Skip to main content

The Algebraic Counterpart of the Wagner Hierarchy

  • Conference paper
Logic and Theory of Algorithms (CiE 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5028))

Included in the following conference series:

  • 1028 Accesses

Abstract

The algebraic study of formal languages shows that ω-rational languages are exactly the sets recognizable by finite ω-semigroups. Within this framework, we provide a construction of the algebraic counterpart of the Wagner hierarchy. We adopt a hierarchical game approach, by translating the Wadge theory from the ω-rational language to the ω-semigroup context.

More precisely, we first define a reduction relation on finite pointed ω-semigroups by means of a Wadge-like infinite two-player game. The collection of these algebraic structures ordered by this reduction is then proven to be isomorphic to the Wagner hierarchy, namely a decidable and well-founded partial ordering of width 2 and height ω ω.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cabessa, J.: A Game Theoretical Approach to the Algebraic Counterpart of the Wagner Hierarchy. PhD thesis, Universities of Lausanne and Paris 7 (2007)

    Google Scholar 

  2. Carton, O., Perrin, D.: Chains and superchains for ω-rational sets, automata and semigroups. Internat. J. Algebra Comput. 7(6), 673–695 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carton, O., Perrin, D.: The Wadge-Wagner hierarchy of ω-rational sets. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 17–35. Springer, Heidelberg (1997)

    Google Scholar 

  4. Carton, O., Perrin, D.: The Wagner hierarchy. Internat. J. Algebra Comput. 9(5), 597–620 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duparc, J.: Wadge hierarchy and Veblen hierarchy. I. Borel sets of finite rank. J. Symbolic Logic 66(1), 56–86 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duparc, J., Riss, M.: The missing link for ω-rational sets, automata, and semigroups. Internat. J. Algebra Comput. 16(1), 161–185 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ladner, R.E.: Application of model theoretic games to discrete linear orders and finite automata. Information and Control 33(4), 281–303 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Martin, D.A.: Borel determinacy. Ann. of Math (2) 102(2), 363–371 (1975)

    Article  MathSciNet  Google Scholar 

  9. McNaughton, R., Papert, S.A.: Counter-Free Automata (M.I.T. research monograph no. 65). MIT Press, Cambridge (1971)

    Google Scholar 

  10. Perrin, D., Pin, J.-E.: First-order logic and star-free sets. J. Comput. System Sci. 32(3), 393–406 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Perrin, D., Pin, J.-É.: Semigroups and automata on infinite words. In: Semigroups, formal languages and groups (York, 1993), pp. 49–72. Kluwer Acad. Publ., Dordrecht (1995)

    Google Scholar 

  12. Perrin, D., Pin, J.-É.: Infinite Words. Pure and Applied Mathematics, vol. 141. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  13. Pin, J.-É.: Logic, semigroups and automata on words. Annals of Mathematics and Artificial Intelligence 16, 343–384 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pin, J.-E.: Positive varieties and infinite words. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Sakarovitch, J.: Monoïdes pointés. Semigroup Forum 18(3), 235–264 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schützenberger, M.P.: On finite monoids having only trivial subgroups.. Inf. Control 8, 190–194 (1965)

    Article  MATH  Google Scholar 

  17. Selivanov, V.: Fine hierarchy of regular ω-languages. Theoret. Comput. Sci. 191(1-2), 37–59 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Thomas, W.: Star-free regular sets of ω-sequences. Inform. and Control 42(2), 148–156 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wadge, W.W.: Reducibility and determinateness on the Baire space. PhD thesis, University of California, Berkeley (1983)

    Google Scholar 

  20. Wagner, K.: On ω-regular sets. Inform. and Control 43(2), 123–177 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wilke, T.: An Eilenberg theorem for ∞-languages. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 588–599. Springer, Heidelberg (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Arnold Beckmann Costas Dimitracopoulos Benedikt Löwe

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cabessa, J., Duparc, J. (2008). The Algebraic Counterpart of the Wagner Hierarchy. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds) Logic and Theory of Algorithms. CiE 2008. Lecture Notes in Computer Science, vol 5028. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69407-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69407-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69405-2

  • Online ISBN: 978-3-540-69407-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics