
A Throughput-Driven Task Creation and
Mapping for Network Processors

Lixia Liu1, Xiao-Feng Li1, Michael Chen2, and Roy D.C. Ju2

1 Intel China Research Center Ltd. Beijing, China
2 Intel Corporation, Microprocessor Technology Lab Santa Clara, USA?

Abstract. Network processors are programmable devices that can pro-
cess packets at a high speed. A network processor is typified by multi-
threading and heterogeneous multiprocessing, which usually requires pro-
grammers to manually create multiple tasks and map these tasks onto
different processing elements. This paper addresses the problem of au-
tomating task creation and mapping of network applications onto the un-
derlying hardware to maximize their throughput. We propose a through-
put cost model to guide the task creation and mapping with the objective
of both minimizing the number of stages in the processing pipeline and
maximizing the average throughput of the slowest task simultaneously.
The average throughput is modeled by taking communication cost, com-
putation cost, memory access latency and synchronization cost into ac-
count. We envision that programmers write small functions for network
applications, such that we use grouping and duplication to construct
tasks from the functions. The optimal solution of creating tasks from
m functions and mapping them to n processors is an NP-hard problem.
Therefore, we present a practical and efficient heuristic algorithm with
an O((n + m)m) complexity and show that the obtained solutions pro-
duce excellent performance for typical network applications. The entire
framework has been implemented in the Open Research Compiler (ORC)
adapted to compile network applications written in a domain-specific
dataflow language. Experimental results show that the code produced
by our compiler can achieve the 100% throughput on the OC-48 input
line rate. OC-48 is a fiber optic connection that can handle a 2.488Gbps
connection speeds, which is what our targeted hardware was designed
for. We also demonstrate the importance of good creation and mapping
choices on achieving high throughput. Furthermore, we show that reduc-
ing communication cost and efficient resource management are the most
important factors for maximizing throughput on the Intel IXP network
processors.

Keywords Network Processors, Throughput, Intel IXP, Dataflow Programming,
Task Creation and Mapping

? Our current email addresses are: Lixia Liu(liulixia@purdue.edu), Xiao-Feng
Li(xiao.feng.li@intel.com), Michael Chen(mrchen@gmail.com) and Roy D.C
Ju(roy.ju@amd.com)

1 INTRODUCTION

While there are increasing demands for high throughput on network applica-
tions, network processors with their programmability and high processing rates
have emerged to become important devices for packet processing applications
in addition to ASICs (application-specific integrated circuits). Network proces-
sors typically incorporate multiple heterogeneous, multi-threaded cores, and pro-
grammers of network applications are often required to manually partition ap-
plications into tasks at design time and map the tasks onto different processing
elements. However, most programmers find it challenging to produce efficient
software for such a complex architecture. Because the type and number of pro-
cessing elements that these tasks are mapped to greatly influence the overall
performance, it is an important but tedious effort for programmers to carefully
create and map tasks of applications to achieve a maximal throughput. It is also
rather difficult to port these applications from one generation of an architecture
to another while still achieving high performance.

The problem being addressed in this paper is the automatic task creation
and mapping of packet processing applications on network processors while max-
imizing the throughput of these applications. We envision programmers writing
small functions for modularity in our programming model, and focus on map-
ping coarse-grained task parallelism in this work. Hence, we apply grouping and
duplication to construct tasks from functions as opposed to splitting functions to
smaller tasks. Note that the cost model itself is applicable both for different task
granularities and for function splitting. Our approach has been implemented in
the Open Research Compiler (ORC)[4][6] and evaluated on Intel IXP2400 net-
work processors. We also conjecture that our approach is applicable to other
processor architectures that support multi-threading and chip multiprocessors
(CMP).

The primary contributions of this paper are as follows. First, a throughput
cost model is developed to model the critical factors that affect the through-
put of a CMP system. Compared to other simpler models, we demonstrate our
throughput cost model to be more accurate and effective. Second, we develop a
practical and efficient heuristic algorithm guided by the throughput cost model
to partition and map applications onto network processors automatically. This
algorithm also manages hardware resources (e.g. processors and threads) and
handles special hardware constraints (e.g. the limited size of control store allowed
limits instructions for each task). Third, we have implemented and evaluated our
partitioning and mapping approach on a real network processor system.

The rest of this paper is organized as follows. Section 2 introduces back-
ground on the Intel IXP network processors and the features of our domain-
specific programming language, Baker. Section 3 states the problems of creation
and mapping. Section 4 presents our throughput cost model and describes a
practical heuristic algorithm for task creation and mapping. Section 5 evaluates
the performance of three network applications using different heuristics in com-
parison to our proposed one. Section 6 covers the related work, and then we
conclude this paper in Section 7.

2 BACKGROUND3

The Intel IXP network processors are designed for high-speed packet process-
ing[2][3][4]. We briefly introduce the architecture of a representative one from
Intel IXP network processors, Intel IXP2400. IXP2400 is composed of an Intel
XScale core (XSC) for control plane processing, such as route table mainte-
nance and system-level management functions, and eight 32-bit multi-threaded
MicroEngines (MEs) for data plane processing that can process critical packet
processing tasks at a high rate.

There are eight hardware thread contexts available in each ME, and they
share the same execution pipeline. Each ME has a limited control store(4K in-
structions) to hold the program instructions that the ME executes. Intel IXP2400
has a four-level memory hierarchy: Local Memory, Scratchpad, SRAM and DRAM,
which have capacities that increase proportionally to access latencies. However,
the MEs have no hardware caches because of little temporal and spatial locality
in network applications and the desire to avoid non-deterministic performance
behavior. Each of the four memory levels is designed for different purposes. In
particular, DRAM is used to hold the large packet data because of its fast direct
communication channel to network interfaces and also because it has the largest
capacity.

There have been much research recently

Fig. 1. A simple example of Baker
application

on programming the Intel IXP network
processors[2][10][11][19][21]. Various pro-
gramming languages have been proposed,
and most of the evaluations discussed per-
formance issues[10][11], e.g. NP-Click, a
programming model for the Intel IXP1200,
shows a IPv4 router written in NP-Click
performs within 7% of a hand-coded ver-
sion of the same application. We use the
Baker[21] programming language in our
study. Baker is a dataflow language de-
signed specifically for network application
development. Applications written in Baker
are organized as a dataflow graph start-
ing from a receiver (Rx) and ending at
a transmitter (Tx). Actors in the graph
are packet processing functions (PPFs),
which are wired with communication chan-
nels.

Figure 1 shows the dataflow graph and
code snippets of a simple IPv4 forward-
ing application. A PPF contains C-like
code that performs actual packet process-

ing tasks. A PPF typically consists of a few functions and is a logical processing
stage in a whole application. Packets enter and exit a PPF through the two re-
3 We present the essential background information here. Interested readers may refer

to [3][21] for more details.

spective communication channel endpoints. A channel can be implemented in a
efficient way, and it only carries a packet handle instead. PPFs are programmed
with the assumption that they could run in parallel with other PPFs or with
same copies running as multiple threads.

Baker also imposes several language restrictions to simplify code generation,
e.g. recursion within a PPF is not permitted. Baker does not support recursion
for two reasons: our survey of network applications indicates recursion is not
required; and recursion would complicate and add overhead to runtime stacks
on processors with heterogeneous memories.

3 PROBLEM STATEMENT

A network application can be represented as a directed data-flow graph where
vertexes are composed of all of the PPFs as Figure 1 shows. An edge of the graph
is defined as a channel that a PPF transfers packet data to another PPF. An IXP
network processor includes multiple MEs and one XScale core. As stated earlier,
each ME has a limited, fixed size of available control store. After processing,
the resulting application is a list of tasks represented as T : t1 . . . tp. Each task is
executed on one or multiple processors of IXP. If we want to map ti to an ME,
the number of instructions in a task ti must be equal to or less than the size of
ME’s control store. Hence the mapping results are represented as (ti, qi) pairs,
where ti is a list of PPFs in the task and qi is the set of processors on which ti is
executed. In our programming model, an ME can run only one task and a given
task can be executed on one or multiple MEs. It is because much complexity of
compiler backend is required to support multiple tasks on one ME, e.g. register
allocation should split and allocate the registers of one ME according to different
needs of those tasks. We can also extend our approach by considering threads in
mapping strategy if multi-tasks are supported in the compiler backend.

We can apply various optimizations and actions to increase throughput.
DRAM memory bandwidth is a precious resource on the IXP network proces-
sors due to the long latency in DRAM. We found that no more than two wide
DRAM accesses (64B width) can be allocated to process each packet if we want
to achieve the high throughput on IXP2400. Packets are stored in DRAM and
the MEs have no cache, so we need to minimize the number of packet accesses for
each processed packet. Unfortunately, we could incur additional DRAM accesses
when communicating packets between pipelined tasks. For each task mapped to
a processor, it must load packet header data from DRAM at its input channels
and if the task modifies the packet header, it must write the changes back to
DRAM before sending the packet to its output channels. The increased commu-
nication cost hinders the overall system throughput. Thus, we can reduce the
communication cost by grouping two tasks into one and then running the new
task on one processor.

As another fundamental property of pipelined tasks, if one task in a pipeline
runs much more slowly than the others, the throughput of the pipelined tasks is
determined by the progress of the slowest task. In this situation, this task can

be duplicated to run on more MEs and hence different packets can be processed
in parallel by different MEs to improve the throughput. Both grouping and
duplication play important roles to achieve high throughput in our algorithm.
Therefore, we apply both grouping and duplication to address the automatic
task creation and mapping problem.

4 OUR APPROACH: THROUGHPUT-DRIVEN
PARTITIONING and MAPPING

We have developed a cost model to estimate system throughput and to guide the
proposed partitioning and mapping algorithm. PPF acts as the smallest unit of
application and the modularity of Baker provides an advantage for partitioning
and mapping. As shown in Figure 2, the framework of our approach is composed
of two major components: the Throughput Cost Model, and the Partitioning
and Mapping Coordinator. The Partitioning and Mapping Coordinator iterates
a number of times before settling on a final partition and mapping. The coor-
dinator can choose to group or duplicate tasks. After selecting an action and
updating the task list, the throughput cost model is queried to see whether the
action benefits the throughput. If it is shown that the action does not benefit
throughput, the coordinator will cancel the action, roll back all of the changes,
and continue to the next iteration. We collectively call this a Throughput-
driven Partitioning and Mapping (TDPM) approach.

Fig. 2. The framework of our approach

The Partitioning and Mapping Coordinator also includes a code size model to
estimate the number of instructions for each task to ensure that the fixed control
store limit of the ME will not be exceeded. If the task has more instructions than
the control store limit, it will abort when the task is loaded into the ME. The
code size model estimates the number of static instructions from the intermediate
representation of the application program. When two tasks are grouped together,
the size of the newly created task must be recomputed. If the size of the newly
created task is larger than the size of the ME’s control store, the grouping action
will be canceled and the changes will be rolled back.

In the rest of this section, we will illustrate how throughput will be affected
by different actions using two examples and then describe our throughput cost

model in detail. We then show that obtaining an optimal partitioning and map-
ping solution is an NP-hard problem. Finally, we will present our polynomial-
time algorithm that is both practical and effective for the problem that we are
addressing.

4.1 Illustrating Examples

frsp is the average response time

Fig. 3. Execution models for 4 tasks
and 4 MEs on (a) linear chain of tasks
and (b) non-linear chain of tasks

of each task in processing one packet,
including both the execution and com-
munication costs4. λ is the average in-
put packet rate for a task. Without
loss of generality, we illustrate through-
put using two examples of four tasks
running on four MEs in Figure 3. The
length of each bar stands for the rela-
tive response time of the correspond-
ing task. The number on a bar iden-
tifies the packet, and the same num-
ber refers to the same packet. In the
linear chain of tasks in Figure 3(a),
task-D has the longest response time
frsp

D .Thus, the total system through-
put is determined by task-D since it
processes fewer packets than other tasks
during the same period. The overall
throughput can be approximated as
the reciprocal of the maximum frsp

(1
maxti∈T frsp

i
). There are many prior

works that use similar models to esti-
mate throughput for linear chains of

tasks [13][14].
This framework does not hold for the applications that do not form a linear

chain of tasks, like the one shown in Figure 3(b). In this dataflow graph of
tasks, after completing task-A, half of packets go to task-B and the other half
go to task-C. The input packet rates of different tasks are λA = 2 × λB =
2 × λC = λD. Let us assume that the response time of the four tasks has the
relation of frsp

A = frsp
B < frsp

D < frsp
C < 2 × frsp

D . Since task-C has the largest
response time, the simple throughput model for the linear chain case will derive
the overall throughput based on task-C. However, in this dataflow graph, the
throughput should be determined by task-D, not task-C. This is because both
ME2 and ME3 are partially idle during the interval between the arrivals of two
successive packets, while ME4 is always busy. The utilization factor frsp × λ is
introduced to depict how busy each processor is [17][18]. When a task has the
largest utilization factor, the processor allocated to the task is the busiest. Such
a processor dominates the system throughput because packets are waiting in the
4 We use the term response time to differentiate with the execution cost. However, we

notice that it has a different meaning from that of prior works.

processor’s input queue. Therefore improving the overall throughput depends
on minimizing the utilization factor instead of minimizing the response time of
each task. This model also covers the cases of linear chain of tasks, because the
utilization factor is proportional to response time when the input packet rates
of all of the tasks are equal. In summary, we approximate the throughput of the
dominant (or the slowest) task in our model as the reciprocal of the maximal
utilization factor for all tasks on MEs, i.e. 1

maxti∈T (frsp
i ×λi)

.
4.2 Throughput Cost Model

Suppose we have n available MEs in a given hardware configuration, with p the
number of stages (normally the number of final tasks) in the processing pipeline.
We approximate our system throughput (H) with the formula below:

H = k × bn
p
c if n ≥ p

k is the average throughput of the dominant (or the slowest) task in a given
partition of the application, and it is 1

maxti∈T (frsp
i ×λi)

. If n is larger than or
equal to p, we can create bn

p c copies of the packet processing pipeline so the
throughput can be improved by bn

p c times. When n is less than p, some tasks
will be assigned to the XScale core and it requires a different throughput model.
Since the throughput of the XScale core is rather low, we then apply grouping
to reduce the number of tasks continually until the condition is met. Thus,
this is not the case that this paper is focusing on. From this model, it should
be clear that p needs to be minimized and k needs to be maximized at the
same time to maximize the overall throughput. However, these two factors often
impose conflicting requirements. If we try to reduce p, the PPFs may be grouped
into a smaller number of tasks. However, this tends to increase the number of
executed instructions and consequently the response time, of the slowest task,
which reduces k. On the other hand, if we try to increase k, we can duplicate the
slowest task or avoid grouping many PPFs into a given task. In either case, more
MEs must be made available to hold all of the tasks, thus increases p. Therefore,
a balance must be achieved to get the minimal p and maximal k that can result
in the best system throughput.

p can be easily computed by tracking the number of tasks created. k is
more complicated to compute. It must account for the effect of multi-threading
on each ME, task duplication, and various kinds of costs associated with the
response time of the slowest task. Thus, k depends on multiple factors: duplica-
tion factor(d), number of threads(γ), input packet rate(λ), and frsp core , where
frsp core is the average response time of the task for each packet without dupli-
cation and with single-threaded execution on one processor.

Duplication of the slowest task can reduce λ in k linearly because packets
can be processed by multiple MEs independently. Hence, k is proportional to
the duplication factor(d) in our model. Multiple hardware threads on a given
processing element also affect frsp in k because multi-threading can hide memory
latency, communication cost, synchronization cost, etc. A precise model will

depend on the balance between computation and these costs. In our model, we
approximate the benefit of multi-threading optimistically by scaling k with the
value of γ.

After including the effect of duplication and multiple threads, k is modeled
as: k = γ

maxti∈T (frsp core
i ×λi÷di)

. The input packet arrival rate λ is computed
from the input packet trace of the Profiler phase. The Profiler also provides the
frequency of executing each node. The four remaining critical components are
computation cost, communication cost, memory access latency and synchroniza-
tion cost. frsp core is modeled as a combination of these four critical components.
The computation cost depends on frequency of each computation node and the
latency for executing the instructions of the computation node. The memory
access latency is computed from the memory access frequency, the size of data
accesses, and the latency for accessing a specific memory level. The communica-
tion cost is derived from the invocation frequency, the amount of data transferred
on each channel, and the communication latency. We calculate the communica-
tion cost by modeling the number of DRAM accesses since we need load and
store packets from DRAM, although we have a fast runtime implementation
of a channel to transfer packet handles between different processors. When we
group two tasks into one, we reduce the communication cost between the two
tasks since packets can typically be cached in a much faster way within the
same processor. For the synchronization cost, we found that it depends both on
the acquire, release and critical section costs of each lock and the number of
threads involved. When tasks are duplicated, the synchronization cost must be
recomputed because the number of threads involved increases.

4.3 Optimal Partitioning and Mapping

Using our throughput cost model, an optimal algorithm compares throughput
for all of the grouping and duplication possibilities and derives the partition-
ing and mapping configuration with the best throughput. A large scale network
application can be composed of a large number of PPFs. Without considering
grouping, we can get the optimal mapping in O(nm) time for m PPFs on mul-
tiple processors, which include n MEs and one XScale core. Each processor is
assigned to the slowest task which can be computed in O(m) time by getting
the largest utilization factor among m tasks. There are n + 1 processors, and
if there is not enough MEs, we will assign the remaining tasks to the XScale
core, so the optimal mapping without grouping is determined at O(nm) time.
Duplication is already considered in this case since one task can be assigned
to multiple processors, which means that the task is duplicated multiple times.
With grouping, the problem becomes more complicated and resembles a tradi-
tional clustering problem[22][23]. Just as a variation of a traditional bin packing
problem, our problem attempts to maximize the throughput for each task and
also packs maximal PPFs into each task to minimize the number of tasks. Thus,
to find optimal partitioning and mapping is also an NP-hard problem because
the traditional bin packing problem has been shown as NP-hard[24].

4.4 Heuristic Partitioning and Mapping Algorithm

Because finding an optimal partition and mapping of an application is NP-hard,
we propose an iterative heuristic algorithm driven by our throughput cost model.
This algorithm for the Partitioning and Mapping Coordinator is described in
Figure 4.

Fig. 4. The Framework of Practical Partitioning and Mapping Algorithm

This heuristic algorithm is primarily aimed at reducing communication cost.
It first identifies the critical path of an application from statistics collected by
a Profiler phase. Following that, we initialize new tasks with each PPF individ-
ually assigned to one task. Grouping and duplication for non-critical tasks is
skipped because those tasks will simply be mapped to the XScale core. For all of
the critical tasks, we then choose between duplication and grouping by analyzing
the utilization factor of each task and the usage of hardware resources in the
Choose Action step. We favor grouping except when task stages are imbalanced
and there are available MEs for duplication. In the Choose Best Candidate step,
we choose the best candidate according to the selected action. For grouping, the
best candidate is chosen according to the benefit, e.g. the reduced communication
cost between tasks. We build a candidate list prioritized by the reduced commu-
nication cost computed at initialization. The reduced communication cost can
be estimated from channels that can be replaced by direct function calls. After
partitioning, we are also required to ensure that there is no recursion within each
task. Some channels replaced by calls may introduce recursion into the program,
so we disallow those replacements in our algorithm. For duplication, the best
processing candidate is the task with the largest utilization factor.

After choosing the action and a candidate, the candidate has to pass two
additional checks before the action can be committed. The first check consid-
ers hardware constraints (e.g. whether the static instruction size of the task fits
within the control store of an ME by the code size model). The second check
evaluates the performance impact (i.e. whether the throughput increases or not).
If either of two checks fails, we will abort the action and look for another ac-
tion and candidate. This algorithm iterates until all tasks are examined. The

performance check in the algorithm simply uses the results of the throughput
cost model. In the Update Tasks step, we update the task list and candidate list
when the tasks are changed. In the end, we map the final partitioned tasks to
the heterogeneous processors by running critical tasks on MEs and non-critical
tasks on the XScale core. In this mapping step, tasks are sorted according to
their computed utilization factors. We then map tasks to MEs and the XScale
core in a descending order.

To partition and map m PPFs to n MEs and one XScale, the heuristic
algorithm iterates at most n+m times because the maximum possible groupings
is m and the maximum times of duplications is n. We only spend O(1) to choose
the best candidate because the candidate list is ordered and the largest utilization
factor is always tracked. The complexity of computing the candidate list during
initialization is O(m2) since the candidate list can hold m2 entries for every
possible pair of tasks. We update the candidate list in O(m) time because we
change at most m entries. Hence, the total complexity for this algorithm is
O(m(n + m)).

5 EXPERIMENTAL RESULTS AND EVALUATIONS

We have implemented our proposed throughput-driven partitioning and map-
ping approach in ORC based on our language, Baker. The experiments were
conducted on an IXP2400 network processor, which has eight MEs and one XS-
cale core. Two of the MEs are reserved for the packet receiver and transmitter
respectively. Thus six MEs are available for each application.

We use three typical packet processing applications for evaluation. They
are kernel applications for high-end network processors often used in network
routers: L3-switch, MPLS, Firewall.

We experiment under different configurations by partitioning and mapping
these three applications using different heuristics to evaluate our approach. The
baseline configuration is marked as Base, which shows the worst-case scenario
when all of the tasks are mapped to the XScale core. Other configurations are
evaluated by taking additional factors, such as resource constraints, communi-
cation cost, and critical paths differentiation, into consideration. Configuration
RES considers the control store limitation, hardware resources, and other costs
except for communication cost. In this configuration, we never group any pair
of critical tasks to reduce communication cost, but we can duplicate tasks and
map them to MEs. Configuration COMM uses a greedy algorithm to reduce
communication cost and performs simple resource management, e.g. duplicat-
ing all tasks equally. It also handles the control store limitation, but it does
not consider other costs. Configuration TDPM-S is a simplified version from
our throughput-driven partitioning and mapping approach. This version does
everything in our approach except for differentiating between non-critical and
critical paths. Configuration TDPM-all is our full approach. We evaluate the
benchmarks using the 3 Gbps packet line rate with the minimum packet size of

64B in Figure 5. The X-axis shows the number of available MEs, and the Y-axis
shows the forwarding rate, which is the key performance metric.

In Figure 5, configuration Base re-

Fig. 5. Performance of three bench-
marks under different configurations

ceives a very low performance when
all of the tasks are mapped to the XS-
cale core. Configuration RES always
performs better than the Base config-
uration. This is because configuration
RES manages resource better than Base
and can map the critical tasks to MEs.
This shows the importance of resource
management. For the COMM config-
uration, the curves for MPLS and L3-
Switch are close to that of the Base
configuration on a small number of MEs
because critical tasks are mapped to
the XScale core when the number of
available MEs is smaller than what is
needed. For MPLS, COMM typically
has much better performance than RES
because it reduces much of the com-
munication cost that hinders the over-
all throughput. Certain compiler opti-
mizations (e.g. packet caching and in-
struction scheduling) become more ef-

fective when the scope of a task increases (i.e. includes more instructions). How-
ever, the greedy method of COMM consistently achieves worse performance than
our proposed approach TDPM-all for MPLS and L3-Switch. There are several
reasons for the poorer performance. One reason is that configuration COMM
considers only communication cost and does not obtain good load balancing,
which causes inefficient resource usage. As such, it duplicates the faster tasks in-
stead of slower tasks. Another reason is that COMM may combine non-critical
code together with critical tasks, which could have adverse effects on certain tra-
ditional optimizations, e.g. increasing the register pressure and leading to more
spill code. The Firewall benchmark is an exception. On this application, COMM
shows little difference on performance compared to configuration TDPM-S and
TDPM-all because all of the tasks of Firewall are critical.

Configuration TDPM-all performs better than configuration TDPM-S for
MPLS and L3-Switch on larger numbers of MEs. This result shows the im-
portance of managing hardware resource effectively by differentiating between
non-critical and critical tasks and making more MEs available for critical tasks.
For these three benchmarks, configuration TDPM-all achieves the same opti-
mal partitioning and mapping as the optimal solution. In general, configuration
TDPM-all provides the best performance and scalability for all three applica-
tions. It demonstrates that our throughput cost model is effective in modeling

key factors in throughput and that our partitioning and mapping algorithm
produces efficient application tasks for the IXP network processors.

Table 1. Memory accesses for benchmarks

To further understand where the performance benefit comes from, we mea-
sure the number of memory accesses for each packet in an application under
major configurations in Table 1. We exclude configuration Base because the XS-
cale core is not designed for fast packet processing, and hence memory accesses
on the XScale core have much worse performance compared to MEs. From the
results in Table 1, we can see that COMM can effectively reduce the number
of DRAM accesses compared to RES, where most of the communication cost
is attributed to the DRAM accesses mainly used to communicate packet in-
formation between tasks. TDPM-S and TDPM-all both reduce the number of
SRAM accesses in application data, and the reduction is particularly effective
on L3-Switch. However, in contrast to DRAM accesses, the reduction in SRAM
accesses results in only a slight performance improvement.

We found that typically the best performing partition for our applications
groups all of the critical code of an application into one task and leave as many
MEs available for duplication as possible. The reason is that even with balanced
pipelined tasks, the communication cost used to communicate among multiple
tasks often has a large overhead from DRAM accesses, which degrades the overall
throughput5. In Table 2, we show that we achieve the 100% forwarding rate for
OC-48 with the minimum packet size of 64B on IXP2400 for all three benchmarks
with our approach. OC-48 is the targeted best performance for all applications
including hand-tuned code on IXP2400. We show the forwarding rates on dif-
ferent numbers of MEs used till the forwarding rate reaches 100%(only use four
MEs among six available MEs). The performance is achieved by including not
only the partitioning and mapping techniques presented here but also all other
optimizations [1]. The good scalability (i.e. approximately a linear speedup) of

5 It is a future work to investigate ways of using a less expensive communication
mechanism than DRAM accesses, e.g. caching packet data in Next-Neighbor registers
for an adjacent ME.

Table 2. Overall performances of benchmarks

MEs L3-Switch Firewall MPLS

1 31.48% 30.79% 29.42%
2 62.66% 61.46% 58.82%
3 93.47% 91.87% 88.19%
4 100% 100% 100%

all applications shows that even in the presence of aggressive optimizations, our
cost model and algorithm can effectively deliver high performance.

6 RELATED WORK

There is a significant body of prior work in partitioning and mapping for high
throughput [13][14][15][16][19][20][22]. Choudhary et al. [15] addressed the prob-
lem of optimal processor assignment, assuming that no communication cost or
communication cost can be folded into computation cost. Our experiments show
that an effective model of communication cost is an important factor in an ac-
tual throughput model. Subhlok and Vondran [13][14] introduced methods to
perform optimal mapping of multiple tasks onto multiple processors while tak-
ing communication cost into consideration. However, these works focus only on
how to partition simple applications composed of linear chains of tasks onto
multi-processors. The SMP platforms studied in these work have dramatic dif-
ferences from IXP network processor. For example, in IXP network processors,
there is no cache for the four levels of memory hierarchies.

The IXP-C compiler [16][19] and the Pac-Lang project [20] have also been ex-
ploring solutions of partitioning applications for network processors. In contrast
to the parallel program that we use in our system, the IXP-C compiler assumes
that users develop large sequential programs. Thus, the IXP-C compiler is re-
sponsible for splitting sequential programs into small tasks and then duplicating
them to maximize throughput. The compiler enumerates different partitions to
find a solution that can achieve the performance goal specified by users, but
does not attempt to get the best overall throughput. We demonstrate a differ-
ent approach to achieve high throughput on network processors. The Pac-Lang
project currently expects the user to specify in a script file how the compiler
should split, group, and duplicate an application. The primary advantage of this
approach is that the program logic is clearly separated from how it is compiled
for a specific architecture. However, this approach is not fully automatic. Sig-
nificant knowledge of the processor architecture is required to write and tune a
script file.

7 CONCLUSIONS

This paper has presented a throughput cost model, which can effectively model
those key factors affecting throughput, and a polynomial-time algorithm guided

by the cost model to partition and map applications onto the Intel IXP network
processors. The key idea in maximizing the overall throughput is to minimize
the number of task stages in the application processing pipeline and maximize
the average throughput of the slowest task at the same time. Our algorithm
uses effective heuristics for grouping, duplication, and mapping to achieve supe-
rior performance while handling hardware constraints and managing hardware
resources.

Compared to other simpler heuristics, the experimental results show that
our approach is effective in achieving the best throughput. For all three applica-
tions, we were able to achieve the 100% packet forwarding rate for OC-48, which
is the targeted performance for all applications including hand-tuned code on
IXP2400. We also observe that reducing communication cost and conducting
effective resource management are both important in achieving high throughput
on the IXP network processors.

We conjecture that many of the partitioning and mapping techniques devel-
oped in this work are applicable to additional and more complex applications
(such as streaming and multimedia applications) on other multi-core, multi-
threaded processor architectures.

8 ACKNOWLEDGMENTS

We would like to thank all people who were involved in the project, especially
Jason H. Lin, Raghunath Arun, Vinod Balakrishnan, Stephen Goglin, Erik John-
son, Aaron Kunze, and Jamie Jason at Intel Corporation, and the collaborators
in the Institute of Computing Technology (ICT), CAS and University of Texas
at Austin. We also appreciate the reviewers for their helpful feedback.

References

1. Michael K. Chen, Xiao-Feng Li, Ruiqi Lian, Jason H. Lin, Lixia Liu, Tao Liu and
Roy Ju. Shangri-la: Achieving high performance from compiled network applica-
tions while enabling ease of programming. In Proceedings of the ACM SIGPLAN
2005 Conference on Programming Language Design and Implementation (PLDI’05),
Chicago, IL, June 2005

2. Lal George and Matthias Blume. Taming the IXP Network Processor. InProceedings
of the ACM SIGPLAN 2003 Conference on Programming Language Design and Im-
plementation (PLDI’03), San Diego, CA, June 2003.

3. Intel Corporation. Intel IXP2400 Network Processors. http://www. in-
tel.com/design/network/products/npfamily/.

4. Erik J. Johnson and Aaron Kunze. IXP2400/2800 Programming: The Complete
Microengine Coding Guide. Intel Press, Hillsboro, OR, April 2003.

5. Roy Ju, Sun Chan, Chengyong Wu. Ruiqi Lian and Tony Tuo. Open Research
Compiler for Itanium Processor Family. In Proceedings of 34th Annual International
Symposium on Microarchitecture (MICRO-34), Austin, TX, December 2001.

6. Roy Ju, Pen-Chung Yew, Ruiqi Lian, Lixia Liu, Tin-fook Ngai, Robert Cohn and
Costin Iancu. Open Research Compiler (ORC): Proliferation of Technologies and

Tools. In Proceedings of 36th Annual International Symposium on Microarchitecture
(MICRO-36), San Diego, CA, December 2003

7. Network Processing Forum. IP Forwarding Application Level Benchmark.
http://www.npforum.org/techinfo/ipforwarding bm.pdf.

8. Network Processing Forum. MPLS Forwarding Application Level Benchmark and
Annex. http://www.npforum.org/techinfo/MPLSBench mark.pdf.

9. E. Rosen, A. Viswanathan and R. Callon. RFC 3031 - Multiprotocol Label Switching
Architecture. IETF, January 2001.

10. Niraj Shah, William Plishker and Kurt Keutzer. NP-Click: A Programming Model
for the Intel IXP1200. In 2nd Workshop on Network Processors (NP-2), Anaheim,
CA, February 2003.

11. Niraj Shah, William Plishker and Kurt Keutzer. Comparing Network Processor
Programming Environments: A Case Study. In 2004 Workshop on Productivity and
Performance in High-End Computing (P-PHEC), HPCA-10, Madrid, Spain, Febru-
ary 2004.

12. Tammo Spalink, Scott Karlin, Larry Peterson and Yitzchak Gottlieb. Building
a Robust Software-Based Router Using Network Processors. In Proceedings of the
18th ACM symposium on Operation Systems Principles (SOSP’01), Banff, Canada,
October 2001.

13. Jaspal Subholk and Gary Vondran. Optimal Latency-Throughput Tradeoffs for
Data Parallel Pipelines. In Proceedings of the 8th ACM symposium on Parallel Algo-
rithms and Architectures (SPAA’96), Padua, Italy, 1996

14. Jaspal Subholk and Gary Vondran. Optimal Mapping of Sequences of Data Par-
allel Tasks. In Proceedings of the 5th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming (PPOPP’95), Santa Clara, USA, 1995

15. A.N. Choudhary, B. Narahari, D.M. Nicol, and R. Simha. Optimal Processor As-
signment for a Class of Pipelined Computations. In IEEE Transactions on Parallel
and Distributed Systems, April 1994

16. Long Li, Bo Huang, Jinquan Dai and Luddy Harrison. Automatic Multithreading
and Multiprocessing of C Programs for IXP. In Proceedings of the 10th ACM SIG-
PLAN symposium on Principles and Practice of Parallel Programming (PPOPP’05),
June 2005

17. R.B. Copper. Introduction to Queueing Theory. Second Edition, New York: North
Holland, 1981

18. Leonard Kleinrock, Queueing Systems Vol.1: Theory, Wiley, 1975
19. Jinquan Dai, Bo Huang, Long Li and Luddy Harrison. Automatically Partition-

ing Packet Processing Applications for Pipelined Architectures. InProceedings of the
ACM SIGPLAN 2005 Conference on Programming Language Design and Implemen-
tation (PLDI’05), Chicago, IL, June 2005.

20. Robert Ennals, Richard Sharp and Alan Mycroft. Task Partitioning for Multi-
Core Network Processors. In Proceedings of International Conference on Compiler
Construction (CC), 2005

21. Michael Chen, E.J. Johnson and Roy Ju. Tutorial: Compilation system for
throughput-driven multi-core processors In Proceedings of 37th Annual International
Symposium on Microarchitecture (MICRO’37),Portland, OR, December 2004.

22. V. Sarkar. Partitioning and scheduling parallel programs for execution on multi-
processors. MIT Press, October 1989.

23. Apostolos Gerasoulis, Tao Yang. A Comparison of Clustering Heuristics for
Scheduling DAGs on Multiprocessors. J. Parallel Distrib. Comput. 1992

24. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness, W.H. Freeman. 1979

