
A Language for the Compact Representation of Multiple
Program Versions

Sebastien Donadio1,2, James Brodman4, Thomas Roeder5, Kamen Yotov5, Denis
Barthou2, Albert Cohen3, Marı́a Jesús Garzarán4, David Padua4, and Keshav Pingali5

1 BULL SA
2 University of Versailles St-Quentin-en-Yvelines

3 INRIA Futurs
4 University of Illinois at Urbana-Champaign

5 Cornell University

Abstract. As processor complexity increases compilers tend to deliver subopti-
mal performance. Library generators such as ATLAS, FFTW and SPIRAL over-
come this issue by empirically searching in the space of possible program ver-
sions for the one that performs the best. Empirical search can also be applied by
programmers, but because they lack a tool to automate the process, programmers
need to manually re-write the application in terms of several parameters whose
best value will be determined by the empirical search in the target machine.
In this paper, we present the design of an annotation language, meant to be used
either as an intermediate representation within library generators or directly by
the programmer. This language that we call X represents parameterized programs
in a compact and natural way. It provides an powerful optimization framework
for high performance computing.

1 Introduction

Processors and machines in general are becoming increasingly complex and it has be-
come extremely difficult even for experts to identify the fastest code sequences and the
sequence of transformations that would optimize a given code sequence [6, 7, 29, 30].
Furthermore, the best code for a particular machine is not necessarily the best for other
machines, even when architectural differences are minute. Because of this complexity,
compilers tend to deliver suboptimal performance and programmers make limited at-
tempts at manual optimization. The result is that, in many cases, applications only use
a small fraction of the target machine’s power.

Clearly, an optimization methodology must be developed to improve the current
situation. Recent studies have shown that a conceptually simple strategy, known as em-
pirical search, can be a very effective optimization strategy. Empirical search consists
of searching the space of possible program versions, executing each of them on the
target machine, and selecting the fastest version.

Empirical search has been studied in the context of compiler transformations [14]
and library generators. Thus, ATLAS [27], a linear algebra library generator, searches
the space of possible forms of matrix-matrix multiplication routines. The different
forms vary in the size of tiles, degree of unrolling, and schedule of operations. The SPI-
RAL [20] and FFTW [10] signal processing library generators search a space consisting
of implementations of different formulas representing the transform to be implemented.
In the case of library generators, empirical search leads to performance improvements
of an order of magnitude over good generic libraries that have not been tuned for a
particular machine.

Empirical search can also be applied manually by a programmer. The idea would
be for the programmer to write the application in terms of several parameters whose
best value for a particular target machine is to be determined by empirical search. The

parameters could specify values such as degree of unrolling of a given loop, tile size,
etc. Parameters could also be used to represent completely different ways of carrying
out a computation or part of a computation by numbering the different strategies and
making this number one of the parameters whose value is to be identified.

In this paper we describe an ongoing effort to design and implement a new language,
X, that could be used by programmers and also serve as an intermediate representation
within of library generators. X is a language to represent parameterized programs nat-
urally and compactly. Programmers would be able to program in X directly. Library
generators could be organized as depicted in Figure 1 where it is assumed that func-
tions of the library are designed in a very high level domain specific language which
is analyzed, parameterized and translated into X programs. The availability of X would
enable the reuse of a search engine across library generators.

DSL Translator

Algorithm
in

Domain
Specific

Language

X program

Search engine

Optimized
program

X Translator Machine
language

Execution
and

measurement

High
Level

language
HLL Translator

Fig. 1. Programming adaptive library generators

Our objective is to design X so that it is easy for the programmer to specify which
transformations to apply, and change the order or the values of the transformations. The
value of the parameters can be determined using empirical search orchestrated by a
search engine which could use the target machine to evaluate the performance of each
version of the program or rely on analytical models.

Since many programs spend most of their time executing loops, loop-based opti-
mizations are the main focus of attention of the transformations we propose in this
initial version of X, although non-loop transformations are also possible.

The output of processing X could be machine code, which would give programmers
access to low-level optimizations. However, this approach would force the development
of an X translator for each machine. To make X portable, high level language code could
be generated so that each version of the code, that is, each point in the search space,
would have to be fed to the native compiler. This compiler is in charge of the low-
level optimizations such as register allocation and code generation of the executable
code. In many occasions, we would like to disable many of the optimizations of the
native compiler, but this is not always possible, because disabling all optimizations (-
O0) could lead to poor performance. As a result, the transformations represented in X
may or may not be preserved by the native compiler. The only solution to this problem
is the search of the best combination of transformation at the source level that interacts
with the low level compiler.

The rest of the paper is organized as follows: Section 2 lists the language require-
ments to ease the design of multiversion programs; Section 3 analyzes the multiver-
sionning capabilities of macro or multistage languages with respect to these require-
ments; Section 4 presents the X language which combines multistage evaluation with
reification and transformation pragmas; Section 5 details the design of the X language
source-to-source compiler; Section 6 presents promising results on mimicking the code
generator for DGEMM (matrix-matrix multiplication) in ATLAS [27]; and Section 7

compares the X language with related work and results, before we conclude and sketch
future work.

2 Necessary Features of the Language

In this section, we discuss the features that must be exhibited by any language designed
specifically for the compact representation of multiple code versions.

