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Abstract. We study perfectly locally computable structures, which are
(possibly uncountable) structures S that have highly effective presenta-
tions of their local properties. We show that every such S can be sim-
ulated, in a strong sense and even over arbitrary finite parameter sets,
by a computable structure. We also study the category theory of a per-
fect cover of S, examining its connections to the category of all finitely
generated substructures of S.
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1 Introduction

Locally computable structures were introduced in [3], as a method for effective
presentation of uncountable structures. One considers a structure S locally rather
than globally, giving presentations of all finitely generated substructures of S,
up to isomorphism, along with a description of the ways in which these “pieces”
of S fit together to form the entire structure. We review these definitions below.
The entire package, including both the pieces and the ways they fit together,
comprise a cover of S, which is said to be uniformly computable if it can be
given in a sufficiently effective manner.

The notion of a perfect cover was also defined in [3], and it is stated there
(and proven in [4]) that a countable structure has a perfect cover iff it is com-
putably presentable. This suggests that for uncountable structures, perfect local
computability (i.e. having a perfect cover) is a reasonable analogue for com-
putable presentability. In this paper we further explore perfectly locally com-
putable structures, showing that all such structures have computable simulations,
or computably presentable elementary substructures realizing the same types.
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Such substructures may be used in natural ways to simulate operations in the
larger structure – which in general is not countable, hence not itself computably
presentable.

A cover bears a natural resemblance to a category, and indeed is closely
related to the category FGSub(S) of all finitely generated substructures of S
under inclusion maps. Of course, FGSub(S) will be uncountable if S is, whereas
uniformly computable covers are always countable. Moreover, Definition 22 does
not require that the morphisms among objects (i.e. the embeddings of one finitely
generated substructure into another) be closed under composition. However, for
the specific case of a perfect cover, we may assume closure under composition,
and therefore we find ourselves working in a (computable) category. We examine
the category-theoretic properties of such covers in Section 4.

Our computability-theoretic terminology coincides with that of [5], the stan-
dard reference for the subject, and the definitions in local computability from
[3] are used here without alteration. For category theory, we recommend [2].

2 Local Computability Definitions

Let T be a ∀-axiomatizable theory in a signature of size n < ω. (The theory of
fields is a good example to keep in mind, skolemized to have function symbols
for negation and inversion.) We first consider simple covers of a model S of T .
These describe only the finitely generated substructures of S, with no attention
paid to any relations between those substructures.

Definition 21 A simple cover of S is a (finite or countable) collection A of
finitely generated models A0,A1, . . . of T , such that:

– every finitely generated substructure of S is isomorphic to some Ai ∈ A; and
– every Ai ∈ A embeds isomorphically into S.

This simple cover is uniformly computable if every Ai ∈ A is a computable
structure and the sequence 〈(Ai, ai)〉i∈ω can be given uniformly: there must
exist a single computable function which, on input i, outputs a tuple of elements
〈e1, . . . , en, 〈a0, . . . , aki

〉〉 ∈ ωn × A<ω
i such that {a0, . . . , aki

} generates Ai and
ϕej

computes the j-th function, constant, or relation in Ai.

Definition 22 A cover of S consists of a simple cover A = {A0,A1, . . .} of S,
along with sets IA

ij (for all Ai,Aj ∈ A) of injective homomorphisms f : Ai ↪→ Aj ,
such that:

– for all finitely generated substructures B ⊆ C of S, there exist i, j ∈ ω and
f ∈ IA

ij and isomorphisms β : Ai � B and γ : Aj � C with β = γ ◦ f ; and
– for every i and j and every f ∈ IA

ij , there exist substructures B ⊆ C of S and
isomorphisms β : Ai � B and γ : Aj � C with β = γ ◦ f .

This cover is uniformly computable if A is a uniformly computable simple cover
of S and there exists a c.e. set W such that for all i, j ∈ ω,

IA
ij = {ϕe�Ai : 〈i, j, e〉 ∈W}.
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A structure B is locally computable if it has a uniformly computable cover.

We will be concerned with a particularly nice class of locally computable
structures, so nice that we call them perfectly locally computable. Here we have
much stronger connections between the substructures of S and the structures
Ai in our effective description.

Definition 23 Let A be a uniformly computable cover for a structure S. A set
M is a correspondence system for A and S if it satisfies the following five rules:

1. Each element of M is an embedding of some Ai ∈ A into S; and
2. For every Ai ∈ A, there exists a β ∈M with domain Ai; and
3. For every finitely generated substructure B of S, there exists a β ∈M with

image B; and
4. For every Ai ∈ A, every β ∈ M with domain Ai, every Aj ∈ A, and every
f ∈ IA

ij , there exists a γ ∈ M with domain Aj such that β = γ ◦ f (and
hence β(Ai) ⊆ γ(Aj)); and

5. For every Ai ∈ A, every β ∈M with domain Ai, and every finitely generated
B ⊆ S such that β(Ai) ⊆ B, there exists an Aj ∈ A, a γ ∈ M with domain
Aj and image B, and an f ∈ IA

ij such that β = γ ◦ f .

A correspondence system is perfect if it also satisfies:

6. For every finitely generated B ⊆ S, if β : Ai � B and γ : Aj � B both lie
in M , then γ−1 ◦ β ∈ IA

ij .

If a perfect correspondence system exists, then its elements are called perfect
matches between their domains and their images. The uniformly computable
cover A is then called a perfect cover for S, and S itself is said to be perfectly
locally computable.

For example, it is proven in [3] that every algebraically closed field is perfectly
locally computable. The field of real numbers, on the other hand, is not perfectly
locally computable, and the ordered field of real numbers is not even locally
computable.

Other uncountable examples are known. In the language of linear orders,
Cantor space is perfectly locally computable. Likewise, if Cantor space is viewed
as the top level of the tree 2<ω+1 in the language of partial orders – with a addi-
tional unary predicate C identifying that top level, and also with an immediate-
predecessor function on the elements of all lengths strictly between 0 and ω, if
one wishes – then this entire tree, under the additional predicate and function
symbol, is perfectly locally computable. However, if one adds the linear order
on the top level of that tree, then the new structure loses its perfect local com-
putability, even though both of the structures merged together had it; in fact
the new structure is barely even locally computable.

Another theorem from [3] and [4] shows that perfect local computability
can be viewed as a natural extension of the notion of computability – or more
precisely, computable presentability – for countable structures.
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Theorem 24 Let S be any countable structure. Then S is computably pre-
sentable iff S is perfectly locally computable. ut

In the following, we consider perfectly locally computable structures, whether
countable or uncountable, and show that in a certain sense, we can dispense with
their covers and indeed with the structures themselves, and replace them with
structures that actually are countable and computably presented. The notion of
a computable simulation will be the precise version of this substitution.

3 Computable Simulations

Definition 31 Let S be any structure. A simulation of S is an elementary
substructure B � S such that B and S realize exactly the same finitary types.
We often refer to any A isomorphic to such a B as a simulation of S, even if
A is not itself a substructure of S. Hence a computable simulation of S is a
computable structure isomorphic to a simulation of S.

Lemma 1. Let S be locally computable, with a correspondence system N over
a uniformly computable cover A. Then S has a countable substructure B with its
own correspondence system M ⊆ N over A. If N was a perfect correspondence
system for S, then M is perfect for B as well.

Proof. B will be a countable union of countable substructures Bs of S. To start,
we fix for each i ∈ ω one map αi ∈ N with domain Ai, Let M0 = {αi : i ∈ ω},
and let B0 be the substructure of S generated by the union of all the images of
these αi. The conditions for a perfect cover are ∀∃ conditions, so now we will
be able to keep B countable as we close M under those conditions, using the
analogous conditions in the correspondence system N .

Assume we have defined a countable Bs and Ms. First, for every i, every
α ∈Ms with domain Ai, and every f ∈ IA

ij (for any j), there exists some γ ∈ N
with domain Aj such that f lifts via α and γ to the inclusion α(Ai) ⊆ γ(Aj).
Form M ′

s ⊇ Ms by adjoining one such γ to Ms for each such i, α and f . Also,
let B′s be generated by the union of the images of the maps in M ′

s. Clearly both
B′s and M ′

s remain countable.
Next, for every i, every α ∈Ms with domain Ai, and every finitely generated

C ⊆ Bs with α(Ai) ⊆ C, there exists some j, some f ∈ IA
ij , and some γ ∈ N with

domain Aj such that f lifts to the inclusion α(Ai) ⊆ C via α and γ. Adjoin to
M ′

s one such γ for each such i, α, and C, to form M ′′
s .

Finally, for every finitely generated substructure C ⊆ Bs, there exists a γ ∈ N
with image C (since C ⊆ S). Form Ms+1 by adjoining to M ′′

s one such γ for each
such C. Since Bs was countable, it has only countably many finitely generated
substructures, and so Ms+1 is still countable.

It is clear that the union B = ∪sBs is a countable substructure of S, with
cover A, and that M = ∪sMs is a correspondence system for this B over A.
Our B0 already satisfied item (2) of Definition 23, and our ensuing adjoinments
satisfied (4), (5), and (3), in that order, without ever violating (1). (Of course A
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is still uniformly computable as well; that definition has nothing to do with the
structure covered by A.)

It remains to see that this M is perfect for B whenever N is perfect for S.
But this is easy: if α and γ lie in M and have the same image in B, then they
lie in N and have the same image in S. Since N is perfect, γ−1 ◦ α must then
lie in the appropriate IA

ij . ut

In this situation, B will be an elementary substructure of S. The next lemma
extends this observation. (If B is as in Lemma 1, and P is empty, then in the
proof of Lemma 2 we may show that at every step ψs is just inclusion.)

Lemma 2. Let B and S be two structures, each with a correspondence system
over the same uniformly computable cover. Assume that B is countable. Then B
is a simulation of S. Indeed, for any countable set P ⊆ S of parameters, we can
elementarily embed B into S so that its image contains P and realizes the same
finitary types as S over every finite P0 ⊆ P .

Proof. Let A be a common uniformly computable cover of S and B, with cor-
respondence systems M for B and N for S. Our embedding is built step by
step, so we start by enumerating the domain of B as {b0, b1, . . .}, and P as
{p0, p1, . . .}. Fix an α ∈ M whose image is the substructure B0 ⊆ B generated
by b0, and a γ ∈ N with the same domain as α, and define ψ0 to be γ ◦ α−1,
with B0 = dom(ψ0) ⊆ B and C0 = range(ψ0) ⊆ S.

At stage t + 1 = 2s + 1, we extend ψt so that its range contains ps. By
induction ψt = γ ◦ α−1 for some γ ∈ N and α ∈M with common domain Ai in
A. Let Ct+1 be the substructure of S generated by Ct and ps. By induction Ct is
finitely generated, so there is a δ ∈ N with some domain Aj ∈ A, and an f ∈ IA

ij ,
such that f lifts via γ and δ to the inclusion Ct ⊆ Ct+1. In turn there is a β ∈M
with domain Aj such that f lifts via α and β to the inclusion Bt ⊆ β(Aj). Set
Bt+1 = range(β) and ψt+1 = δ ◦ β−1.

At stage t+1 = 2s+2, we extend the embedding ψt from its current domain
Bt to the structure Bt+1 generated by Bt and bs. By induction Bt is finitely
generated, and ψt = γ ◦ α−1 for some γ ∈ N and α ∈ M with common domain
Ai in A. So there is a β ∈ M with some domain Aj ∈ A, and an f ∈ IA

ij , such
that f lifts via α and β to the inclusion Bt ⊆ Bt+1. In turn there is a δ ∈ M
with domain Aj such that f lifts via γ and δ to the inclusion Ct ⊆ δ(Aj). Set
Ct+1 = range(δ) and ψt+1 = δ ◦ β−1.

Now we define ψ = ∪tψt. Clearly ψ has domain B and range ⊆ S containing
P , and ψ must be an embedding. To see that it is elementary, suppose that
∃xθ(ψ(b0), . . . , ψ(bs), x) is an existential formula true in S. Now ψ2s+2 = γ ◦α−1

for some α ∈ M and γ ∈ N with common domain Ai ∈ A. Since N is a
correspondence system, there is a δ ∈ N (with some domain Aj) and an a ∈ Aj

and an f ∈ IA
ij , such that θ(f(α−1(b0)), . . . , f(α−1(bs)), a) holds in Aj . But

since M is also a correspondence system, there is a β ∈ M with the same
domain Aj such that f lifts to the inclusion Bs ⊆ β(Aj) via α and β. Therefore
θ(b0, . . . , bs, β(a)) holds in B. The dual argument shows that existential formulas
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true in B also hold in S. But since existential formulas with parameters go back
and forth between B and S this way, ψ must be an elementary embedding.

Finally, given any n-type Γ over any finite parameter set P0 ⊆ P , such that
Γ is realized in S by a tuple (d1, . . . , dn), we start with the substructure P0 ⊆ S
generated by P0. Since P0 ⊆ range(ψ), we have a t for which P0 ⊆ range(ψt). Let
ψt = γ ◦α−1 with α ∈M and γ ∈ N . There must be a δ ∈ N with some domain
Aj ∈ A and an f ∈ IA

ij such that f lifts via γ and δ to the inclusion of P0 into the
substructure generated by P0 and d0, . . . , dn. But now there is also some β ∈M
with domain Aj such that f lifts via α and β to the inclusion Bt ⊆ β(Aj), and
we set bi = β(δ−1(di)) and ci = ψ(bi) for each i. Then (c1, . . . , cn) is an n-tuple
within the image of ψ which realizes the type Γ over P0, by standard arguments
using M and N . ut

When we have a parameter set P as in Lemma 2, we refer to the image of B
as a simulation of S over P . We might also refer to B itself the same way, but
only when the embedding ψ : B ↪→ S is clear, because we need to know which
elements ψ−1(p) ∈ B correspond to the elements of P in this simulation. Later
we will discuss the extent to which BP can be said to be uniform in P .

Corollary 32 Two countable structures with correspondence systems over the
same uniformly computable cover are isomorphic.

Proof. Since S is countable, we simply set P = S and apply Lemma 2, whose
proof may now be regarded as a back-and-forth construction of an isomorphism
from B onto S. ut

We are now ready for the main result of this section.

Theorem 33 Every perfectly locally computable structure S has a computable
simulation A, which can be embedded into S so as to simulate S over arbitrary
countable parameter sets. Specifically, there is a set of elementary embeddings
ψp : A ↪→ S, one for each function p : ω → S which enumerates a countable
parameter set Qp = range(p) ⊆ S, such that:

– Qp ⊆ ψp(A); and
– ψp(A) is a simulation of S over Qp; and
– if p and p′ are two such functions and p�n = p′�n, then for all k < n,

ψ−1
p (p(k)) = ψ−1

p′ (p′(k)).

As a partial converse, every structure which has a computable simulation A with
embeddings ψp satisfying these conditions has a uniformly computable cover with
a correspondence system.

To make this last claim an actual converse, we would need to show that the
correspondence system for S is perfect. Whether this is true remains open. We
also note that it would be equivalent to give the same statement only for finite
parameter enumerations p, since the last condition would allow a simulation
over a countable parameter set P to be built by taking successive nested finite
enumerations pm ⊆ pm+1 with P = ∪mrange(pm), and setting ψ = limm ψpm
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Proof. When we assume that S is perfectly locally computable, the existence of
a computable simulation of S follows from Lemma 1, which also ensures that
S and its computable simulation A both have perfect correspondence systems
over the same uniformly computable cover. Therefore Lemma 2 shows that A
can be elementarily embedded into S so as to simulate S over any parameter set
Qp enumerated by a function p : ω → S. Moreover, an examination of the proof
of Lemma 2 shows that the embedding chooses the a ∈ A with ψp(a) = p(k)
using only the common cover A, its correspondence systems for A and S, and
the elements p(0), p(1), . . . , p(k) in S. This proves the claim about parameter
enumerations p and p′ which agree up to n.

The proof of the partial converse is longer and more technical, and we relegate
it to Appendix A. ut

We can think of BP as being built uniformly in the parameter set P if the
elements of P are named as elements in different Ai in the cover A of S. That is,
suppose that we are given a computable enumeration 〈(ik, ak, fk)〉k∈ω for which
there exist maps βk ∈ N with ak ∈ Aik

= dom(βk) such that

– each fk ∈ IA
ik,ik+1

; and
– βk+1 ◦ fk = βk; and
– {βk(ak) : k ∈ ω} = P .

Then we could build a computable copy of the simulation BP of S over P , uni-
formly in the perfect cover of S and the enumeration 〈(ik, ak, fk)〉k∈ω, and enu-
merate the image of P in BP . More generally, if the enumeration 〈(ik, ak, fk)〉k∈ω

has Turing degree d, then with a d-oracle we can build a copy of BP in which
the image of P will be computably enumerable in d. It is awkward to think of
the set P itself as having Turing degree d, because an infinite set P will have
distinct enumerations with distinct Turing degrees, but within the cover A of S,
we can view P as being computably enumerable in d, as well as in the degrees of
other enumerations. Of course, P itself, viewed as a subset of S, does not admit
effective enumeration in any obvious way.

4 Category Theory

In general, a cover of a structure S need not be a category. The cover has
objects (the structures Ai) and morphisms among them, but the definition does
not require that the composition of two morphisms be a morphism, nor that
the identity morphisms be included. Adding the identity morphisms would not
be a problem, but it can happen that when one closes the sets of morphisms
under composition, the resulting category is no longer a cover of S, since the
new morphisms may not correspond to any inclusion maps within S. However,
for perfectly locally computable structures, this difficulty vanishes.

