
Evaluating the Impact of Thread Escape

Analysis on a Memory Consistency Model-aware

Compiler

Chi-Leung Wong1 Zehra Sura2 Xing Fang3 Kyungwoo Lee3

Samuel P. Midkiff3 Jaejin Lee4 David Padua1

Dept. of Computer Science, University of Illinois at Urbana-Champaign, USA
{cwong1,padua}@cs.uiuc.edu

IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA
zsura@us.ibm.com

Purdue University, West Lafayette, IN, USA
{xfang,kwlee,smidkiff}@ecn.purdue.edu

Seoul National University, Seoul, Korea
jlee@cse.snu.ac.kr

Abstract. The widespread popularity of languages allowing explicitly
parallel, multi-threaded programming, e.g. Java and C#, have focused
attention on the issue of memory model design. The Pensieve Project
is building a compiler that will enable both language designers to pro-
totype different memory models, and optimizing compilers to adapt to
different memory models. Among the key analyses required to implement
this system are thread escape analysis, i.e. detecting when a referenced
object is accessible by more than one thread, delay set analysis, and
synchronization analysis.
In this paper, we evaluate the impact of different escape analysis algo-
rithms on the effectiveness of the Pensieve system when both delay set
analysis and synchronization analysis are used. Since both analyses make
use of results of escape analyses, their precison and cost is dependent on
the precision of the escape analysis algorithm. It is the goal of this paper
to provide a quantitative evalution of this impact.

1 Introduction

In shared memory parallel programs, different threads of the program commu-
nicate with each other by reading from and writing to shared memory locations.
Experience shows that to achieve high performance without extensive analyses,
it is necessary to allow memory accesses to follow an order of execution that is
non-intuitive one[13]. Memory system behavior observed by different processors
constitute the memory model. It is difficult to define a memory model that is
both easy to use and implement efficiently. The goal of the Pensieve compiler
system is to provide a testbed to evaluate memory models by creating “virtual”

memory models and to evaluate the overhead of these models in the presence of
aggressive compiler analyses and optimizations. Given a program and a mem-
ory model specification, the Pensieve compiler will ultimately be able to generate
different versions of machine code corresponding to the specified memory model.
However, the current version of the Pensieve system only creates a sequentially
consistency “virtual” memory model and implements it on the Intel IA32 and
PowerPC processors, so the virtual memory model and the target memory mod-
els are currently hardwired inside the system. An important issue in the system
design is performance — both the compilation time and application time should
be minimized. In this paper, we investigate the impact of escape analysis on
our Pensieve system. We study how escape analysis affects the cost and pre-
cision of other analysis algorithms, which in turn affects both the compilation
cost and application performance. In particular, this paper makes the following
contributions:

– it describes the Pensieve compilation system;
– it describes the interaction between escape analysis and synchronization/delay
set analyses.

– it presents a quantitative study on the impact of escape analysis on the
Pensieve system.

1.1 Memory Models

A memory model1 specifies the memory system behavior, and can be specified
for programming languages as well as hardware. Memory models are necessary
because they define the allowable set of outcomes of a parallel program and, as
a result, they allow programmers to reason about their programs and compilers
to generate valid code. Until recently, memory models were of concern only
to expert systems programmers, and computer architects. With the advent of
languages like Java and C#, many programmers write multi-threaded programs
targeting Internet, database, and GUI applications, in addition to traditional
high performance computing applications. Because of this, memory models have
become an issue for much of the programmer community and for language and
compiler designers. The trade-offs between ease-of-use and performance have
become increasingly important.

Sequential Consistency A well-known memory model is sequential consis-
tency (SC), defined by Lamport[15]. It is often considered to be the simplest
and most intuitive memory consistency model [13]. Scheurich and Dubois[19]
described a sufficient condition for SC and Gharachorloo et. al.[8] presented the
condition in a slightly difference way. The idea of these sufficient conditions is to
delay a memory access until all previous ones within the same thread are com-
pleted. These conditions impose constraints so that some performance improv-
ing optimizations cannot be applied in the hardware . In addition, it constrains

1 Memory models are often called consistency models in the context of hardware.

compiler optimizations that may reorder memory accesses. The issue of mem-
ory models can be illustrated by the busy-wait synchronization example shown
in Figure 1(a). Both x and a are shared variables accessible by two concurrent
threads. Thread 1 does some computation and stores the result in a, and then
uses x to inform Thread 2 that a new value of a is ready to be read. Thread
2 waits for the data by executing a while loop that reads x and waits for the
value to become non-zero, at which time the thread will read the value from a.
The program shown in Figure 1(a), if executed in a SC environment, achieves
the described intention.

Relaxed Consistency Models Most multiprocessor systems implement con-
sistency models, such as weak ordering and release consistency [4], which impose
fewer constraints than SC on the order of shared memory accesses. Where clear,
we will refer to these more relaxed models by the acronym RC. RC models al-
low more instruction reordering, increasing the potential for instruction level
parallelism and as a result can potentially deliver better performance. Synchro-
nization primitives, such as fences, are used in these systems to force an order
on memory operations that is more constrained than that implied by the default
consistency model.
The program shown in Figure 1(a), if executed in a RC environment, is not

guaranteed to achieve the programmer’s intention. This is because, for perfor-
mance reasons, the compiler or hardware may reorder the two memory operations
performed by Thread 1 such that the update of x reaches Thread 2 before the
update of a. If this happens, T2 could read the updated value of x (i.e. 1), exit
the loop, and then read an old value (i.e. 0) of a. Therefore, the intention of
the programmer is not achieved. In the presence of the fence instruction, the
memory reording does not happen. Figure 1(b) shows a correct implementation
of the busy-wait construct using fences.

Both x and a are zero initially.

// Thread 1

.

.

.

S1: a = 1;

S2: x = 1;

// Thread 2

.

.

.

T1: while (x==0) wait;

T2: print a;

.

.

.

U1: a = 1;

U2: fence

U3: x = 1;

.

.

.

V1: while (x==0) wait;

V2: fence

V3: print a;

(a) Busy-wait synchronization (b) Fence instruction inserted to avoid
reordering

Fig. 1. Memory model issues example

1.2 Enforcing Memory Models

Enforcing a memory model implies enforcing some memory access orders. How-
ever, not all orderings specified by the memory model need to be enforced. In

fact, only those orderings that may affect the outcome of the program must
be enforced. To generate efficient and correct code, a compiler must determine
which memory accesses may not be reordered and enforce only those orderings.
The orderings that must be enforced are called delays. In [20], Shasha and Snir
give minimal criteria for which orders must be enforced in order to have a se-
quential consistent execution of a program. Both [20] and this paper assume that
the hardware provides primitives, such as fences, powerful enough to enforce the
required orderings. Moreover, some compiler optimizations must be constrained
if applying them may violate a delay. In [20], the authors present a delay set
analysis (DSA) algorithm to determine the required orderings. DSA requires the
thread structure of the programs to determine the delay information.

In Section 2, we describe the Pensieve system design. In Section 3, we describe
the escape analysis proposed in [23]. In Section 4 and Section 5, we describe
how the escape analysis impact delay set analysis and synchronization analyses
respectively. In Section 6, experimental results are presented to evaluate the
impact of escape analysis quantitatively. This paper concludes in Section 7.

2 Pensieve Compiler System Design

Our Pensieve Compiler System supports SC on top of two hardware platforms
that support more relaxed memory models — the Intel platform and the Pow-
erPC platform, which is an extension of the Jikes RVM infrastructure [7, 9].
Figure 2 gives an overview of the Pensieve system. It shows three phases:

Target Program

Thread Escape
Anaysis Analysis

Synchronization

Alias Analysis
Analysis

Delay Set

Program Analyses

Source Program

Consistency Model
Hardware Memory

and Optimization
Fence Insertion

Optimizations
Code

Constraints
Ordering

to Enforce

Fig. 2. Overview of the Pensieve system

1. In the analysis phase, a set of delays is computed. The delays are the ordering
constraints to be enforced both by the compiler and the hardware.

2. In the modified code optimization phase, the set of delays identified by the
analysis phase is checked before performing an optimization transformation.
If a transformation would violate a delay, it is not applied.

3. In the fence insertion and optimization phase, fences are inserted into the
program to force the delays to be enforced by the hardware. This phase
looks for opportunities to synchronize multiple delays with a single fence
instruction. The details of this phase are described in [10, 11].

3 Thread Escape Analysis

Thread escape analysis aims at identifying objects which may be accessed by two
or more threads. In the Pensieve System environment, the analysis is performed
as the application programs are running, so the time to perform escape analysis is
part of the overall execution time. Therefore, we cannot use an expensive analysis
algorithm where effectiveness is achieved at great cost. In this project, we balance
analysis algorithm performance and accuracy. While we are not aiming at having
an escape analysis that is precise for the whole program, the analysis should be
precise enough that fences are not unnecessarily inserted into frequently executed
methods. In light of this, we chose to design the simplest possible algorithm to
minimize the cost of the analysis. In the Pensieve compiler system, we have
implemented four escape analysis algorithms:

– a connectivity base analysis described in [23]
– a field base analysis described in [22]
– Bogda’s analysis described in [6]
– Ruf’s analysis described in [18]

3.1 Connectivity Base Analysis

The basic characteristics of the algorithm[23] are:

– Analysis of most memory accesses is field insensitive, with accesses in Runnable
objects being field sensitive.

– More precise context information is constructed for the run() method of a
Runnable class (i.e. this is not assumed to escape) than for other methods.

– Objects assumed to be reachable by multiple threads, are marked as escaping
only if they are accessed by multiple threads.

The analysis is a two-phase analysis. The bottom-up phase computes the
effect of methods and computes how the methods make arguments escaping.
The top-down phase computes the context of methods and determines how
the caller makes arguments escaping before passing them to their callees. Both
phases are done by visiting the strongly connected component (SCC) graph
induced by the call graph in (reverse) topological order. The analysis makes use
of the union-find data structure to avoid fixed point computations for recursive
methods within an SCC.

3.2 Field Based Analysis

The basic characteristics of the algorithm[22] are:

– Analysis of all objects is field sensitive. To avoid an expensive analysis, unlike
[18], it merges escaping properties of fields of all objects of the same type.
For example, if O1.f = O2 and O2 is found to be escaping, then for any
object O, if O is referened by a field f, it is assumed to be escaping.

– Analysis of the run() method of a Runnable, looks for conditions implying
this is not escaping, instead of assuming this is escaping. .

The analysis is an iterative analysis — the analysis is performed until no es-
caping properties of variables and fields change. It is a partially context sensitive
analysis.

3.3 Bogda’s Analysis

Bogda’s analysis[6] is a two phase escape analysis. The basic characteristics of
the algorithm are:

– an object is escaping if any of the following conditions is fulfilled
• it is reachable via more than one field reference;
• it is reachable by a static field; or
• it is reachable by a Runnable object.

The analysis is an iterative analysis.

3.4 Ruf’s Analysis

Ruf’s analysis[18] is a three phase analysis. Like our connectivity base analysis,
it makes use of the union-find data structure to avoid fixed point computations
for recursive methods inside an SCC. The basic characteristics of the algorithm
are:

– an object is escaping if it is both
• reachable from static fields or Runnable objects;
• synchronized by more than one thread.

Since the analysis is designed for synchronization removal, we have adapted it for
fence insertion. Instead of using the second condition “synchronized by more than
one thread”, the adapted analysis checks whether an object is “accessed by more
than one thread”. After the adaptation, the cost of analysis could be increased
because there are more object accesses than synchronization operations.

4 Impact of Escape Analysis on Delay Set Analysis

Delay set analysis computes a delay set, i.e. a set of ordered pairs of memory ac-
cess (x, y) such that y must be delayed until x has completed. In [20], Shasha and
Snir present an accurate method to find the minimal delay set. In the Pensieve
compiler system, we use a much simpler approximate method described in[21].
The analysis in [20] finds cycles in a graph where nodes are shared variable ac-
cesses from two or more threads. In our simplified escape analysis, we look for
pairs of shared memory accesses (x, y) such that x precedes y; y is aliased to y ′

in another thread; x is aliased to x′ in another thread; and y′ precedes x′.
Escape analysis affects both the precision and cost of delay set analysis. The

fewer the number of escaping variables, the fewer pairs (x, y) that need to be
checked, and the fewer the number of x′ and y′ accesses. This increases both the
speed and the precison of delay set analysis.