1. Elementary transformations. The first features that come to mind are constructs to
generate multiple versions of a statement by applying elementary transformations to
a statement. Elementary transformations are widely used transformations that cannot
be conveniently cast in terms of other, simpler transformations. For program opti-
mization, the targets of the transformations are usually compound statements and the
transformations typically manipulate the order of execution and the control structure
of the components. For sequences of assignment statements, typical elementary trans-
formations are statement reordering, replication, and deletion. Loop transformations
include unrolling, interchanging, stripmining, fusion, fission, and scalar replacement.
We also consider loop tiling an elementary transformation although in theory it can be
represented as a combination of stripmining and interchanging. Some loop schedul-
ing transformations, such as software pipelining, are be considered to be elementary
transformations. The reason is that, although scheduling can be represented as a se-
quence of simpler transformations, it is usually difficult to do so.

do i=1, 100
a(i)=b(i)+c(i)

end do

do i=1, 99, 3
a(i)=b(i)+c(i)
a(i+1)=b(i+1)+c(i+1)
a(i+2)=b(i+2)+c(i+2)

end do
a(100)=b(100)+c(100)

do i=1, 100, 2
a(i)=b(i)+c(i)
a(i+1)=b(i+1)+c(i+1)

end do

do i=1, 100
a(i)=b(i)+c(i)

end do

1 32

Unroll

Fig. 2. Unroll

Many of elementary transformations require input parameters, such as the degree of
unrolling (Figure 2), tile size, and locations where the loop is to be split in the case of
fission (Figure 3). Multiple versions of the initial statement are obtained by varying
the values of these parameters.

do i=1, 100
S1: a(i)=b(i)+c(i)
S2: c(i)=a(i)+d(i)
S3: e(i)=a(i)+e(i-1)
end do

do i=1, 100
S1: a(i)=b(i)+c(i)
end do
do i=1, 100
S2: c(i)=a(i)+d(i)
end do
do i=1, 100
S3: e(i)=a(i)+e(i-1)
end do

do i=1, 100
S1: a(i)=b(i)+c(i)
S2: c(i)=a(i)+d(i)
end do
do i=1, 100
S3: e(i)=a(i)+e(i-1)
end do

do i=1, 100
S1: a(i)=b(i)+c(i)
end do
do i=1, 100
S2: c(i)=a(i)+d(i)
S3: e(i)=a(i)+e(i-1)
end do

S1 S1, S2
S2

Loop Fission

Fig. 3. Loop Fission

Elementary transformations are used in library generators during empirical search.
Thus, ATLAS makes use of tiling, unrolling, and loop scheduling; FFTW makes use
of scheduling; and SPIRAL applies loop unrolling.

2. Composition of transformations. Usually, the best version of a statement is the re-
sult of applying several elementary transformations. Thus, for example, ATLAS ap-
plies interchanging, tiling, unrolling and scheduling to the triply nested matrix-matrix
multiplication loop during its empirical search for an optimal form of the loop. There-
fore, our language should allow the application of multiple transformations to a single
statement. An example of composite transformation is unroll&jam shown in Figure 4.
This transformation can be implemented by applying an outer unroll followed by fu-
sion of the two inner loops. Alternatively, unroll&jam can be implemented by first
stripmining the outer loop, then interchanging the inner loop with the newly gener-
ated loop, and finally unrolling the innermost loop.

outer unroll

fusion

stripmine

interchange

inner unroll

for (i=0; i<n*2; i++)
for (j=0; j<m; m++)

a(i) = a(i) + b(j)

for (i=0; i<n*2; i++)
for (j=0; j<m; j++)

a(i) = a(i) + b(j)
for (j=0; j<m; j++)

a(i+1) = a(i+1) + b(j)

for (i=0; i<n*2; i++)
for (j=0; j<m; j++)

a(i) = a(i) + b(j)
a(i+1) = a(i+1) + b(j)

for (i=0; i<n*2; i+=2)
for (ii=i; ii<i+2; ii++)

for (j=0; j<m; j++)
a(ii) = a(ii) + b(j)

for (i=0; i<n*2; i+=2)
for (j=0; j<m; j++)

for (ii=i; ii<i+2; ii++)
a(ii) = a(ii) + b(j)

Fig. 4. Unroll & Jam

An important form of transformation composition is conditional composition, where
a condition is used to select the transformation or the parameter value of a transforma-
tion. For example, consider a loop that is to be first stripmined and then the resulting
inner loop unrolled. We may want to fully unroll the inner loop but only when the
size of the strip is less than a certain threshold and partially unroll otherwise.

3. Procedural Abstraction. For composite transformations, it is convenient to have pro-
cedural abstractions to encapsulate new transformations and to avoid having to rewrite
sequences of transformations that are applied more than once.

4. A mechanism to define new transformations. This extension mechanism enables
the user to add new transformations that cannot be represented as composition of
elementary transformations. In particular, programmers should be able to generate
application-dependent transformations that take into account the semantics of the
computation. The simplest way to represent a transformation is using transforma-
tion rules which are adequate to represent many transformations. The transformation
rules consist of a code template followed by the form resulting after modification by
the transformation. For instance, a stripmine transformation with a tile of size 4 could
be defined as follows:

for (i = 0; i < N; i++) { <body> }
->

for (ii = 0; ii < (N/4)*4; ii += 4)
for (i = ii; i < ii+4; i++) { <body> }

for (i = (N/4)*4; i < N; i++) { <body> };

Transforming the top code template into the bottom code is the stripmine transforma-
tion, where variable <body> represents the body of the loop to be stripmined.

As the example illustrates, transformation rules are quite convenient. However, since
transformations rules are not universal, some transformations must be represented
as a program written in, for example, a conventional programming language. In this
case, the interface between the source language and the transformation routines must
be clearly specified. This interface should contain the abstract syntax tree of the code
to be transformed and perhaps other related information such as dependence graphs.

5. A mechanism to name statements. When applying a sequence of transformations,
it is often necessary to apply one of the transformations to one of the components
of the resulting code. For example, to implement unroll&jam unrolling is applied to
the innermost loop resulting from stripmining. Therefore, the ability to name com-
ponents and subcomponents of statements is necessary to enable the composition of
transformations.

3 Macro Language

Perhaps the simplest approach to implement X would be to use a macro language. As-
suming that the macro language statements are C-like statements preceded by the char-
acter % and that references to macro language variables are also preceded by %, Figure 5
shows an example where the %for statement produces the body of a loop unrolled %d
times. That is, when the %for loop is executed, it produces the sequence of assignments:
s=s+a[i+0]; s=s+a[i+1]; ...;s=s+a[i+%d-1]. In this this example we assumed
that %d is a sub-multiple of 256 and, for that reason did not include the clean-up code
needed to correctly handle the remainder of the 256 iterations of the original loop. No-
tice that %d in Figure 5 will be assigned a value at compile-time, and will usually be
assigned several values in successive compilations during an empirical search for the
best version of the program.

sum=0;
for (i=0;i<256;i+=%d) {

%for (k=i; k<=i+(%d-1); k++)
s = s + a[i+%k];

}

Fig. 5. Loop unroll using macro statements.

An implementation based on macro language would produce a system that relies on
generation rather than transformation. Thus, the construct of Figure 5 does not trans-
form an initial loop but generates a loop with the body unrolled %d times. If the macro
language includes procedures, it would be possible to write generation routines that
accomplish the same objectives as any transformation. For example, we could conceiv-
ably develop an %unroll-loop routine that accepts the body of the loop, the index
variable, and the degree of unrolling as parameters. These generation routines could be
a convenient way to extend the base language with new parameterized statements.

In some cases it is preferable to use the generation approach so that the programmer
can produce exactly the transformed code that he desires. For this reason, X includes a
macro language. However, we have found that the generation approach has two disad-
vantages:

• The generative approach leads to code that is difficult to develop and understand. If
we want to optimize an existing program it will be necessary to modify the original
code which may introduce errors. Furthermore, code containing generative statements
is difficult to write and read. Therefore, the generative approach has disadvantage
even when the parameterized code is to be written from scratch.

• Complexity when composing transformations. Since the programmer is directly ma-
nipulating source text, when two or more transformations are applied to a statement,

the macro statements can become complicated. For instance, tiling the three loops of
the matrix-matrix multiplication code in Figure 6-(a) with square tiles of size tile
results in the code shown in Figure 6-(b). The variable %tile will be instantiated at
compile time, so that versions of matrix-matrix multiplication with different tile sizes
can be generated by just changing the value of the %tile variable. The code in Fig-
ure 6-(b) shows the remainder loops when %tile is not divisible by K, and outlines the
additional code that should be written to generate the remainders of M and N. A pro-
grammer who needs to write all this additional code is likely to make mistakes. This
problem will be less severe if the macro language contains procedures, but then there
would be the need to develop a procedure for each combination of transformations
or procedures with a cumbersome parameter list. In any case, tiling can be obtained
by composing loop stripmine and loop interchange. Unfortunately, the programmer
using macro statements cannot take advantage of this.

for (i=0;i<N;i++) { for (i=0;i<(N/%tile)*%tile;i+=%tile) {
for (j=0;j<M;j++) { for (j=0;j<(M/%tile)*%tile;j+=%tile) {
for (k=0;k<K;k++) { for (k=0;k<(K/%tile)*%tile;k+=%tile) {
c[i][j] += a[i][k] * b[k][j]; for (ii=i;ii<i+%tile;i++) {

}}} for (jj=j;jj<j+%tile;j++) {
for (kk=k;kk<k+%tile;kk++) {

(a) c[ii][jj] += a[ii][kk] * b[kk][jj];
}}}}

%if ((K/%tile)*%tile)!=K) {
for (k=(K/%tile)*%tile;k<K;k++) {
for (ii=i;ii<i+%tile;i++) {
for (jj=j;jj<j+%tile;j++) {
for (kk=k;kk<k+%tile;kk++) {
c[ii][jj] += a[ii][kk] * b[kk][jj];
}}}}}}

%if (((M/%tile)*%tile) != M) {
....

}
%if (((N/%tile)*%tile) != N) {

....
}

(b)

Fig. 6. (a)-Matrix-matrix multiplication code. (b)-Tiled matrix-matrix multiplication code using
macro statements.

4 X Language using Pragmas

In this Section, we describe the X language that we have designed taking into account
the features described in Section 2. X uses #pragmas to name loops or portions of code
and to specify the transformations to apply. The syntax of the #pragmas used to name
loops or code sections has the form:

#pragma xlang name <id> { ... }

The {} are only necessary when naming a set of statements, but they are not re-
quired to name a single statement. These pragmas need to be placed right before the
code section to be named. The syntax of the #pragmas to specify transformations has
the form:

#pragma xlang transform keyword <list-input-par> <list-output-par>

The original source code only needs to be modified with the name #pragmas. The
transform #pragmas can be in the same file that the source code or in a different one.

In X, the loop unrolling transformation in Figure 2 is specified as shown in Fig-
ure 7. #pragma xlang name l1 is used to name the loop right after it, while #pragma
xlang transform unroll l1 4 specifies the transformation unroll l1 4 times.

The stripmine transformation is specified in X with #pragma xlang transform stripmine

l1 4 l3 l1rem as shown in Figure 8-(a). This transformation will stripmine the l1

sum=0; sum=0;
#pragma xlang name l1 #pragma xlang name l1
for (i=0;i<256;i++) { for (i=0;i<256;i+=4) {

s = s + a[i]; s = s + a[i];
} s = s + a[i+1];
#pragma xlang transform unroll l1 4 s = s + a[i+2];

s = s + a[i+3];
}

(a) (b)

Fig. 7. Example in X of loop unroll. (a)- Pragmas to name the loop and specify the unroll 4 (b)-
Generated code

loop using a tile size of 4. The generated code is shown in Figure 8-(b). The new loop
that results of the stripmine transformation is named l3. To name the remainder loop,
the example uses l1rem. Using this postfix notation we can apply the same transforma-
tion to l1 and l1rem by simply using l1∗

#pragma xlang name l1 #pragma xlang name l1
for (i=0;i<N;i++) { for (i=0;i<(N/4)*4;i+=4) {

#pragma xlang name l2 #pragma xlang name l3
for (j=0;j<M;j++) { for (ii=i;ii<i+4;ii++) {

c[i] = a[i][j] * b[j]; #pragma xlang name l2
}} for (j=0;j<M;j++) {

#pragma xlang transform stripmine l1 4 l3 l1rem c[ii] = a[ii][j] * b[j];
}}}

#pragma xlang name l1rem
for (i=(N/4)*4;i<N;i++) {

#pragma xlang name l2
for (j=0;j<M;j++) {

c[ii] = a[ii][j] * b[j];
}}

(a) (b)

Fig. 8. Example in X of stripmine.(a)-Pragmas to name loops and specify the stripmine transfor-
mation. (b)-Generated code.

Another transformation that X includes is array scalarization. The syntax for this
transformation is #pragma xlang transform scalarize-func <array-name> in
[<id>], where func can be in, out, -in&out or none. scalarize-in is used when
copy-in is needed, that is, when the initial values in the array have to be loaded into
the scalar variables. scalarize-out is used when copy-out is needed, that is, when the
scalar values need to be written back to memory to the corresponding array locations.
scalarize-in&out is used when both both in and out are required. scalarize is
used when nor in or out are necessary. The programmer must determine which is the
appropriate scalarize transformation to apply so that the generated code is correct.

sum=0; double a0,a1;
#pragma xlang name l1 sum=0;
for (i=0; i<256; i+=2){ #pragma xlang name l1

s = s + a[i]; for (i=0; i<256; i+=2){
s = s + a[i+1]; #pragma xlang name l1.loads

} { a0 = a[i];
#pragma xlang transform scalarize-in a in l1 a1 = a[i+1]; }

#pragma xlang name l1.body
{ s = s + a0;
s = s + a1; }
}

(a) (b)

Fig. 9. Example in X of the scalarize-in transformation. (a)-Pragmas for scalarize-in. (b)-Code
after scalarize-in array a in l1.

Figure 9-(a) shows an example where the scalarize-in transformation is used to
scalarize the array a in l1. The generated code is shown in Figure 9-(b). The gener-
ated code contains the declaration of the new scalar variables a0 and a1, and two new
pragmas that name certain statements of the generated code. #pragma xlang name
l1.loads name the statements that load the array values into the scalars. #pragma

xlang name l1.body name the statements where the array references have been re-
placed with scalars. Notice that these #pragmas are automatically generated after a
scalarize transformation is applied, without the programmer specifying anything. In the
case of a scalarize-out transformation an additional #pragma naming l1.stores
would have been generated. Naming these loop sections allows the programmer to ap-
ply new transformations on the generated code. For example, Figure 10-(a) shows an
example where the load statements of the copy-in phase have been moved before l1
and the store statements of the copy-out phase have been moved outside l1 as shown in
Figure 10-(b). In this new example, we have used #pragma xlang transform lift
l1.loads before l1 and #pragma xlang transform lift l1.stores after l1,
where the syntax of this transformation is
#pragma xlang transform lift <statement-id><before | after><loop-id>.

for (i=0;i<N;i++) { double c0,c1;
for (j=0;j<M;j++) { for (i=0; i<N; i++) {
#pragma xlang name l1 for (j=0; j<M; j++) {
for (k=0;k<K;k+=2){ #pragma xlang name l1.loads
c[i][j] += a[i][k] * b[k][j]; { c0 = c[i][j]; }
c[i][j] += a[i][k+1] * b[k+1][j]; #pragma xlang name l1

}}} for (k=0; k<K; k+=2) {
#pragma xlang transform scalarize-out c in l1 #pragma xlang name l1.body
#pragma xlang transform lift l1.loads before l1 { c0 += a[i][k]*b[k][j];
#pragma xlang transform lift l1.stores after l1 c0 += a[i][k+1]*b[k+1][j]; }

}
#pragma xlang name l1.stores
{ c[i][j] = c0; }
}}

(a) (b)

Fig. 10. Example in X of scalarize-out and lift transformation. (a)-Pragmas for
scalarize-out and lift. (b)-Generated code.

X also includes transformations for software pipelining. One difference between the
software pipelining and the loop transformations is that software pipelining operates on
statements instead of loops. The lower granularity of software pipelining transforma-
tions makes them more complex, since the programmer needs to deal with movement of
individual statements. The two transformations used for software pipelining are split
and shift. The split transformation is not necessarily a software pipelining transfor-
mation. It is used to separate atomic instructions. Figure 11 shows how an instruction
combining a load and an operation is breaking assignment statements into two state-
ments, one to compute the right hand side and the other to assign the computed value
to the left hand side.

for (i=0; i<N; i++) { double temp[0..K];
for (j=0; j<M; j++) { for (i=0; i<N; i++){

for (k=0; k<K; k++) { for (j=0; j<M; j++){
#pragma xlang name statement st1 for (k=0; k<K; k++){
c[i][j] += a[i][k] * b[k][j]; #pragma xlang name statement st1

}}} temp[k] = a[i][k] * b[k][j];
#pragma xlang split st1 st2 temp #pragma xlang name statement st2

c[i][j] = c[i][j] + temp[k];
}}}

(a) (b)

Fig. 11. Example split. (a)-Pragmas for split. (b)-Generated code.

Figure 12 shows how to software pipeline a loop with the shift transformation.
We have used #pragma xlang transform shift l1.1 2. The first argument l1.1
corresponds to the first statement of loop l1 and in general, the loop.<n> notation is
used to designate the sequence of the first n statements in the body of loop loop. In
the example, the first statement is shifted with respect to the remaining statements with
a latency of 2, given by the second argument. Application of the shift transformation
creates a pipeline with multiple stages. The example shows the resulting code, with

a prolog and a epilog loop. Notice that these loops can be unrolled using the pragma
fullunroll as shown in Figure 12-(b).

Defining transformations with respect to existing ones provides a procedural ab-
straction to the X language. We describe them in Section 5.

for (i=0; i<N; i++) { for (i=0; i<N; i++) {
for (j=0; j<M; j++) { for (j=0; j<M; j++) {
#pragma xlang name l1 #pragma xlang name l1.prolog
for (k=0; k<K; k++) { for (k=0; k<2; k++) {
temp[k] = a[i][k] * b[k][j]; temp[k] = a[i][k] * b[k][j];
c[i][j] += temp[k]; }

}}} #pragma xlang name l1
#pragma shift l1.1 2 for (k=2; k<K; k++) {

temp[k] = a[i][k] * b[k][j];
c[i][j] += temp[k-2];

}
#pragma xlang name l1.epilog
for (k=N-1; k<K; k++) {
c[i][j] += temp[k];

}}}
#pragma xlang transform fullunroll l1.prolog
#pragma xlang transform fullunroll l1.epilog

(a) (b)

Fig. 12. Example shift for software pipeline. (a)-Pragmas for shift. (b)-Generated code, including
fullunroll.

5 Implementation

In this section, we describe the implementation of the X language translator and present
how transformations are encoded.

5.1 X Translation

The X language is translated in two steps. The frontend performs several tasks before
passing the result to the backend. First, the frontend parses the annotated C program
and builds the associated abstract syntax tree. Next, a tree-walk identifies the loops
and transformations specified by the X language directives. The marked loops are then
rewritten as series of library calls that represent the loops inside the backend. Also,
transformation directives are translated into library calls for performing the appropriate
transformations on the annotated loops. After all the annotations of the C program have
been translated, the remaining code is transformed using a multistage language similar
to the language described in Section 3. Our multistage language also resembles ‘C [19]
which is a generalization of a macro language with arbitrary recursion and where a
program may generate another program and execute it, having multiple program levels
cooperate and share data possibly at run-time. The final translated program is then ready
to be processed by the backend.

In the second step, this program is executed: it reads a separate file describing the
optimizations, performs the optimizations and produces the final optimized C code. The
macro language is used to manipulate code expressions and to write some optimizations
(such as unroll) in a compact way. Partial evaluation of expressions that contain only %
variables and constants is done in this step: as presented in Section 3, variable names
such as c %i are then expanded into c 0, c 1,... in the resulting code.

Finally, all unoptimized code (not prefixed by pragmas) is printed out without any
modification in the final code.

5.2 Defining New Transformations

The definition of transformations in X can use pattern rewriting rules and macro code.
A pattern rewriting rule contains two patterns: the first pattern is for matching and the

second one is for rewriting. When an input code matches the first pattern, the code is
rewritten as indicated by the second pattern. If the pattern rewriting rule is not expres-
sive enough, the user has the possibility to define the code using macro code directly.
Thus an X program could contain both pragmas and macro statements. In fact, it is
possible to define a code generator associated with a pattern of code.

In the current implementation, no dependence analysis is integrated yet, so no va-
lidity check is performed for the transformation. We envision that, contrary to the com-
piler, validity checks in X only raise warnings to the user, since the user is assumed to
know what he is doing and validity checks may be too conservative.

Procedural abstraction enables the writing of complex transformations from simpler
ones. It is an important feature in the definition of transformations. The destination pat-
tern can contain some transform pragmas. For instance, a line such as #pragma xlang
transform fullunroll l1rem could be added to the destination pattern of stripmine
and would fully unroll the remainder loop.

6 Experimental Results

We study in this section a matrix-matrix multiplication and its optimization with X lan-
guage. Starting from a very simple implementation, the goal is to mimic ATLAS by
performing the same transformations with the X. For this preliminary experiment, the
platform used is a NovaScale 4020 server from Bull featuring two 1.3Ghz Itanium 2
(Madison) processors, with a 256KB level 2 cache and a 1.5MB level 3 cache. Quality
of compiled code is the key to performance on Itanium because of its explicit paral-
lel assembly and its in-order execution. Scheduling problems cannot be smoothed by
hardware mechanisms. All codes (including ATLAS) are compiled using the Intel C
compiler (icc) version 8.1 with -03 -fno-aliases flags.

