Skip to main content

Physically Consistent Variational Denoising of Image Fluid Flow Estimates

  • Conference paper
Book cover Pattern Recognition (DAGM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5096))

Included in the following conference series:

Abstract

High-speed image measurements of fluid flows define an important field of research in experimental fluid mechanics and the related industry. Numerous competing methods have been developed for both 2D and 3D measurements. Estimates of fluid flow velocity fields are often corrupted, however, due to various deficiencies of the imaging process, making the physical interpretation of the measurements questionable. We present an algorithm that accepts vector field estimates from any method and returns a physically plausible denoised version of it. Our approach enforces the physical structure and does not rely on particular noise models. Accordingly, the algorithm performs well for different types of noise and estimation errors. The computational steps are sufficiently simple to scale up to large 3D problems in the near future.

This work has been supported by the German Science Foundation, priority program 1147, grant SCHN 457/6-3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tropea, C., Yarin, A.L., Foss, J.F. (eds.): Springer Handbook of Experimental Fluid Mechanics. Springer, Heidelberg (2007)

    Google Scholar 

  2. Adrian, R.J.: Twenty years of particle velocimetry. Experiments in Fluids 39(2), 159–169 (2005)

    Article  Google Scholar 

  3. Raffel, M., Willert, C.E., Wereley, S.T., Kompenhans, J.: Particle Image Velocimery – A Practical Guide. Springer, Heidelberg (2007)

    Google Scholar 

  4. Brücker, C.: Digital-particle-image-velocimetry (DPIV) in a scanning light-sheet: 3d starting flow around a short cylinder. Experiments in Fluids 19(4) (1995)

    Google Scholar 

  5. Burgmann, S., Brücker, C., Schröder, W.: Scanning PIV measurements of a laminar separation bubble. Experiements in Fluids 41(2), 319–326 (2006)

    Article  Google Scholar 

  6. Hinsch, K.D.: Holographic particle image velocimetry. Measurement Science and Technology 13, 61–72 (2002)

    Article  Google Scholar 

  7. Maas, H.G., Gruen, A., Papantoniou, D.: Particle tracking velocimetry in three-dimensional flows. Experiments in Fluids 15(2), 133–146 (1993)

    Article  Google Scholar 

  8. Hoyer, K., Holzner, M., Lüthi, B., Guala, M., Liberzon, A., Kinzelbach, W.: 3d scanning particle tracking velocimetry. Experiments in Fluids 39(5), 923–934 (2005)

    Article  Google Scholar 

  9. Ruhnau, P., Güttler, C., Putze, T., Schnörr, C.: A variational approach for particle tracking velocimetry. Measurement Science and Technology 16, 1449–1458 (2005)

    Article  Google Scholar 

  10. Elsinga, G., Scarano, F., Wieneke, B., van Oudheusden, B.: Tomographic particle image velocimetry. Experiments in Fluids 41(6), 933–947 (2006)

    Article  Google Scholar 

  11. Ruhnau, P., Schnörr, C.: Optical stokes flow estimation: An imaging-based control approach. Exp. Fluids 42, 61–78 (in press, 2007)

    Article  Google Scholar 

  12. Ruhnau, P., Stahl, A., Schnörr, C.: On-line variational estimation of dynamical fluid flows with physics-based spatio-temporal regularization. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 444–454. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Ruhnau, P., Stahl, A., Schnörr, C.: Variational estimation of experimental fluid flows with physics-based spatio-temporal regularization. Measurement Science and Technology 18, 755–763 (2007)

    Article  Google Scholar 

  14. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Springer, Heidelberg (1986)

    MATH  Google Scholar 

  15. Stashchuk, N., Vlasenko, V., Hutter, K.: Kelvin-Helmholz instability: Numerical modelling of disintegration of basin-scale internal waves in a tank filled with stratified water. Nonlinear Processes in Geophysics 12, 955–964 (2005)

    Google Scholar 

  16. Van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerhard Rigoll

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vlasenko, A., Schnörr, C. (2008). Physically Consistent Variational Denoising of Image Fluid Flow Estimates. In: Rigoll, G. (eds) Pattern Recognition. DAGM 2008. Lecture Notes in Computer Science, vol 5096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69321-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69321-5_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69320-8

  • Online ISBN: 978-3-540-69321-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics