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Abstract

Computer architects and designers rely heavily on simulation. The downside of sim-
ulation is that it is very time-consuming — simulating an industry-standard benchmark
on today’s fastest machines and simulators takes several weeks. A practical solution to
the simulation problem is sampling. Sampled simulation selects a number of sampling
units out of a complete program execution and only simulates those sampling units in
detail. An important problem with sampling however is the microarchitecture state at
the beginning of each sampling unit. Large hardware structures such as caches and
branch predictors suffer most from unknown hardware state. Although a great body of
work exists on cache state warmup, very little work has been done on branch predictor
warmup.

This paper proposes Branch History Matching (BHM) for accurate branch predic-
tor warmup during sampled simulation. The idea is to build a distribution for each
sampling unit of how far one needs to go in the pre-sampling unit in order to find the
same static branch with a similar global and local history as the branch instance ap-
pearing in the sampling unit. Those distributions are then used to determine where to
start the warmup phase for each sampling unit for a given total warmup length budget.
Using SPEC CPU2000 integer benchmarks, we show that BHM is substantially more
efficient than fixed-length warmup in terms of warmup length for the same accuracy.
Or reverse, BHM is substantially more accurate than fixed-length warmup for the same
warmup budget.

1 Introduction

Architectural simulations are extensively used by computer architects and designers for
evaluating various design tradeoffs. Unfortunately, architectural simulation is very time-
consuming. Even on today’s fastest machines and simulators, simulating an industry-
standard benchmark easily takes several weeks to run to completion. As such, simulat-
ing entire benchmark executions is infeasible for exploring huge microarchitecture de-
sign spaces. Therefore, researchers have proposed sampled simulation [1,2,3,4]. Sam-
pled simulation takes a number of so called sampling units that are simulated in detail.
Statistics or appropriate weighting is then applied to the simulation results of the various
sampling units for predicting the performance of the overall benchmark execution.

An important issue with sampled simulation is the microarchitecture state at the
beginning of each sampling unit, i.e., the microarchitecture state at the beginning of a



sampling unit is unknown during sampled simulation. This is well known in the litera-
ture as the cold-start problem. A solution to the cold-start problem is to warmup various
microarchitecture structures prior to each sampling unit. A large amount of work has
been done on cache structure warmup. However, the amount of work done on branch
predictor warmup is very limited.

This paper proposes Branch History Matching (BHM) as a novel branch predictor
warmup method. The basic idea is to inspect the pre-sampling unit, i.e., the instructions
in the dynamic instruction stream prior to the sampling unit, for branch instances of the
same static branch with similar global and local histories as the branch instances in the
sampling unit. A BHM distribution is then built for all sampling units that quantifies
the locality in the branch execution stream taking into account both the global and
local histories of the branches. As a final step, the appropriate warmup length is then
determined for each sampling unit taking into account the BHM distributions as well as
the total warmup budget. In other words, the total warmup budget is distributed across
the various sampling units according to the BHM distribution. Sampling units that show
good locality are given a small warmup length; sampling units that show poor locality
are given a larger warmup length.

BHM is microarchitecture-independent, i.e., the warmup lengths are computed once
and are then reused across branch predictors during design space exploration. An ap-
pealing way of using BHM in practice for sampled processor simulation is to use (i)
checkpointed sampling [5,6] maintaining reduced checkpoints of architecture state (reg-
isters and memory) along with (ii) checkpointed cache warmup [5,7,8,9] and (iii) com-
pressed branch traces [10] that are reduced through BHM. In other words, instead of
having branch traces of full benchmark executions as proposed in [10], BHM limits the
length of the compressed branch traces. This would result in a reduction in required disk
space as well as a reduction in overall simulation time while pertaining the advantage
of compressed branch traces of being branch predictor independent.

This paper makes the following contributions:

– First, we show that branch predictor warmup is an issue when it comes to guar-
anteeing an accurate hardware state at the beginning of a sampling unit. We show
that for small sampling unit sizes, branch predictor warmup is required in order
to achieve an accurate estimate of the hardware state at the beginning of the sam-
pling unit. We provide results showing that even for (fairly large) 1M instruction
sampling units branch predictor warmup is required.

– Second, we propose Branch History Matching (BHM) as a novel branch predic-
tor warmup approach. Using the SPEC CPU2000 integer benchmarks and 10K-
instruction sampling units, we show that BHM is 39% more accurate than fixed-
length warmup for the same warmup length. Or reverse, BHM achieves the same
accuracy as fixed-length warmup with a 1.6X shorter warmup length. Compared to
MRRL, BHM is 87% more accurate.

This paper is organized as follows. We first revisit sampled simulation and cover the
main issues related to sampled simulation. We then present BHM as a branch predictor
warmup method. We subsequently evaluate BHM and compare it against fixed-length
warmup and MRRL. And finally, we conclude.



2 Sampled simulation background

In sampled simulation, a number of sampling units are chosen from a complete bench-
mark execution. Those sampling units are then simulated in detail; the pre-sampling
units, i.e., the instructions prior to a given sampling unit, are skipped. The performance
of the complete benchmark is then estimated by simply aggregating or weighting the
performance numbers from the various sampling units.

There are basically three issues with sampled simulation. First, the sampling units
need to be chosen in such a way that the sampling units are representative for the entire
program execution. Various authors have proposed various approaches for achieving
this, such as random sampling [1], periodic sampling as done in SMARTS [3] and
targeted sampling based on program phase behavior as done in SimPoint [2].

The second issue is how to get to those sampling units. In other words, the archi-
tecture state (register and memory state) needs to be reconstructed so that all sampling
units can be functionally simulated in a correct way. This can be achieved through fast-
forwarding or (reduced) checkpointing [5,9]. Checkpointing is especially beneficial for
the parallel simulation of sampling units [11,12].

The third issue with sampled simulation is to estimate the microarchitecture state at
the beginning of each sampling units. The microarchitecture structures that suffer the
most from the cold-start problem are cache structures and branch predictors. We will
discuss warmup approaches tailored towards these types of hardware structures in the
following two subsections.

2.1 Cache warmup

Given the fact that caches have the largest state in a microprocessor, they are likely
to suffer the most from inaccurate microarchitecture warmup. In fact, most of the
prior research on the cold-start problem has been done on cache warmup. Various ap-
proaches have been proposed such as no warmup, stale state (also called stitch) [13],
fixed warmup [1], cache miss rate estimators [14], no-state-loss [12,15], minimal sub-
set evaluation (MSE) [16], memory reference reuse latency (MRRL) [17], boundary
line reuse latency (BLRL) [8,18], self-monitored adaptive cache warmup (SMA) [19],
memory hierarchy state (MHS) [5], memory timestamp record (MRT) [7], etc.

2.2 Branch predictor warmup

Compared to the amount of work done on cache warmup, very little work has been done
on branch predictor warmup.

The first paper dealing with branch predictor warmup was by Conte et al. [1]. They
proposed two approaches to branch predictor warmup, namely stale state and fixed-
length warmup. Stale state (or stitch) means that the branch predictor state at the end
of the previous sampling unit serves as an approximation for the branch predictor state
at the beginning of the current sampling unit. An important disadvantage of stale state
is that it serializes the simulation of the various sampling units, i.e., it is impossible
to simulate the current sampling unit without having finalized the simulation of the



previous sampling unit. Fixed-length warmup is a simple-to-implement method that
achieves good accuracy if sufficiently long warmup lengths are chosen.

The second paper mentioning branch predictor warmup is by Haskins and Conte [17,20]
in which they propose memory reference reuse latency (MRRL). The idea of MRRL is
to look in the pre-sampling unit how far one needs to go in order to encounter the
same static branch as the one in the sampling unit. MRRL computes the reuse latency,
i.e., the number of instructions between the branch instance in the pre-sampling unit
and the one in the sampling unit, for all branch instances in the pre-sampling unit and
sampling unit. For a given target cumulative probability, for example 99.5%, it is then
determined where warmup should start in the pre-sampling unit. During this warmup
period, the branch predictor is warmed up but no misprediction rates are computed.