6.1 Pragmas for MMM

#pragma xlang name iloop
for (i = 0; i < NB; i++)
#pragma xlang name jloop
for (j = 0; j < NB; j++)

#pragma xlang name kloop
for (k = 0; k < NB; k++) {
c[i][j]=c[i][j]+a[i][k]*b[k][j];

}
#pragma xlang transform stripmine iloop NU NUloop
#pragma xlang transform stripmine jloop MU MUloop
#pragma xlang transform interchange kloop MUloop
#pragma xlang transform interchange jloop NUloop
#pragma xlang transform interchange kloop NUloop
#pragma xlang transform fullunroll NUloop
#pragma xlang transform fullunroll MUloop
#pragma xlang transform scalarize_in b in kloop
#pragma xlang transform scalarize_in a in kloop
#pragma xlang transform scalarize_in&out c in kloop
#pragma xlang transform lift kloop.loads before kloop
#pragma xlang transform lift kloop.stores after kloop

(a)

#pragma xlang name iloop
for(i = 0; i < NB; i++){
#pragma xlang name jloop
for(j = 0; j < NB; j += 4){
#pragma xlang name kloop.loads
{c_0_0 = c[i+0][j+0];
c_0_1 = c[i+0][j+1];
c_0_2 = c[i+0][j+2];
c_0_3 = c[i+0][j+3];
}
#pragma xlang name kloop
for(k = 0; k < NB; k++){

{a_0 = a[i+0][k];
a_1 = a[i+0][k];
a_2 = a[i+0][k];
a_3 = a[i+0][k];}
{b_0 = b[k][j+0];
b_1 = b[k][j+1];
b_2 = b[k][j+2];
b_3 = b[k][j+3];}
{c_0_0=c_0_0+a_0*b_0;
c_0_1=c_0_1+a_1*b_1;
c_0_2=c_0_2+a_2*b_2;
c_0_3=c_0_3+a_3*b_3;}
...

}
#pragma xlang name kloop.stores
{c[i+0][j+0] = c_0_0;
c[i+0][j+1] = c_0_1;
c[i+0][j+2] = c_0_2;
c[i+0][j+3] = c_0_3;}

} }
... // Remainder code

(b)

Fig. 13. (a) mini-mmm code in X. (b) Code after transformation with MU = 4, NU = 1.

The initial code for matrix-matrix multiply is a triple-nested loop where the inner
loop contains one floating point multiply-add operation. Blocking the code for L2 and

L3 cache is key to obtaining high performance. Therefore each loop is tiled three times
using X pragmas in order to perform the multiplication with blocks fitting into registers
and the L2 and L3 caches. Figure 13-(a) shows the mini-MMM code tailored for L2
cache, with the pragmas to generate register-blocking.

Note that there is no software-pipeline transformation since the compiler takes this
optimization in charge better than if it was done at the source level.

Note that we do not perform a software pipeline because the compiler handles this
optimization better than we can at the source level in this case.

Likewise, basic block scheduling is correctly handled by the compiler. We have
used two stripmine and three interchange transformations to tile the two nested
loops iloop and jloop. Fig.13-(b) shows a fragment of the resulting code when the
values of blocking are 1 for iloop and 4 for jloop.

For the L2 and L3 tilings, copies of a, b and c are made in order to have all the
elements of the submatrices in a contiguous memory block.

6.2 Optimization Tuning

Expressing the optimization is only one step towards high performance code. The other
important step consists of finding the right values for the parameters. Many search
strategies can be applied, such as the search employed by ATLAS.

For DGEMM, we performed an exhaustive search for the appropriate tile sizes around
the expected values.Comparison with the naive code shows a speed-up of 80 (for matri-
ces of size 600×600). Figure 14 shows that code optimized with the X language outper-
forms ATLAS for all matrix sizes when coupling it with a custom memory copy routine
called dcopy. This routine was automatically produced by a specialized assembly gen-
erator, the Xemsys Library Generator [28], using hardware performance counters and
static analysis of the assembly code [9].

Coupling our code with the less specialized copy routine of the Intel Math Kernel
Library (MKL) yields performance on par with ATLAS on average, and using the plain
memcopy subroutine of the C library degrades performance slightly.

Fig. 14. Preliminary results comparing ATLAS to naive code with pragmas for DGEMM.

These results are very encouraging. Yet the peak architectural performance for
matrix-matrix product on Itanium is 0.5 cycle per fma operation, and the MKL imple-
mentation of dgemm does achieve 0.55 cycle per fma on average, which is 10% to 15%
faster than ATLAS and the X-language implementation. Our future work includes the
continuation of our X-language experiment to fully reproduce or outperform the MKL,
showing that the added productivity in adaptive library development can translate into
added performance as well (with respect to manual designs like ATLAS).

7 Related work

It is well known that manual optimizations degrade portability: the performance of a
C or Fortran code on a given platform does not say much about its performance on
different architectures. Several works have successfully addressed this issue, not by im-
proving the compiler, but through the design of application-specific program generators,
a.k.a. active libraries [26]. Such generators often rely on feedback-directed optimization
to select the best generation strategy [23], but not exclusively [29]. The most popular ex-
amples are ATLAS [27] for dense matrix operations and FFTW [10] for the fast Fourier
transform. Such generators follow an iterative optimization scheme. Most optimizations
performed by these generators are classical loop transformations; some of them involve
domain knowledge, from the specialization and interprocedural optimization of library
functions [3, 8], to application-specific optimizations such as algorithm selection [17].
Recently, the SPIRAL project [21] pioneered the extension of this application-specific
approach to a whole domain of programs: digital signal processing. This project is
one step forward to bridge the gap between application-specific generators and generic
compiler-based approaches, and to improve the portability of application performance.

Beyond application specific generators, iterative optimization techniques prove use-
ful to drive complex transformations in traditional compilers. They use the feedback
from real executions of the optimized program to explore the optimization search space
using operations research algorithms [15], machine learning [17], and empirical experi-
ence [18]. In theory, iterative optimization is fully disconnected from the technical im-
plementation of program optimizations. Yet generative approaches such as multistage
evaluation avoid the pattern-matching limitations of syntactic transformation systems,
which improves the structure of the search space and the applicability of empirical tech-
niques. Indeed, systematic exploration techniques require a higher degree of flexibility
in program manipulation than traditional compiler frameworks [5].

We thus advocate a framework that would allow the domain expert to design and
express his own transformations, and to meta-program the search for optimal perfor-
mance through iterative optimization [4]. This goal is similar to the one of telescoping
languages [3, 13], a compiler approach to reduce the overhead of calling generic library
functions and to enable aggressive interprocedural optimizations, by making the seman-
tical information about these libraries available to the compiler. Beyond libraries, simi-
lar ideas have been proposed for domain-specific optimizations [16]. These works high-
light the increased need for researchers and developers in the field of high-performance
computing to meta-program their optimizations in a portable fashion.

Another alternative is multistage evaluation. Most programming languages support
macro expansion, where the macro language allows a limited amount of control (not
recursive, in general) on code parts. Yet multistage evaluation denotes the syntactic and
semantic support allowing a program to generate another program and execute it, having
multiple program levels cooperate and share data. String-based multistage languages
support true recursion and cooperation between levels, but offer no syntactic guarantees
on the generated code; the most widely used are the various shell interpreters, and the
current version of the X language is also of this kind. To increase productivity, struc-
tured multistage languages enforce syntactic correctness of the generated code: e.g.,
C++ expression templates [25], ‘C [19] and Jumbo [12]. To further increase productiv-
ity and ease debugging, a few multistage languages guarantee that the generated code
will not produce any compilation error (syntax, definition and initialization errors, type
checking): e.g., MetaML and its successor MetaOCaml [2, 24]. The added safety is very
valuable to increase the productivity of program generator designers, but the associated
constraints may also complicate the meta-programming of specific optimizations [4].
Up to now, the multistage language and meta-programming community has mostly fo-
cused on general-purpose transformations like in partial evaluation, specialization and
simplification. These transformations are useful, in particular to lower the abstraction

penalty, but far from sufficient to adapt a compute-intensive application to a complex
architecture. As a matter of fact, research on generative programming and multistage
evaluation has not greatly influenced the design of high-performance applications and
compilers, most application-specific adaptive libraries being ad-hoc string-based pro-
gram generators.

The TaskGraph library [1] is closely related with the X language. It combines a
structured multistage evaluation layer built on top of C++ expression templates, with
run-time generation and compilation, and with a transformation toolkit based on SUIF
(1.3) [11] and/or ROSE [22]. It is not a language per se, but a set of C++ templates
and classes associated with customizable source-to-source transformation capabilities.
As such, it should be understood like the underlying infrastructure to build a general-
purpose multiversioning language such as X. We preferred to redesign our own infras-
tructure for multistage evaluation and source-to-source transformation, for the sake of
simplicity, to avoid the memory and code overhead of C++ templates, and because we
do not currently aim for run-time code generation.

8 Conclusions

We presented the design of the X language, aimed for application experts who wish to
implement adaptive programs without knowledge of compiler internals. The language
is designed so that it is easy for the programmer to generate multiversion programs, to
specify which transformations to apply on each program part, and to tune the order or
the parameters of the transformations. The parameters driving the generation of a spe-
cific program version and the application of program transformations can be determined
using empirical search orchestrated by a search engine which could use the target ma-
chine to evaluate the performance of each version of the program or rely on analytical
models.

The X language combines the expressive power of multistage languages with a flex-
ible pattern-matching and rewriting language to implement and compose custom pro-
gram transformations. Also the language is still in its infancy, we presented promising
results on mimicking the code generator for DGEMM (matrix-matrix multiplication)
in ATLAS [27]. This experiment demonstrates vast amounts of productivity improve-
ments, compared to the manual implementation of an ad-hoc code generator in C, as
well as good performance results.

Our future work will include a more thorough experiment with the ongoing design
of an active library for adaptive, block-recursive linear algebra computations. For in-
creased productivity, we also plan to provide a more structured multistage sub-language,
and to integrate the results of pointer and dependence analyses as indicative feedback to
the programmer. Such static analyses should also enable the design of smarter (higher-
level) transformation primitives. In the longer term, we also wish to invest in a more
robust implementation of the X language, based on a run-time compilation framework,
like ROSE [22] or TaskGraph [1], and/or using a more abstract code representation in
the polytope model [5]. Our main long-term goal is the adoption by application experts
with little interest in compiler design and implementation.

References

1. O. Beckmann, A. Houghton, P. H. J. Kelly, and M. Mellor. Run-time code generation in c++ as a foundation for domain-
specific optimisation. In Proceedings of the 2003 Dagstuhl Workshop on Domain-Specific Program Generation, 2003.

2. C. Calcagno, W. Taha, L. Huang, and X. Leroy. Implementing multi-stage languages using ASTs, Gensym, and re-
flection. In ACM SIGPLAN/SIGSOFT Intl. Conf. Generative Programming and Component Engineering (GPCE’03),
pages 57–76, 2003.

3. A. Chauhan and K. Kennedy. Optimizing strategies for telescoping languages: procedure strength reduction and pro-
cedure vectorization. In ACM Int. Conf. on Supercomputing (ICS’04), pages 92–101, June 2001.

4. A. Cohen, S. Donadio, M.-J. Garzaran, D. Padua, and C. Herrmann. In search for a program generator to implement
generic transformations for high-performance computing. In 1st MetaOCaml Workshop (associated with GPCE),
Vancouver, British Columbia, October 2004.

5. A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and N. Vasilache. Facilitating the search for compositions of
program transformations. In ACM Int. Conf. on Supercomputing (ICS’05), Boston, Massachusetts, June 2005. To
appear.

6. K. D. Cooper, D. Subramanian, and L. Torczon. Adaptive Optimizing Compilers for the 21st Century. Journal of
Supercomputing, 23(1):7–22, 2002.

7. K. D. Cooper and T. Waterman. Investigating Adaptive Compilation using the MIPSPro Compiler. In Proc. of the
Symp. of the Los Alamos Computer Science Institute, October 2003.

8. L. De Rose and D. Padua. Techniques for the translation of matlab programs into fortran 90. ACM Trans. on Program-
ming Languages and Systems, 21(2):286–323, 1999.

9. L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J.-T. Acquaviva, and W. Jalby. A new tool for assembler analysis and
optimization on epic architecture. In Proc. of the Epic Workshop (in conjunction with CGO’05), 2005.

10. M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the FFT. In Proc. of the ICASSP Conf.,
volume 3, pages 1381–1384, 1998.

11. M. Hall et al. Maximizing multiprocessor performance with the SUIF compiler. IEEE Computer, 29(12):84–89,
December 1996.

12. Sam Kamin, Lars Clausen, and Ava Jarvis. Jumbo: run-time code generation for java and its applications. In ACM
Conf. on Code Generation and Optimization (CGO’03), pages 48–56, 2003.

13. K. Kennedy. Telescoping languages: A compiler strategy for implementation of high-level domain-specific program-
ming systems. In Proc. Intl. Parallel and Distributed Processing Symposium (IPIPS’00), pages 297–304, 2000.

14. P. Kisubi, P.M.W. Knijnenburg, and M.F.P. O’Boyle. The Effect of Cache Models on Iterative Compilation for Com-
bined Tiling and Unrolling. In Proc. of the International Conference on Parallel Architectures and Compilation Tech-
niques, pages 237–246, 2000.

15. T. Kisuki, P. Knijnenburg, M. O’Boyle, and H. Wijshoff. Iterative compilation in program optimization. In Proc.
CPC’10 (Compilers for Parallel Computers), pages 35–44, 2000.

16. C. Lengauer, D. Batory, C. Consel, and M. Odersky, editors. Domain-Specific Program Generation. Number 3016 in
LNCS. Springer-Verlag, 2003.

17. X. Li, M.-J. Garzaran, and D. Padua. A dynamically tuned sorting library. In ACM Conf. on Code Generation and
Optimization (CGO’04), pages 111–124, San Jose, CA, March 2004.

18. D. Parello, O. Temam, A. Cohen, and J.-M. Verdun. Towards a systematic, pragmatic and architecture-aware pro-
gram optimization process for complex processors. In ACM Supercomputing’04, page 15, Pittsburgh, Pennsylvania,
November 2004.

19. M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek. ‘C and tcc: A language and compiler for dynamic code
generation. ACM Trans. on Programming Languages and Systems, 21(2):324–369, March 1999.

20. M. Puschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code Generation for DSP Transforms. Proceedings of the IEEE,
To appear 2005. Special issue on “Program Generation, Optimization, and Adaptation”.

21. M. Puschel, B. Singer, J. Xiong, J. M .F. Moura, J. Johnson, D. Padua, M. M. Veloso, , and R. W. Johnson. SPIRAL: A
Generator for Platform-Adapted Libraries of Signal Processing Algorithms. Journal of High Performance Computing
and Applications, special issue on Automatic Performance Tuning, 18(1):21–45, 2004.

22. Markus Schordan and Daniel J. Quinlan. A source-to-source architecture for user-defined optimizations. In Joint
Modular Languages Conference (JMLC’03), volume 2789 of LNCS, pages 214–223. Springer-Verlag, August 2003.

23. M. D. Smith. Overcoming the challenges to feedback-directed optimization. In ACM SIGPLAN Workshop on Dynamic
and Adaptive Compilation and Optimization, pages 1–11, 2000. (Keynote Talk).

24. W. Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis, Oregon Graduate Institute of Science
and Technology, November 1999.

25. T. Veldhuizen. Using C++ template metaprograms. C++ Report, 7(4):36–43, 1995.
26. T. Veldhuizen and D. Gannon. Active libraries: Rethinking the roles of compilers and libraries. In SIAM Workshop on

Object Oriented Methods for Inter-operable Scientific and Engineering Computing, pages 21–23, October 1998.
27. R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated Empirical Optimization of Software and the ATLAS

Project. Parallel Computing, 27(1–2):3–35, 2001. Also available as University of Tennessee LAPACK Working Note
#147, UT-CS-00-448, 2000 (www.netlib.org/lapack/lawns/lawn147.ps)”.

28. Caps entreprise. http://www.caps-entreprise.com.
29. K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzar án, D. Padua, K. Pingali, P. Stodghill, and P. Wu. A

Comparison of Empirical and Model-driven Optimization. In Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, pages 63–76. ACM Press, 2003.

30. K. Yotov, X. Li, G. Ren, M. Garzar án, D. Padua, K. Pingali, and P. Stodghill. Is Search Really Necessary to Generate
High-Performance BLASs? Proceedings of the IEEE, 93(2):358–386, February 2005. Special issue on “Program
Generation, Optimization, and Adaptation”.