5 Impact of Escape Analysis on Synchronization Analysis

Synchronization information helps reduce the number of conflict edges in the
graph considered for delay set analysis, and thus improves the precision of delay
set analysis[14].
In our analysis, we consider the following Java synchronization primitives:

– synchronized blocks, used for lock-based synchronization
– thread start() and join() calls, used to determine the program thread
structure.

Our lock-based synchronization analysis has been described in [22]. It improves
the accuracy of our approximate delay set analysis. In essence, we can ignore
pairs of nodes (x, y) and (x′, y′), as described above, when both are synchronized
with the same lock. See [22] for details.
A detailed description of our start-join-based synchronization analysis is

given in [21]. The idea is to make use of the Java language semantics of start()
and join(). When a thread is spawned via a thread start(), all memory ac-
cesses of the creator thread that are initiated before start(), complete before
the point where the new thead starts. Also, if a thread T invokes a join() call
to wait for another thread to terminate, then all memory accesses performed by
the terminating thread complete before T continues execution after the join().
Escape analysis affects the precision of synchronization analysis. When doing

synchronization analysis, we consider only join() calls that are matched with
some start() call. A join() is matched with a start() only if the objects
that they are invoked on do not escape. Matched join() calls can reduce the
number of pairs (x, y) to be considered. Therefore, when escape information is
more precise, more join() calls can be matched, so more pairs (x, y) can be
ignored.

6 Experimental Results

In this section we present the results of executing benchmark programs compiled
with our Pensieve compiler using the four escape analyses described in Section 3.
Our goal is to quantitatively evaluate the impact of different escape analysis
algorithms.

6.1 Benchmark Programs

Table 1 shows the benchmark programs used in the experiments. These are stan-
dard benchmarks from the SPECjvm98, SPECjbb2000 and the Java Grande
benchmark suite. There are also some programs taken from the literature, in-
cluding the concurrent implementation of two data structures, hashmaps and
queues. These concurrent data structures are expected to be widely used and
have been incorporated in the Java standard libraries.

1

10

100

1000

10000

100000

1000000

mt
rt

mo
ldy

n

mo
nte

ca
rlo

ray
tra

ce
r

bo
un

de
db

uf

dis
ks

ch
ed

ge
ne

tic
alg

o

ha
sh

ma
p

se
ive

jbb

AV
G

Escape Analysis Time in ms

 empty argEscape connect ruf5 field-base bogda

Fig. 3. Escape analysis time in ms

connect ruf5 bogda field-base argEscape empty

mtrt 62371 54240 200307 207529 243376 247371
moldyn 11782 297740 297782 298239 308673 309121
montecarlo 22132 3583 4101 7095 31766 31847
raytracer 17768 46960 48967 49116 63153 63539
boundedbuf 2599 4498 4733 4778 6163 6163
disksched 4855 5394 5425 5791 7748 7748
geneticalgo 9574 17126 18282 16877 26952 26952
hashmap 4030 4134 4274 4274 4972 4972
seive 2668 4925 4925 5139 5525 5525
jbb 1872250 916591 832800 836559 1847126 1852503

1

10

100

1000

10000

100000

1000000

10000000

mt
rt

mo
ldy

n

mo
nte

ca
rlo

ray
tra

ce
r

bo
un

de
db

uf

dis
ks

ch
ed

ge
ne

tic
alg

o

ha
sh

ma
p

se
ive

jbb

AV
G

Number of Delay Check Performed

 connect ruf5 bogda field-base argEscape empty

Fig. 4. Escape analysis impact on number of delay checks

6.2 Target Architectures

The experiments are performed on two platforms — the Intel IA32 platform and
the PowerPC platform:

– The Intel platform is a Dell PowerEdge 6600 SMP with 4 Intel 1.5Ghz Xeon
processors with 1MB cache each, and 6G system memory.

– The PowerPC platform is an IBM SP 9076-550 with 8 375Mhz processors
with 8GB system memory.

6.3 Software Settings

Our compiler system is implemented on top of the Jikes Research Virtual Ma-
chine [7, 5, 9] version 2.3.4. We use the FastAdaptiveSemiSpace configuration

Benchmark Description Source # bytecodes
moldyn Molecular dynamics application Java Grande Forum Multithreaded Benchmarks[3] 26,913
montecarlo MonteCarlo simulation Java Grande Forum Multithreaded Benchmarks[3] 63,452
raytracer Ray tracing application Java Grande Forum Multithreaded Benchmarks[3] 33,198
mtrt Ray tracing application From the SPECjvm98 benchmark suite[2] 290,260
boundedbuf Producer-consumer application Uses Doug Lea’s Blocking Queue class[16] 12,050
geneticalgo Parallel genetic algorithm Adapted from the sequential version version in [16] 30,147
hashmap Microbenchmark for concurrent hashmaps Uses Doug Lea’s ConcurrenthashMap class[16] 24,989
seive Sieve of Erastothenes From an example in [12] 10,811
disksched Disk scheduler using an elevator algorithm From an example in [17] 21,186
jbb Middle-layer database server application SPECjbb2000[1] 521,021

Table 1. Benchmark Characteristics

connect ruf5 bogda field-base argEscape empty

mtrt 58.41 56.25 93.52 90.38 104.20 108.35
moldyn 1.90 46.26 47.04 47.26 49.53 49.61
montecarlo 9.53 1.77 1.88 2.27 11.13 10.48
raytracer 2.80 8.14 8.53 8.70 11.05 11.07
boundedbuf 0.42 0.70 0.71 0.69 0.89 1.83
disksched 0.85 1.03 1.03 1.09 1.46 1.46
geneticalgo 1.93 3.59 3.68 3.41 5.25 4.76
hashmap 0.59 0.69 0.72 0.71 0.79 0.83
seive 0.87 1.16 1.19 1.19 1.48 1.30
jbb 304.09 144.76 127.21 127.43 297.69 295.74

0

50

100

150

200

250

300

350

mt
rt

mo
ldy

n

mo
nt

ec
ar

lo

ra
ytr

ac
er

bo
un

de
db

uf

dis
ks

ch
ed

ge
ne

tic
alg

o

ha
sh

ma
p

se
ive

jbb

AV
G

Delay Set Analysis Time in ms

 connect ruf5 bogda field-base argEscape empty

Fig. 5. Escape analysis impact on delay set analysis time in ms

with no fences inserted within the virtual machine code. For the experiments
reported below, we force the system to use the optimizing compiler. To evalu-
ate the impact of escape analyses, we compare the analysis times of delay set
analysis and synchronization analysis. In addition, we compare the precision of
delay set analysis and synchronization analysis w.r.t. different escape analyses
by comparing the application execution time and the number of fences inserted.
In all the graphical plots, the geometrical means are included to summarize data
for all the benchmark programs.

There are six escape analyses compared:

– empty assumes all memory accesses are escaping accesses.

– argEscape assumes all memory locations reachable from some arguments
are escaping.

field-base bogda empty argEscape connect ruf5
mtrt 478.30 829.88 873.38 905.41 841.13 839.60
moldyn 73.85 122.74 133.15 132.14 130.63 132.87
montecarlo 270.28 343.19 359.99 362.02 358.69 349.72
raytracer 134.14 188.00 198.61 200.09 200.85 190.60
boundedbuf 67.57 118.79 117.81 117.04 125.85 123.36
disksched 103.17 160.92 180.60 182.97 165.02 161.78
geneticalgo 159.78 228.40 248.58 247.21 248.88 251.44
hashmap 139.50 237.22 251.10 251.19 252.38 247.33
seive 38.18 74.56 76.94 76.75 76.04 75.48
jbb 56070.55 74231.65 59977.42 58466.61 72130.53 133368.70

1

10

100

1000

10000

100000

1000000

mt
rt

mo
ldy

n

mo
nte

ca
rlo

ray
tra

ce
r

bo
un

de
db

uf

dis
ks

ch
ed

ge
ne

tic
alg

o

ha
sh

ma
p

se
ive

jbb

AV
G

Synchronization Time in ms

 field-base bogda empty argEscape connect ruf5

Fig. 6. Escape analysis impact on synchronization analysis time in ms

– connect is the connectivity base escape analysis algorithm described in Sec-
tion 3.

– field-base is the field base escape analysis algorithm described in Section 3.
– bogda is Bogda’s escape analysis algorithm described in Section 3.
– ruf5 is Ruf’s escape analysis algorithm described in Section 3.

6.4 Cost of Escape Analysis

Figure 3 presents the time taken using a log scale for performing escape analysis.
The times for empty and argEscape are small because they are very simple.

1

10

100

1000

10000

100000

1000000

mt
rt

mo
ldy

n

mo
nte

car
lo

ray
tra

cer

bo
un

de
db

uf

dis
ksc

he
d

ge
ne

tica
lgo

ha
shm

ap

sei
ve jbb

AV
G

Total Compilation Time in ms

 connect ruf5 argEscape empty field-base bogda

Fig. 7. Total Compilation Time in ms

Other than these two trivial analyses, the connectivity base analysis is the fastest
because it does not require a fixed-point computation. It takes longer than empty
and argEscape because it is an interprocedural analysis. The analysis times of
field-base and bogda are longer because they are interprocedural iterative
analyses that requires a fixed-point computation. On average, the analysis time
of ruf5 is between those of connect and field-base.

connect ruf5 bogda field-base argEscape empty

mtrt 61168 52331 198331 205700 240965 244926
moldyn 10312 294371 294409 294409 302913 302913
montecarlo 10410 1449 1544 2707 18182 18263
raytracer 16477 41063 41767 41767 52902 53288
boundedbuf 1468 2596 2764 2625 3067 3067
disksched 3590 4074 4074 4441 5923 5923
geneticalgo 6802 12846 12846 12780 14771 14771
hashmap 1871 2031 2075 2075 2158 2158
seive 1545 3150 3150 3150 3439 3439
jbb 1050402 252850 265206 264630 962122 965368

1

10

100

1000

10000

100000

1000000

10000000

mt
rt

mo
ldy

n

mo
nte

ca
rlo

ray
tra

ce
r

bo
un

de
db

uf

dis
ks

ch
ed

ge
ne

tica
lgo

ha
sh

ma
p

se
ive

jbb

AV
G

Number of Delays Found (DSA Only)

 connect ruf5 bogda field-base argEscape empty

Fig. 8. Escape analysis impact on Number of delays found (delay set analysis only)

connect ruf5 bogda field-base argEscape empty

mtrt 61160 52323 197468 204837 239914 243875
moldyn 10312 294324 294362 294362 302866 302866
montecarlo 9846 1406 1501 2664 17618 17699
raytracer 16477 40945 41648 41648 52783 53169
boundedbuf 1468 2596 2764 2625 3067 3067
disksched 3590 4069 4069 4436 5918 5918
geneticalgo 6802 12835 12835 12769 14760 14760
hashmap 1871 2028 2072 2072 2155 2155
seive 1541 3146 3146 3146 3435 3435
jbb 1049689 252753 265108 264532 961432 964669

1

10

100

1000

10000

100000

1000000

10000000

mtr
t

mo
ldy

n

mo
nte

car
lo

ray
trac

er

bou
nde

dbu
f

dis
ksc

hed

gen
etic

alg
o

has
hm

ap

sei
ve jbb

AV
G

Number of Delays Found (DSA+Sync Analysis)

 connect ruf5 bogda field-base argEscape empty

Fig. 9. Escape analysis impact on Number of delays found (DSA+Sync Analysis)

6.5 Impact on the Cost of Delay Set Analysis and Synchronization

Analysis

We evaluate the impact of escape analysis on delay set analysis and synchroniza-
tion analysis separately. In both cases, we measure the time taken to perform
these two analyses. In case of delay set analysis, we also measure the number of
memory access pairs checked for delays.

connect ruf5 bogda field-base argEscape empty

mtrt 3.80 3.78 23.47 24.26 27.08 27.06
moldyn 74.08 659.89 663.48 660.92 661.80 664.59
montecarlo 119.25 96.52 75.79 93.09 143.04 143.33
raytracer 74.94 798.80 796.49 795.08 801.13 798.53
boundedbuf 1484.75 1467.53 1430.16 1506.80 1443.88 1407.05
disksched 5.83 4.70 4.88 4.86 5.54 5.86
geneticalgo 53.22 59.16 55.91 58.92 57.62 65.74
hashmap 42.07 52.63 50.12 48.45 48.20 55.05
seive 160.79 219.55 220.04 217.83 214.93 215.61
jbb 4346.56 4419.63 4822.99 4746.00 4206.01 4231.55

(a) Application execution time

0

2

4

6

8

10

12

14

mt
rt

mo
ldy

n

mo
nte

ca
rlo

ray
tra

ce
r

bo
un

de
db

uf

dis
ks

ch
ed

ge
ne

tic
alg

o

ha
sh

ma
p

se
ive

jbb

AV
G

Slowdown (DSA only)

 connect ruf5 bogda field-base argEscape empty

(b) Slowdown

Fig. 10. Escape analysis impact on slowdown (delay set analysis only)

Figure 4 shows the number of delay checks for different escape analysis al-
gorithms. Since the value range is huge, it is plotted using a log scale. We
can see connect analysis lead to fewer checks than other escape analyses for
most benchmarks except mtrt, montecarlo and jbb. By comparing connect

and field-base for benchmarks montecarlo and jbb, we can see that in these
benchmarks, being field sensitive is important. On average, connect leads to
fewer checks than other escape analyses. A similar pattern is observed for the
delay set analysis times shown in Figure 5.

Figure 6 shows the synchronization analysis time. We can see the analy-
sis times for synchronization analysis are similar for bogda, empty, argEscape,
connect and ruf5. We observe that field-base leads to faster synchroniza-
tion analysis on all benchmarks. This may be due to an implementation level
interactions between synchronization analysis and the field-base analysis. In
our system, field-base shares some data structures with the synchronization
analysis.

The total compilation time is shown in Figure 7. We observe that, on average,
connect outperforms other non-trivial escape analysis algorithms in this aspect.

connect ruf5 bogda field-base argEscape empty
mtrt 3.77 3.80 23.50 24.70 27.08 27.05
moldyn 76.42 664.30 670.10 665.27 663.29 666.33
montecarlo 119.21 95.26 76.88 98.98 147.86 144.56
raytracer 74.91 798.32 795.36 796.14 801.17 802.04
boundedbuf 1496.27 1464.73 1453.98 1491.85 1415.81 1432.90
disksched 4.89 5.87 4.37 4.05 5.75 5.55
geneticalgo 56.76 62.55 63.92 56.26 58.61 57.24
hashmap 51.78 41.29 48.66 59.47 49.31 49.44
seive 161.18 220.07 220.14 220.81 218.31 221.04
jbb 4330.03 4417.78 4803.98 4741.15 4221.02 4215.59

(a) Application execution time

0

2

4

6

8

10

12

14

mt
rt

mo
ldy

n

mo
nte

ca
rlo

ray
tra

ce
r

bo
un

de
db

uf

dis
ks

ch
ed

ge
ne

tic
alg

o

ha
sh

ma
p

se
ive

jbb

AV
G

Slowdown (DSA+Synchronization Analysis)

 connect ruf5 bogda field-base argEscape empty

(b) Slowdown

Fig. 11. Escape analysis impact on slowdown (DSA+Sync Analysis)

6.6 Impact on Analysis Precision

The analysis precision of delay set analysis and synchronization analysis can be
measured in terms of application execution time and number of delays found. In
both cases, we can view the precision in the following cases:

– the performance of delay set analysis (without applying synchronization
analysis)

– the performance of delay set analysis with refinement of synchronization
analysis

Figure 8 shows the number of delays found when only delay set analysis is ap-
plied. We can see that for most benchmarks fewer delays are found when connect
is applied. Similar to the pattern described in previous section, connect does not
outperform other escape analyses for benchmarks mtrt, montecarlo and jbb.
We can see a similar pattern when both delay set analysis and synchronization
analysis are applied, shown in Figure 9.

Finally, the application execution times are reported in Figure 10 (only DSA
applied) and Figure 11 (both DSA and synchronization analysis applied). In both
settings, we also plot the slowdown graphs in the same figure. We can see the
connect performs well for most benchmarks except for montecarlo, disksched
and jbb. On average, connect is the best analysis from slowdown perspective.

7 Conclusions

In this paper, we have presented the Pensieve Compiler System. The system
presented in this paper focuses on enforcing SC on the Intel IA32 and Pow-
erPC platforms. We also presented the interactions between our thread escape
analyses, synchronization analysis, and delay set analysis implemented in the
system. We can see, on average, the connectivity analysis is the best escape
analysis algorithms leading to good application performance. From the analy-
sis time perspective, connectivity analysis is much faster than other non-trivial
analyses. Ruf’s analysis is the second best analysis that lead to good application
performance. For some benchmarks, Ruf’s analysis outperforms connectivitiy
analysis. However, Ruf’a analysis is much slower than connectivity analysis, so
we choose to use connect as the escape analysis in the Pensieve system.
By comparing with the field base analysis, we can see the importance of

being field sensitive for benchmarks like montecarlo and jbb. The result moti-
vates further works to design a fast and precise escape analysis to be used by
delay set analysis and synchronization analysis by enabling field sensitivity for
connectivity analysis without increasing the analysis cost significantly.

References

1. SPEC JBB 2000 Benchmark. URL: http://www.specbench.org/jbb2000.
2. SPEC JVM Client98 Suite. URL: http://www.specbench.org/jvm98/jvm98.
3. The Java Grande Forum Multi-threaded Benchmarks. URL:
http://www.epcc.ed.ac.uk/javagrande/threads/contents.html.

4. Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models:
A tutorial. IEEE Computer, pages 66–76, December 1996.

5. M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive optimization
in the Jalapeño JVM. In Proc. ACM SIGPLAN Conference on Object-Oriented
Programming and Systems, Languages, and Applications (OOPSLA) 2000, Min-
neapolis, MN, October 2000.

6. Jeff Bogda and Urs Holzle. Removing unnecessary synchronization in java. In Pro-
ceedings of the 14th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 35–46. ACM Press, 1999.

7. B. Alpern et. al. The Jalapeño virtual machine. IBM System Journal, 39(1),
February 2000.

8. Kourosh Gharachorloo et. al. Memory consistency and event ordering in scalable
shared-memory multiprocessors. In Proceedings of The 17th Annual International
Symposium on Computer Architecture (ISCA), pages 15–26, May 1990.

9. Michael G. Burke et. al. The Jalapeño Dynamic Optimizing Compiler for Java. In
Proceedings of the 1999 ACM Java Grande Conference, pages 129–141, Palo Alto,
CA, USA, Jun 1999.

10. Xing Fang, Jaejin Lee, and Samuel P. Midkiff. Automatic fence insertion for shared
memory processing. In 2003 ACM International Conference on Supercomputing,
June 2003.

11. Xing Fang, Jaejin Lee, and Samuel P. Midkiff. An optimizing and retargetable
fence insertion algorithm. Technical Report ECE-HPCLab-033002, High Perfor-
mance Computing Lab, School of Electrical and Computer Engineering, Purdue
University, 2003.

12. Stephen Hartley. Concurrent Programming: the Java Programming Language. Ox-
ford University Press, 1998.

13. Mark D. Hill. Multiprocessors should support simple memory-consistency models.
IEEE Computer, August 1998.

14. Arvind Krishnamurthy and Katherine Yelick. Analyses and optimizations for
shared address space programs. Journal of Parallel and Distributed Computing,
38:139–144, 1996.

15. Leslie Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Transactions on Computers, C-28(9):690–691,
September 1979.

16. Doug Lea. Concurrent Programming in Java. Addison Wesley, 1999. URL:
http://gee.cs.oswego.edu/dl/cpj.

17. Douglas Lea and Doug Lea. Concurrent Programming in Java: Design Principles
and Patterns. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1996.

18. Erik Ruf. Effective synchronization removal for java. In Conference on Program-
ming Languages, Design, and Implementation (PLDI), 2000.

19. C. Scheurich and M. Dubois. Correct memory operation of cache-based multi-
processors. In Proc. of the 14th Annual Int’l Symp. on Computer Architecture
(ISCA’87), pages 234–243, 1987.

20. Dennis Shasha and Marc Snir. Efficient and correct execution of parallel programs
that share memory. ACM Transactions on Programming Languages and Systems,
10(2):282–312, April 1988.

21. Zehra Sura, Xing Fang, Chi-Leung Wong, Samuel P. Midkiff, Jaejin Lee, and David
Padua. Compiler techniques for high performance sequentially consistent java
programs. In Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Chicago IL, 2005.

22. Zehra N. Sura. Analyzing Threads for Shared Memory Consistency. PhD thesis,
University of Illinois at Urbana-Champaign, 2004.

23. Chi-Leung Wong. Thread Escape Analysis for a Memory Consistency Model-aware
Compiler. PhD thesis, University of Illinois at Urbana-Champaign, 2005.