A number of papers have proposed checkpointed sampling techniques [5,7,9] in
which the architecture state is stored on disk, as mentioned above. These techniques
typically use checkpointed microarchitecture warming for warming cache state, such as
memory timestamp record [7], live-points [9] and memory hierarchy state (MHS) [5].
They suggest to store the branch predictor state as part of the microarchitecture state for
the various branch predictors one may be interested in during design space exploration.
This can be space-inefficient in case multiple branch predictors need to be stored, and
in addition, it prevents from simulating a branch predictor that is not contained in the
microarchitecture warmup.

For addressing this problem, Barr and Asanovic [10] propose to employ branch
trace compression. They store a compressed branch trace on disk and upon branch
predictor warming they simply decompress the compressed branch trace and use the
decompressed trace for branch predictor warming. This approach is branch predictor
independent and can be used to warm any branch predictor during sampled simula-
tion. The branch trace compression scheme by Barr and Asanovic [10] however does
not address the issue of how far one needs to go back in the pre-sampling unit. They
assume that the entire branch trace from the beginning of the benchmark execution
up to the current sampling unit needs to be compressed and decompressed. This can
be time-consuming in practice, especially for sampling units deep down the benchmark
execution. BHM as proposed in this paper can be used to cut down the branch traces that
need to be compressed. This saves both disk space and simulation time, while keeping
the benefit of the warmup approach to be branch predictor independent.

3 The need for branch predictor warmup

Branch predictors need to be warmed up during sampled simulation. This is illus-
trated in Figure 1 where the number of branch mispredictions per thousand instruc-
tions (MPKI) is shown for gcc for four sampling unit sizes: 10K, 100K, 1M and 10M
instruction sampling unit sizes. Note this is in the range of sampling units used in con-
temporary sampled simulation environments such as SMARTS [3,9] (sampling unit size
of 10K instructions) and SimPoint [2,5,21] (sampling unit sizes from 1M to 100M in-
structions). Each graph shows the MPKI for four (fairly aggressive) branch predictors:
a 128Kbit gshare predictor, a 256Kbit local predictor, a 128Kbit bimodal predictor and
a 192Kbit hybrid predictor — more details about the experimental setup and the branch
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Fig. 1. No warmup, stale state and perfect warmup MPKI results for gcc and 4 branch predictors
and 4 sampling unit sizes.

predictors are given in section 5. The various bars correspond to various branch pre-
dictor warmup strategies: no warmup, stale state and perfect warmup. The no warmup
approach assumes an initialized branch predictor at the beginning of a sampling unit,
i.e., the branch predictor content is flushed at the beginning of the sampling unit — two-
bit saturating counters in adjacent entries are initialized in alternate ‘01’ ‘10’ states. The
stale state approach assumes that the branch predictor at the beginning of the sampling
unit equals the branch predictor state at the end of the previous sampling unit. Note
that the stale state approach assumes that sampling units are simulated sequentially —
this excludes parallel sampled simulation. The perfect warmup approach is an idealized
warmup scenario where the branch predictor is perfectly warmed up, i.e., the branch
predictor state at the beginning of the sampling unit is the state as if all instructions
prior to the sampling unit were simulated.

Figure 1 clearly shows that the no warmup and stale state approaches fail in being
accurate, especially for small sampling unit sizes. For example for 10K instruction sam-
pling units, the ∆MPKI can be very high for both no warmup and stale state. Even
for 1M instruction sampling units, the error can be significant, more than 1.5 ∆MPKI
for the no warmup strategy and the gshare predictor. Note that the error varies across
branch predictors. The error is typically higher for the gshare predictor than for the bi-
modal predictor, which is to be understood intuitively, the reason being the fact that the
XOR hashing in the gshare predictor typically results in more entries being accessed in
the branch predictor table than the bimodal predictor does.
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Fig. 2. An example illustrating how the cumulative Branch History Matching distribution is com-
puted.

As a result of the non-uniform warmup error across branch predictors, incorrect
design decisions may be taken. For example, using the no warmup approach, a com-
puter architect would conclude that the local predictor achieves a better accuracy (a
lower MPKI) than the gshare predictor. This is the case for 10K, 100K and even 1M
instruction sampling units. However, this conclusion is just an artifact of the inadequate
warmup approach. Perfect warmup shows that the gshare predictor outperforms the lo-
cal predictor. The stale state warmup approach only solves this problem for the 1M
instruction sampling unit, however, it does not solve the problem for smaller sampling
unit sizes and it cannot be used for parallel sampled simulation.

4 Branch History Matching

This paper proposes Branch History Matching (BHM) as a novel branch predictor
warmup approach. Computing the branch predictor warmup length through Branch His-
tory Matching (BHM) is done in two steps. First, we compute the BHM distribution for
all sampling units. In a second phase, we then determine the warmup length for each
sampling unit for a given total warmup length budget using the BHM distributions for
all sampling units.

4.1 Computing the BHM distribution

Computing the BHM distribution for a given sampling unit is illustrated in Figure 2. At
the top of Figure 2, a sampling unit along with its pre-sampling unit is shown. The bul-
lets represent a single static branch being executed multiple times in the pre-sampling



unit as well as in the sampling unit. Instructions with labels ‘1’ thru ‘6’ are part of the
pre-sampling unit; instructions labeled ‘7’, ‘8’ and ‘9’ are part of the sampling unit. A
white bullet represents a non-taken branch; a black bullet shows a taken branch. Fig-
ure 2 also shows the global and local history for each dynamic instance of the given
static branch; the example assumes three global history bits and three local history bits.
Note that the most recent branch outcome is shifted in on the right hand side of the
history register; for example, a non-taken branch changes the local history from ‘011’
to ‘110’.

In order to compute the BHM distribution, we first compute the BHM histogram.
The BHM histogram is computed by scanning all the branch instances in the sampling
unit and proceeds as follows.

– Searching the sampling unit. We first determine whether there is a perfect match
for the local and global history of the given branch instance in the sampling unit
versus the local and global histories of all the preceding branch instances of the
same static branch in the sampling unit. A perfect match means that both the local
and global histories are identical for the two respective branch instances. For the
example given in Figure 2, the local and global histories of branch instance ‘9’ in
the sampling unit show a perfect match with the local and global history of branch
instance ‘7’ in the sampling unit. This case increments the count for d = 0 in the
BHM histogram.

– Searching the pre-sampling unit. In case there is no perfect match with a preceding
branch instance in the sampling unit, we search the pre-sampling unit for the most
recent branch instance that shows the highest match with the local and global his-
tory for the given branch instance. This is done by computing the Branch History
Matching Score (BHMS) between the given branch instance in the sampling unit
with all the branch instances of the same static branch in the pre-sampling unit. The
BHMS between two branch instances is computed as the number of bit positions
that are identical between the local and global histories of the respective branch
instances. When computing the number of identical bit positions we count from
the most recent bit to the least recent bit and we stop counting as soon as there is
disagreement for a given bit, i.e., we count the matching most recent history bits.
This done for both the global and local histories; the overall BHMS then is the sum
of the global and local BHMSs. Computed BHMSs are shown in Figure 2 for the
first and second branch instances of the sampling unit. For example, the BHMS for
branch instance ‘8’ with relation to branch instance ‘4’ equals 4, i.e., 2 (compare
global histories ‘011’ versus ‘111’) plus 2 (compare local histories ‘101’ versus
‘001’).
The first branch instance (with label ‘7’) achieves a perfect match (BHMS equals
6) for the branch instance with label ‘5’. The idea is then to update the BHM his-
togram reflecting the fact that in order to have an accurate warmup for instruction
‘7’ we need to go back to instruction ‘5’ in the pre-sampling unit. For this purpose,
the BHM histogram is incremented at distance d1 with ‘d1’ being the number of
instructions between the branch instance with label ‘5’ and the beginning of the
sampling unit — this is to say that branch predictor warmup should start at branch
instruction ‘5’. For the second branch instance (with label ‘8’) in the sampling unit,



/* this function computes the current warmup length */
int current_warmup_length (int* d) {
for (i = 0; i < n; i++)

sum += d[i];
return sum;

}

/* main algorithm */

/* initialize warmup length for each sampling unit */
for (i = 0; i < n; i++)
d[i] = 0;

/* iterate as long as the user defined total warmup length L_w is not reached */
while (current_warmup_length (d) < L_w) {

/* find the sampling unit max_j that faces the maximum slope */
max_prob = 0.0;
max_i = -1;
for (i = 0; i < n; i++) {

if ((P[i][d[i] + b] - P[i][d[i]])/b > max_prob) {
max_prob = (P[i][d[i] + b] - P[i][d[i]])/b;
max_i = i;

}
}

/* update warmup length for sampling unit facing the maximum slope */
d[max_i] += d[max_i] + b;

}

Fig. 3. The algorithm in pseudocode for determining the warmup length per sampling unit using
BHM distributions.

the highest BHMS is obtained for the branch instance with label ‘6’; the number
of instructions between that branch instance and the sampling unit starting point is
denoted as d2 in Figure 2. We then increment the BHM histogram at distance d2.

Dividing the BHM histogram with the number of branch instances in the sampling
unit, we then obtain the BHM distribution. Figure 2 shows the cumulative BHM distri-
bution for the given sampling unit: since there are three branch instances in our example
sampling unit, the cumulative distribution starts at 1/3 for distance d = 0, reaches 2/3
at distance d = d2 and finally reaches 1 at distance d = d1.

4.2 Determining warmup length

Once the BHM distribution is computed for each sampling unit we determine the warmup
length per sampling unit for a given total warmup length budget. The goal is to partition
a given warmup length budget over a number of sampling units so that accuracy is max-
imized. In other words, sampling units that do not require much warmup, are granted a
small warmup length; sampling units that require much more warmup are given a much
larger warmup length.

The algorithm for determining the appropriate warmup length per sampling unit
works as follows, see also Figure 3 for the pseudocode of the algorithm. We start from
n BHM distributions, with n being the number of sampling units. In each iteration,
we determine the sampling unit i out of the n sampling units that faces the maximum



predictor configuration

gshare 16-bit history gshare predictor, 128Kbit total state
local 16-bit local predictor, 8K entries at first level, 64K entries at second level

256 Kbit total state
bimodal 64K-entry bimodal predictor, 128Kbit total state
hybrid hybrid predictor consisting of a 32K-entry bimodal predictor, a 15-bit history

gshare predictor and a 32K-entry PC-indexed meta predictor; 192Kbit total state
Table 1. The branch predictors considered in this paper.

slope in the BHM distribution. This means that the sampling unit i (called max i in
the pseudocode in Figure 3) is determined that maximizes the slope Pi(di+b)−Pi(di)

b
,

with Pi(d) being the probability for distance d in the cumulative BHM distribution for
sampling unit i, and di being the warmup length granted to sampling unit i in the current
state of the algorithm. For the sampling unit i that maximizes the slope, we increase the
granted warmup length di to di + b. This algorithm is iterated until the total warmup
length over all sampling units equals a user-defined maximum warmup length Lw, i.e.,∑n

i=1 di = Lw. By doing so, we effectively budget warmup to samples that benefit the
most from the granted warmup.

Note that this algorithm is only one possible design point in BHM warmup. More
in particular, this algorithm heuristically determines to increase the warmup length for
the sampling unit that faces the maximum slope in the BHM distribution. The algorithm
does not take into account the distance over which this slope is observed; taking this dis-
tance into account for determining appropriate warmup lengths would be an interesting
avenue for future work though.

4.3 Discussion

Most branch predictors in the literature as well as in today’s commercial processors
use a global and/or local branch history. Because BHM is also based on global and
local branch history matching, it is to be expected that BHM will be an appropriate
warmup technique for most branch predictors considered today. However, some branch
predictors proposed in the literature are path-based and use a sequence of recent branch
addresses as the branch history. In this paper though, we limit ourselves to branch pre-
dictors that are based on global and local branch histories. However, as part of our future
work, we will further evaluate BHM for a broader range of branch predictors than the
ones used in this paper.

5 Experimental setup

We use SPEC CPU2000 integer benchmarks with reference inputs in our experimen-
tal setup. We include all integer benchmarks except for perlbmk because its branch
misprediction rate is very low; in fact, no warmup is very accurate for perlbmk. The
binaries which were compiled and optimized for the Alpha 21264 processor, were taken
from the SimpleScalar website. All measurements presented in this paper are obtained
using the binary instrumentation tool ATOM [22]. The branch predictors considered in



this paper are shown in Table 1. We consider four fairly aggressive branch predictors: a
gshare predictor, a local predictor, a bimodal predictor and a hybrid predictor [23,24].

Our primary metric for quantifying the accuracy of the branch predictor warmup
approaches proposed in this paper is ∆MPKI which is defined as the absolute dif-
ference between the number of misses per thousand instructions under perfect warmup
(MPKIperfect) versus the number of misses per thousand instructions under the given
branch predictor warmup approach (MPKIwarmup). In other words, ∆MPKI =
‖MPKIwarmup − MPKIperfect‖ and thus the smaller ∆MPKI , the better. Our
second metric, next to accuracy, is warmup length which is defined as the number of
instructions required by the given warmup technique. Likewise, the smaller the warmup
length, the smaller the total simulation time, the better.

6 Evaluation

We now evaluate the accuracy and warmup length of BHM compared to fixed-length
warmup; section 6.1 covers accuracy and section 6.2 covers warmup length. Throughout
this evaluation we consider a sampling unit size of 10K instructions. The reason is
that, as mentioned in section 3, small sampling unit sizes suffer most from the lack of
warmup; small sampling unit sizes will stress our warmup approach the most. All the
results presented in this paper are for 50 sampling units.

Further, we assume that the number of global and local history bits equals 16 for
the BHM approach in sections 6.1 and 6.2. Section 6.3 then studies the impact of the
BHM history length on accuracy and warmup length.

6.1 Accuracy

Comparison against fixed-length warmup. Figure 4 evaluates the accuracy of BHM
compared to fixed-length warmup. Both warmup techniques are budgeted a 1M warmup
length per sampling unit, i.e., both warmup techniques use the same warmup length.
The four graphs in Figure 4 represent four different branch predictors, namely the
gshare, local, bimodal and hybrid branch predictors. The ∆MPKIs are shown for
both warmup techniques. We observe that BHM substantially outperforms fixed-length
warmup. Over all four branch predictors, the average ∆MPKI decreases from 0.48
(under fixed-length warmup) to 0.29 (under BHM) which is 39% more accurate.

Comparison against MRRL. Figure 5 compares BHM against MRRL. As mentioned
before, MRRL looks how far one needs to go back in the pre-sampling unit for encoun-
tering branch instances of the same static branch for all branch instances in the sampling
unit. The results in Figure 5 show that BHM clearly outperforms MRRL. Over all four
branch predictors, the average ∆MPKI decreases from 2.13 (under MRRL) to 0.29
(under BHM) which is 87% more accurate. The important difference between MRRL
and BHM is that BHM, in contrast to MRRL, takes into account branch histories; this
results in significantly more accurate branch predictor state warmup for BHM compared
to MRRL. Note that MRRL also performs worse than fixed 1M warmup, compare Fig-
ure 4 against Figure 5. The reason is that, because of the fact that MRRL does not take
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Fig. 4. ∆MPKI results for fixed 1M warmup and BHM for the gshare, local, bimodal and hybrid
branch predictors.
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Fig. 5. ∆MPKI results for MRRL and BHM for the gshare, local, bimodal and hybrid branch
predictors. For MRRL, we consider all branch instances in the sampling unit, hence the ‘MRRL
100%’ labels.)
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Fig. 6. Average ∆MPKI over the four branch predictors as a function of warmup length for the
fixed-length warmup approach compared to BHM 1M.

into account branch history, MRRL is unable to come up with long enough warmup
lengths for accurately warming up the branch predictors. The average warmup length
through MRRL is only 200K instructions per sampling unit; according to our results,
much larger warmup lengths are required to accurately warmup branch predictors.

6.2 Warmup length

In order to quantify the reduction in warmup length through BHM compared to fixed-
length warmup, we have measured the average ∆MPKI over the four branch predic-
tors as a function of warmup length, see Figure 6. The average ∆MPKI is shown for
fixed-length warmup with the warmup budget varying between 1M and 2M instructions
per sampling unit. The ∆MPKI for BHM with a 1M warmup length budget per sam-
pling unit is shown on the right. We observe that fixed-length warmup achieves about
the same accuracy as BHM for a warmup length of 1.6M instructions per sampling unit.
In other words, BHM with a 1M warmup budget per sampling unit results in a 1.6X re-
duction in warmup length compared to fixed-length warmup while achieving the same
accuracy.

Figure 7 shows MPKI versus warmup length for the gcc benchmark and the four
branch predictors. Note that the horizontal axes are shown on a log scale. The two
curves in each graph represent fixed-length warmup and BHM warmup, respectively;
and the various points in these curves represent different warmup budgets. This graph
clearly shows that BHM achieves the same accuracy with substantially shorter warmup
lengths, or reverse, BHM achieves better accuracy for the same warmup length.

6.3 Impact of BHM history length

Note that the amount of branch history used by three of the four branch predictors,
namely the gshare, local and hybrid predictors, equals 16 bits. The number of BHM
history bits used for computing the warmup length also equals 16 bits. The question
however is how sensitive BHM’s accuracy is to the BHM history length.
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Fig. 7. Comparing BHM versus fixed warmup in terms of MPKI versus warmup length for gcc.

Figure 8 explores the impact of the BHM history length. The average ∆MPKI
over all benchmarks is shown on the vertical axis versus the warmup length on the
horizontal axis. The five curves represent the five branch predictors. The different points
on each curve represent different BHM history lengths. We varied the BHM history
length from 0, 2, 4, 8 to 16; when varying the history length we simultaneously vary
the global and local BHM history lengths. A zero BHM history length means that no
global and local history is taken into account for building the BHM distribution. In
other words, the BHM warmup method then simply looks for the last occurrence of the
same static branch for updating the BHM distribution. In all of these experiments, we
budgeted a warmup length to 1M instructions per sampling unit.

There are two interesting observations to be made from this graph. First, accuracy
improves or ∆MPKI decreases with increasing BHM history lengths. This is to be
expected because the more history is taken into account, the better BHM will be able to
determine how far it needs to go back in the pre-sampling unit for appropriate warmup.
Second, small BHM histories are unable to budget the warmup lengths so that the av-
erage warmup length per sampling unit effectively equals the 1M instruction warmup
budget. For example, a zero BHM history only yields slightly more than 200K instruc-
tions of warmup per sampling unit. In other words, it is impossible for BHM with
limited history to fully exploit the available warmup budget. By increasing the BHM
history length, BHM is better able to approach the target 1M warmup length per sam-
pling unit. (Note that the MRRL approach [17,20] corresponds to a zero BHM history
length.) We further observe that an 8 bit and a 16 bit BHM history length yields ap-
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Fig. 8. Evaluating the impact of the BHM history length on accuracy and warmup length.

proximately the same accuracy. From this experiment, we thus conclude that in order to
achieve accurate warmup for branch predictors, the BHM history length needs to be set
to an appropriate value, for example, to the maximum history length one would look at
during the branch predictor design space exploration.

7 Conclusion

Sampled simulation is a well known approach to speed up architectural simulations
that are heavily used by computer architects and designers. An important issue with
sampled simulation however is the cold-start problem, i.e., the microarchitecture state
is unknown at the beginning of each sampling unit. Although a great deal of work has
been done on cache structure warmup, very little research has been done on branch
predictor warmup.

This paper proposed Branch History Matching (BHM) as a novel branch predictor
warmup method. The idea is to analyze the sampling unit as well as the pre-sampling
unit for recurring branch instances of the same static branch with similar global and lo-
cal branch histories. By doing so, BHM builds a distribution for each sampling unit that
characterizes the branch locality behavior. BHM then budgets its total warmup budget
to the various sampling units. Sampling units that are warmup-sensitive are budgeted
more warmup; sampling units that are warmup-insensitive are budgeted less warmup.
Compared to fixed-length warmup, BHM achieves better accuracy for the same to-
tal warmup budget, or reverse, BHM achieves the same accuracy with a shorter total
warmup budget.
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