Recognition (DAGM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5096))

Included in the following conference series:

Abstract

This paper introduces eigenvalue derivatives as a fundamental tool to discern the different types of edges present in matrix-valued images. It reviews basic results from perturbation theory, which allow one to compute such derivatives, and shows how they can be used to obtain novel edge detectors for matrix-valued images. It is demonstrated that previous methods for edge detection in matrix-valued images are simplified by considering them in terms of eigenvalue derivatives. Moreover, eigenvalue derivatives are used to analyze and refine the recently proposed Log-Euclidean edge detector. Application examples focus on data from diffusion tensor magnetic resonance imaging (DT-MRI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basser, P.J., Mattiello, J., Bihan, D.L.: Estimation of the effective self-diffusion tensor from the NMR spin echo. Journal of Magnetic Resonance B(103), 247–254 (1994)

    Google Scholar 

  2. Pajevic, S., Aldroubi, A., Basser, P.J.: A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue. Journal of Magnetic Resonance 154, 85–100 (2002)

    Article  Google Scholar 

  3. Kindlmann, G., Ennis, D., Whitaker, R., Westin, C.F.: Diffusion tensor analysis with invariant gradients and rotation tangents. IEEE Transactions on Medical Imaging 26(11), 1483–1499 (2007)

    Article  Google Scholar 

  4. Kindlmann, G.: Visualization and Analysis of Diffusion Tensor Fields. PhD thesis, School of Computing, University of Utah (September 2004)

    Google Scholar 

  5. Schultz, T., Burgeth, B., Weickert, J.: Flexible segmentation and smoothing of DT-MRI fields through a customizable structure tensor. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A.V., Gopi, M., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4291, pp. 455–464. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Kato, T.: Perturbation theory for linear operators. 2nd edn. Volume 132 of Die Grundlehren der mathematischen Wissenschaften. Springer (1976)

    MATH  Google Scholar 

  7. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine 56(2), 411–421 (2006)

    Article  Google Scholar 

  8. Anderson, A.W.: Theoretical analysis of the effects of noise on diffusion tensor imaging. Magnetic Resonance in Medicine 46(6), 1174–1188 (2001)

    Article  Google Scholar 

  9. O’Donnell, L., Grimson, W.E.L., Westin, C.F.: Interface detection in diffusion tensor MRI. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 360–367. Springer, Heidelberg (2004)

    Google Scholar 

  10. Kindlmann, G., Tricoche, X., Westin, C.F.: Delineating white matter structure in diffusion tensor MRI with anisotropy creases. Medical Image Analysis 11(5), 492–502 (2007)

    Article  Google Scholar 

  11. Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance B(111), 209–219 (1996)

    Google Scholar 

  12. Westin, C.F., Peled, S., Gudbjartsson, H., Kikinis, R., Jolesz, F.A.: Geometrical diffusion measures for MRI from tensor basis analysis. In: International Society for Magnetic Resonance in Medicine 1997, Vancouver, Canada, p. 1742 (1997)

    Google Scholar 

  13. Pajevic, S., Pierpaoli, C.: Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magnetic Resonance in Medicine 42(3), 526–540 (1999)

    Article  Google Scholar 

  14. Bahn, M.M.: Invariant and orthonormal scalar measures derived from magnetic resonance diffusion tensor imaging. Journal of Magnetic Resonance 141, 68–77 (1999)

    Article  Google Scholar 

  15. Ennis, D.B., Kindlmann, G.: Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images. Magnetic Resonance in Medicine 55(1), 136–146 (2006)

    Article  Google Scholar 

  16. Fillard, P., Pennec, X., Arsigny, V., Ayache, N.: Clinical DT-MRI estimation, smoothing and fiber tracking with log-euclidean metrics. IEEE Transactions on Medical Imaging 26(11), 1472–1482 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerhard Rigoll

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schultz, T., Seidel, HP. (2008). Using Eigenvalue Derivatives for Edge Detection in DT-MRI Data. In: Rigoll, G. (eds) Pattern Recognition. DAGM 2008. Lecture Notes in Computer Science, vol 5096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69321-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69321-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69320-8

  • Online ISBN: 978-3-540-69321-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics