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1 Introduction

Speech is an essential part of human to human communication. It is perhaps the
most natural way for people to exchange information with each other. Therefore,
if we want machines that are able to communicate with us via natural speech
communication, we need robust and intelligent methods for speech recognition,
speech understanding and speech synthesis.

Speech recognition research in the past has mainly focused on well defined
recognition tasks. These tasks had a restricted vocabulary and task specific
stochastic or rule-based grammar. The utterances used for evaluation were
mostly read by native speakers under perfect acoustic conditions. Main focus
was laid on phoneme based word recognition. Near perfect recognition results
have been reported for such tasks (under laboratory conditions) already more
than a decade ago [Young, 1996).

Such a system will, however, not work well for spontaneous, conversational
speech in applications like dialog systems, call centre loops or automatic tran-
scription systems for meetings. This is due to various non-verbal sounds and ir-
regularities encountered in spontaneous speech. These include disfluencies (filled
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and unfilled pauses, corrections and incomplete words), interjections (e.g. laugh-
ing, crying, agreement/disagreement: “aha/ah ah”), human noises (e.g. yawning,
throat clearing, breathing, smacking, coughing, sneezing) and other sounds like
background conversation or noise [Ward, 1991].

Read speech conveys only the information contained in the spoken words
and sentences. In contrast, spontaneous speech contains more extralinguistic
information “between the lines”, including irony, speaker emotion, speaker con-
fidence and interest in conversation [Schuller et al., 2007]. Next to prosodic fea-
tures [Kompe, 1997], disfluencies and non-verbal clues such as filled pauses,
laughter or breathing reveal much about this extralinguistic information
[Schuller et al., 2007]. An automatic spontaneous speech recognition system will
only be able to detect information carried on the verbal level. For understand-
ing the extralinguistic information carried by spontaneous speech, non-verbal
information is vital [Campbell, 2007], [Decaire, 2000}, [Lickley et al., 1991].

A speech recogniser that is able to understand the meaning of spoken lan-
guage to some extent, must be capable of spotting non-verbal sounds and
identifying their type. In contrast to some previous work, which aimes at de-
tection of non-verbal sounds in order to improve robustness of speech recogni-
tion [Schultz and Rogina, 1995], this paper deals with the explicit identification
of the type of non-verbal vocalisation. [Schultz and Rogina, 1995] only reports
on increase in Word Accuracy, and not on correct identification of non-verbal
sounds.

The article is structured as follows: in section 2 existing work is discussed,
in section 3 details on the database are provided, in section 4 the proposed
methods are introduced before results and conclusions in section 5 and section
6, respectively.

2 Existing Work

Various work exists on automatic recognition of few types of Non-Verbals.
Covered are especially filled pauses and laughter [Kennedy and Ellis, 2004],
[Truong and van Leeuwen, 2005].

Filled pauses. A filled pause detection system was introduced by M. Goto et al.
in [Goto et al., 1999]. A quick summary of the technique is given in the follow-
ing: the system is able to spot two hesitation phenomena, namely filled pauses
and word lengthening, in a continuous stream of spontaneous speech. The basic
assumption is that hesitations are uttered when the “speaking process is waiting
for the next speech content from the thinking process” and thus the speaker can-
not change articulatory parameters in that instant. A voiced sound with nearly
constant fundamental frequency (Fp) and minimal spectral envelope deformation
over time will be produced. The system detects such voiced sounds with minimal
variation in the articulatory parameters, which it assumes to be hesitations. A
recall rate of 84.9% percent and a precision rate of 91.5% is reported for the
spotting of hesitations.
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Laughter. For laughter detection and especially synthesis of laughter various
papers have been published by N. Campbell et al. [Campbell et al., 2005]. The
basic approach they take is the following: an excessive study about various types
of laughter has been conducted. It has been found that laughter consists of
four distinguishable basic segments, namely voiced laugh, chuckle, ingressive
breathy laugh, and nasal grunt. Hidden-Markov Models (HMM) are trained on
these laughter segments. A language model, defining in what sequence laughter
segments occur, is further given. A success rate of 81% compared to hand labelled
data is obtained in detecting the correct laughter segments. 75% success rate is
reported when using the grammar to detect laughter type based on the detected
laughter segments. This approach is very suitable for detecting laughter types,
once a speech/ laughter discrimination has been performed. The latter, however,
is not described in that paper.

Another, quite recent, approach [Knox and Mirghafori, 2007] is presented by
M. Knox. Experiments are carried out on a large English Meeting room database
(ICSI Meetings database). Features from 25ms frames with a forward shift of
10ms are extracted. 75 consecutive frames are fed as input to a neural network,
which assigns a target (speech/laughter) to the centre frame. The output of sev-
eral such neural networks, operating on different feature sets is again fed into
a combiner neural network to produce the final output. In this way a target
is assigned to every frame. An Equal-Error Rate of 7.9% is achieved. The pa-
per investigates several feature sets whereby Mel-Frequency Cepstral Coefficient
(MFCC) based ones give the best results.

The detection of other sounds, such as breathing, yawning or throat clicking
is yet quite unexplored. Further, no work is known to us that approaches the
problem in a strictly data-driven manner, independent of the type of non-verbal
vocalisation to be detected.

In this paper we will therefore focus on the data-driven detection of non-
verbal sounds in general. Various dynamic and static classification methods for
discriminating between different classes of isolated Non-Verbals are discussed
and evaluated.

3 Database

In our experiments we use a database containing 2.9k isolated Non-Verbals ex-
tracted from the Audio-Visual Interest Corpus (AVIC) [Schuller et al., 2007].
The AVIC database contains human conversational speech of 21 subjects (10 of
them female, 3 of them Asian, others European with balanced age classes) dis-
cussing in English with a product presenter who leads them through a commer-
cial presentation. Voice data is recorded by a headset, and a condenser far-field
mic (approx. 50cm distance) at an audio sampling rate of 44.1kHz with 16Bit
quantisation. All presenter comments are not included in the extracted segments
because this would perturb the balanced distribution of number of utterances
among speakers. Thus, the total recording time for males resembles 5:14:30h with
1,907 turns, for females 5:08:00h with 1,994 turns, respectively. The lengths of
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the utterances range from 0.1s to 10.9s with 2.1s on average. Apart from five
levels of interest, the spoken content including non-verbal interjections on a word
level is transcribed. These interjections are breathing, consent, coughing, hesita-
tion, laughter, long pause, short pause, and other human noise. Tab. 1 shows
the distribution among classes of the Non-Verbals used in the ongoing, whereby
coughing was excluded due to sparse instances. Other human noise was mapped
onto the new class garbage for the following experiments. Further, of the 4.503
extracted Non-Verbals by Forced Alignment, only such having a minimum of
100 ms are kept. Non-Verbals shorter that 100ms have in most cases been incor-
rectly aligned. Moreover, feature extraction and model evaluation on such short
segments is very error prone. The maximum length of occurring Non-Verbals
is 2s. Each turn contains between 0 and 31 words with 4.71 words on average
(silence and Non-Verbals are hereby not counted). Of the 3,901 turns in total,
2,710 contain between 1 and 7 Non-Verbals. Likewise, there is a total of 18,581
spoken words, and 23,084 word-like units including Non-Verbals (19.5%).

Table 1. Distribution of the Non-Verbals in AVIC across the 5 classes

Breathing Consent Garbage Hesitation Laughter TOTAL
452 325 716 1,147 261 2,901

4 Proposed Method

In this section we investigate three different methods for the discrimination be-
tween 5 classes of Non-Verbals, namely Breathing, Consent, Garbage, Hesitation,
and Laughter: Hidden Markov Models (HMM), Hidden Conditional Random
Fields (HCRF), and Support Vector Machines (SVM).

Extensive tests are conducted for HMM in order to find an optimal
configuration (features and model topology) for the task at hand. These are
described in more detail in Sect. 4.1. The HCRF are initialised with the pa-
rameters of corresponding trained HMM, and thus are fully comparable to the
HMM [Gunawardana et al., 2005]. Six feature sets, based on MFCC and PLP
are evaluated in conjunction with the two dynamic classifiers, HMM and HCRF.
For static classification with SVM a large feature set based on acoustic low-level
descriptors (LLD) is used, which has successfully been used in the field of par-
alinguistics [Schuller et al., 2008]. The following sections describe each of the
three methods in more detail.

4.1 Non-verbals Recognition Using HMM

No previous evaluations for the task of Non-Verbals discrimination regarding
HMM topology optimisation have been conducted. Therefore, we must find an
optimal topology for the task. In phoneme based speech recognisers HMM with
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Table 2. Description of the six feature sets for dynamic classifiers (HMM and HCRF)

Set Features Dimension
MFCCp 12 MFCC (1-12) + E + 6 + 86 39
MFCCy 13 MFCC (0-12) + 6 + 66 39
MFCCE™ 13 MFCC (0-12) + 6 + 66 39
(after Cepstral Mean Subtraction)
PLPCCp 12 PLPCC (1-12) + E + 6 1 86 39
PLPCCy 13 PLPCC (0-12) + 6 + 66 39
PLPCCS™ 13 PLPCC (0-12) + 6 + 66 39

(after Cepstral Mean Subtraction)

3 states are used to model phonemes. Non-Verbals can be longer than phonemes
(see Sect. 3) and have more acoustic variation. It can thus be assumed that more
than 3 states are required for Non-Verbals HMM.

One can approach the task of HMM topology optimisation in many ways. An
optimal solution will however only be found if all possible combinations of topol-
ogy parameters for all classes are evaluated. The topology parameters of interest
are: number of emitting states (IV), number of Gaussian mixture components
(M) for each state’s output distribution, and the state transition configuration
(A), i.e. which transitions between which states are allowed. Due to the exponen-
tially large amount of evaluations required for finding an optimal topology, such
exhaustive search is not computable. In order to get an idea of how the HMM
topology and choice of features affects the results, a small set of parameters will
therefore be tested. The results can be used in future work to further optimise
the model topology. The detailed evaluation procedure, including feature and
parameter sets, is described in the following three subsections. Results are given
in Sect. 5.

Feature sets. Six feature sets based on Mel-Frequency Cepstral Co-
efficients (MFCC), and Perceptual Linear Predictive Cepstral Coefficients
(PLPCC) [Hermansky, 1990] are evaluated. An overview is given in Tab. 2. All
features are extracted from frames of 25ms length sampled at a rate of 10ms. A
Hamming window is applied to the frames before transformation to the spectral
domain. Using a Mel filter bank of 26 channels, 13 MFCC, and 13 PLPCC in-
cluding the 0" coefficient are computed. Also, the log-energy E is computed for
every frame. First and second order regression coefficients are appended to all
six feature sets. Cepstral Mean Subtraction (CMS) is applied to one MFCC and
one PLP based feature set. This means, for each cepstral coefficient the mean is
computed over all corresponding coefficients in the input and then subtracted.

HMM topology parameters. Three different types of HMM structure are
investigated: the first being a linear HMM, i. e. a left-right HMM with no skip-
state transitions (only transitions from state n to states n and n+1 are allowed).
The second being a Bakis topology HMM (left-right) with one skip-state transi-
tion (Ngkip = 1), i. e. with allowed transitions from a state n to states n, n + 1
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and n+ 2. The number N of emitting states is varied from 1 to 10. Each number
of states is tested with M =1 and M = 8 Gaussian mixture components. This
results in a total of 40 different sets of model parameters to be evaluated.

Evaluation procedure. The 40 parameter sets introduced in the previous
section are evaluated for all six feature sets independently. Thus, a total of
240 evaluations is conducted. Each single evaluation is performed in a speaker
independent 3-fold stratified cross-validation (SCV). For the SCV, the AVIC
data set is split into three speaker disjunctive parts, each containing data from
one third of the speakers. Parts 1 through 3 are used for testing in folds 1
through 3, respectively. The remaining two parts are used for training. Splitting
by speakers, however, introduces some problems that one must be aware of: the
types of Non-Verbals and the number of Non-Verbals are not equally distributed
among speakers (see Sect. 3 for more details). For example, some speakers are
more fluent or confident and thus produce fewer hesitations. Therefore, among
the folds and the classes in each fold there will be notable differences in the
amount of test data vs. training data. Tab. 3 shows the number of training and
test instances for each fold. HMM with M = 1 are trained in 4 iterations of

Table 3. Number of occurrences of each class in test and training data for each fold

Fold [#] test

Breathing Consent Garbage Hesitation Laughter|Total
1 129 95 126 340 68 758
2 83 88 264 281 100 816
3 240 142 326 526 93 1327
Fold [#] train

Breathing Consent Garbage Hesitation Laughter|Total
1 323 230 590 807 193 2143
2 369 237 452 866 161 2085
3 212 183 390 621 168 1574

Baum-Welch re-estimation [Young et al., 2006]. Models with M = 8 are created
from the trained models with M = 1 by successive mixture splitting, i. e. the
number of mixture components M is doubled three times. After each doubling
of M, 4 re-estimation iterations are performed. One model is trained for each
Non-Verbal. The most likely model is found by Viterbi evaluation. Priors are
integrated by the number of occurrences (in the training set) of the corresponding
class.

A discussion of the results and best topology and feature set combination is
given in Sect. 5.
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4.2 Isolated Recognition of Non-verbals Using HCRF

Hidden Conditional Random Fields (HCRF) have become popular in the
last couple of years. They have been successfully applied to tasks such
as phone classification |[Gunawardana et al., 2005] and meeting segmenta-
tion [Reiter et al., 2007]. They are an extension of the Conditional Random
Fields first introduced by Lafferty et al. [Lafferty et al., 2001].

In this work we use HCRF that are initialised with the parameters of trained
HMM. The HCRF are not trained any further in order to have a direct com-
parison of the two model types. Configurations with N = 1..10 hidden states
and 1 and 8 Gaussian mixture components are examined. Only the feature set
PLPCCYy is investigated thoroughly because the best HMM recognition results
arc reported with this feature set. The same speaker independent 3-fold strati-
fied cross-validation procedure as for HMM is used. The results for classification
of Non-Verbals with HCRF are also given in Sect. 5.

4.3 Isolated Recognition of Non-verbals Using SVM

In this section a completely different approach for discrimination of different
types of Non-Verbals is presented. The previous approach is based on dynamic
models (HMM and HCRF) used in speech recognition applications because such
models can be easily integrated into existing speech recognisers. Yet, alone for
the task of distinguishing the type reliably in a second pass, after segmenting
data into speech and Non-Verbal segments, for example, a static classification
approach can be used.

Features extracted for the dynamic classifiers are sequences of feature vec-
tors x; with a sequence length proportional to the length of the input data. For
static classification only one feature vector x with 622 features is extracted for
each Non-Verbal utterance. The number of features is reduced to D’ = 108 by
a sequential forward floating search correlation-based (CFS) feature selection
step. For computation of the 622 dimensional feature vector the low-level de-
scriptors (LLD) given in Tab. 4 form the basis. Functionals are applied to the
evolution of these LLD over time to obtain time and length independent static
features. Statistical characteristics of LLD such as mean, median, minimum and

Table 4. Acoustic LLD used in computation of static feature vector

Type LLD

Time Signal |Elongation, Centroid, Zero-Crossing Rate

Energy Log-Frame-Energy

Spectral 0-250 Hz, 0-650 Hz, Flux Roll-Off 4+ ¢, Centroid + 6
Pitch Fy (fundamental frequency)

Formants F1-F7 Frequency + 6, BW. + ¢
Cepstral MFCC 1-15 + 6 + 66
Voice Quality|Harmonics to Noise Ratio (HNR)
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maximum position and value, and standard deviation are used as functionals.
These are also computed from first (§) and second order (66) regression coef-
ficients of LLD, to better model LLD change over time. For more information
see [Schuller et al., 2008].

The exact same speaker independent 3 fold partitioning for test and training
as is used for dynamic classifiers in Sect. 4.1 is applied. Basing on previous expe-
rience in [Schuller et al., 2007], Support-Vector-Machines (SVM) trained with a
Sequential Minimal Optimisation (SMO) algorithm are used as the classifier of
choice.

5 Results

Table 5 compares the best results of each feature set. Overall best results are
achieved with the feature set PLPCCE. 80.7% of all instances are classified
correctly when using linear topology HMM with N = 9 emitting states, and
M = 8 Gaussian mixture components. 4 iterations are used for training models
with M = 1. 12 additional iterations are required for models with M = 8.

Table 5. Discrimination between 5 Non-Verbals classes. HMM as classifier. 3-fold
SCV, speaker independent. Best results (accuracies) and model parameters associated
with best result for each feature set. Optimal topology is linear, each, meaning zero
skip-states.

Parameters |MFCCy MFCC;™" MEFCCg|PLPCCy PLPCC™" PLPCCg
Best acc. [%]| 79.5 74.2 e 79.3 73.4 79.7 (80.7")
N 8 7 5 10 9 9

M 8 8 8 8 8 8

PLP based features seem to require more states in the models for good results,
MFCC based features give good results with 8 states. Overall, both feature
kinds lead to similar classification results, so that they may be interchanged, in
whatever way it is required by their application.

Cepstral Mean Normalisation (CMN) has not proven well throughout all
experiments for isolated recognition of Non-Verbals. One explanation for this
phenomenon might be as follows: isolated Non-Verbals are very short (< 2 s).
Computing the mean over the cepstral feature vectors of short segments, which
only contain one uttered sound (such as breathing), more likely leads to a bi-
ased mean, i. e. not the long term mean related to noise or recording location
properties. Subtracting this biased mean leads to loss of information and thus
to lower recognition accuracies.

! This result was obtained by increasing M in steps of 1 instead of doubling M in
each round of mixture increase.
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Overall best results are obtained with the feature set PLPCCy using models
with 8 Gaussian mixture components and linear topology. The Bakis topology
has not proven well. Tab. 6 gives details on the results. Up to now, only 1 and
8 Gaussian mixture components were evaluated. The models with 8 mixture
components are created from the trained models with 1 mixture component by
doubling the number mixture components and applying 4 rounds of re-estimation
after each increase of the number of mixture components. Likewise, only mixture
component numbers M that are a power of 2 can be investigated. To evaluate
the effect of M in more detail, configurations with M = 1 — 16 are analysed on
the winning feature set PLPCC'y using the winning linear HMM topology with
N = 9. The number of mixture components is now increased in steps of 1. After
each step 4 rounds of re-estimation are applied. Fig. 1 visualises the results. The

81

Accuracy [%]
o

78

1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15 16

Number of mixture components [%]

Fig. 1. Discrimination between 5 Non-Verbals classes. HMM as classifier. 3-fold SCV,
speaker independent. Feature set PLPCCgE. N = 9, linear topology. Accuracies ob-
tained with M =1 — 16.

best result is obtained with M = 8 is 80.7% accuracy. With HMM with the
same configuration only 79.7% are obtained when creating models with M = 8
in fewer steps (i. e. by doubling the number of mixture components instead of
increasing it by 1). This shows that more re-estimation iterations during mixture
increasing are beneficial and lead to more accurate models.

Table 6. Discrimination between 5 Non-Verbals classes. HMM as classifier. 3-fold SCV,
speaker independent. Feature set PLPCC'. Selected numbers of states N vs. number
of mixtures M and topology type (linear/Bakis).

[%] correct|] M =1 M =8
linear Bakis linear Bakis

68.4 684 73.7 T73.7
73.5 723 755 748
76.3 744 772 752
770 T48 776 76.1
772 739 T79.7 7778

2z22=z2z
Il
© N o =
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In order to better understand the sources of classification errors, we now take
a look at the confusion matrix. A larger number of confusion matrices has been
produced during the evaluations, however, all show one clear tendency, which can
be seen in the exemplary confusion matrix shown in table 7: most confusions are
related to the garbage model. This is most likely caused by the unspecific nature
of the data in the garbage class and poor labeling. The class includes background
noises (which, for example, have similar spectral characteristics than breathing),
background speech, or speech segments which did not correspond to any word
or Non-Verbal. The latter could be most likely confused with hesitation, which
in practice would not be too wrong. To better model the individual classes of
noise, more than one garbage model and more training data for each of these
classes is required. To assess what the performance could be, if a better garbage
modelling were available (i. e. more specific annotations and/or separate classes
for the individual types of sounds in the garbage class), a test run without the
garbage class has been conducted on the winning feature set PLPCCpg. As
expected, results improve by 5% to 10% in this test run. Using models with 1
mixture component, 89.5% of the Non-Verbals are classified correctly. With 8
mixture components, 92.6% are classified correctly.

Table 7. Confusion matrix: dynamic discrimination between 5 Non-Verbals classes.
3-fold SCV, speaker independent. Sum over all 3 folds. Optimal configuration: feature
set PLPCCE. N =9, M = 8, linear topology. Mixture increase in steps of 1.

[#] classif. as —|garbage hesitation consent laughter breathing
garbage 515 93 22 41 41
hesitation 190 929 14 13 1
consent 28 37 255 3 3
laughter 17 1 2 229 12
breathing 18 2 1 19 412

Unlike the results obtained in [Reiter et al., 2007], the HCRF did not prove
better than HMM for classification of Non-Verbals. The best result for HCRF -
77.8% - is obtained with the configuration that gives best results for IMM: 9
states, 8 mixture components and linear topology.

With SVM 78.3% of the instances are classified correctly in a 3-fold SCV.
However, this again is below the best result, which is achieved with HMM.
Consistent with the results for HMM, the confusion matrix for SVM reveals the
garbage class as cause for most confusions. If these instances are ignored, the
remaining 4 classes can be discriminated with an accuracy of 91.3%.

6 Conclusion

We presented the robust recognition of 5 types of Non-Verbals, herein. Diverse
models and feature-types were outlined and extensively evaluated on the AVIC
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database of spontaneous conversational speech. For discrimination between 4
classes of isolated Non-Verbals accuracies of 92.3% are reported using HMM
as classifier. When an additional garbage class is added the accuracies drop to
80.7%, which is mainly assumed to be due to the unspecific nature of the garbage
class annotations in the AVIC corpus. With SVM and HCRF similar, but slightly
(approx. 2%) lower results as with HMM are observed. An additional advantage
of HMM is their easy integration within a typical Automic Speech Recognition
framework. MFCC and PLP based features were investigated, and lead to similar
results. Addition of the extra low-level features in the HMM framework as used
for static modelling did not result in any further gain.

In future works we will provide results on integrated decoding of Non-Verbals.
Further, approaches for speech /Non-Verbal discrimination based on evolution of
low and mid-level descriptors over time need to be investigated. I. e., tracking
of voice pitch variations, loudness envelopes and rhythm of speech. Also, pa-
rameter optimisation for HMM has to be applied for each class of Non-Verbals,
individually. For example, laughter is more complex than breathing, thus it re-
quires more model parameters. Also, other modelling techniques need to be in-
vestigated such as HMM /SVM hybrids, and Long-Short-Term-Memory (LSTM)
neural networks. Methods for detecting non-verbal vocalisations combined with
speech must be researched. Especially laughter often occurs while a person is
uttering words. It is a great challenge to detect that the person is laughing, and
then detect the spoken content. Speech while laughing is quite different from reg-
ular speech regarding its acoustic properties. Also explicit methods for detection
of disfluencies such as incomplete words, corrections, stuttering or repetitions
must be found as it is not possible to include all combinations of incomplete
words in the dictionary and the language model.
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