Lemma 3. Let S be a perfectly locally computable structure. Then there is a
perfect cover A of S, called the derived cover of S, with the properties that every
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IA
ii contains the identity map on Ai and that for all i, j, k ∈ ω and all f ∈ IA

ij and
g ∈ IA

jk, we have g ◦ f ∈ IA
ik. Thus A may be viewed as a computable category,

with objects {Ai : i ∈ ω} and with maps in IA
ij as the morphisms from Ai to Aj.

To be careful, we should speak of the derived cover only when some perfect cover
has already been specified.

Proof. A is just the closure of the original perfect cover of S under the required
properties. It is clear from Definition 23 that this A is still a perfect cover of S,
and the uniform computability of the cover A follows from that of the original
cover, since the underlying simple cover has not changed and the new sets IA

ij

are derived from the old ones by existential conditions. ut

Category theorists have long known the category FGSub(S) of all finitely
generated substructures of a structure S, where the morphisms are just the
inclusion maps within S. Of course, if S is uncountable, then so is FGSub(S),
so this presentation is not of immediate use for computability theorists. However,
we do have a connection.

Proposition 41 If S is perfectly locally computable, then there exists a faithful
functor R mapping FGSub(S) into the derived cover A of S. Moreover, there
exists a natural isomorphism β : (IA ◦ R) → IFGSub(S) where the I− denote the
appropriate inclusions into the category of all L-structures under embeddings.

Proof. Let A be a perfect cover of S, with correspondence system M . For each
B ∈ FGSub(S), fix R(B) to be any Ai ∈ A which is the domain of some
β ∈ M whose image is B. Ai and β need not be unique, and it is startling that
we can make such an arbitrary choice and have both a functor and a natural
isomorphism, but the perfection of the cover allows it to work. Let N ⊆ M
contain exactly the maps β chosen in this process. Thus each B ∈ FGSub(S) is
the image of a unique βB ∈ N , whose domain is R(B).

Now every morphism B ↪→ C in FGSub(S) is an inclusion B ⊆ C within S,
and with βB ∈ N as above, we have some f ∈ IA

ij for some j, and some γ ∈ M
with domain Aj and image C, such that γ ◦ f = βB. Now we also have some
βC ∈ M mapping R(C) onto C, say with R(C) = Ak. Since M is perfect, the
map β−1

C ◦ γ must lie in IA
jk. We then define R to take the inclusion morphism

B ⊆ C to the morphism R(B ⊆ C) = β−1
C ◦ γ ◦ f , which lies in IA

ik, since A is
a derived cover. Again, an arbitrary choice of f and γ may have been involved
here. However, for any x ∈ R(B) = Ai, we have

R(B ⊆ C)(x) = β−1
C ◦ γ ◦ f(x) = β−1

C ◦ βB(x),

so that in fact the definition of R(B ⊆ C) was independent of this choice. More-
over, this will show that R respects composition of morphisms, as functors must.
Suppose that B ⊆ C ⊆ D are objects of FGSub(S). Then

R(C ⊆ D) ◦R(B ⊆ C) = (β−1
D ◦ βC) ◦ (β−1

C ◦ βB) = β−1
D ◦ βB = R(B ⊆ D).

Thus R really is a functor.
The naturality of β is evident from its construction. ut
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Corollary 42 colim(IA ◦R) ' S

Proof. Since β is a natural isomorphism, we have colim(IFGSub(S)) ' colim(IA◦
R). The former is easily seen to be S. ut

The functor R need not be onto. It is possible, for instance, for two distinct
Ai and Aj in A to map onto the same B via maps γ, δ ∈ M , and also possible
that these are the only maps in M with domains Ai or Aj . In such a case, one of
Ai or Aj will not lie in the image of R. Of course, since M is perfect, δ−1◦γ ∈ IA

ij

in this case, and this map is an isomorphism, as is γ−1 ◦ δ ∈ IA
ji.

This can be done in a bit more canonically using β as above:

Lemma 4. The functor R : FGSub(S) → A defined above is essentially surjec-
tive.

Proof. Fix any Ai ∈ A. Then there is some α ∈ M with domain Ai and image
B = α(Ai), and some βB ∈ N ⊆ M with domain Aj = R(B) for some j. By
perfection of M , β−1

B ◦ α ∈ IA
ij , and this embedding maps Ai onto R(B). ut
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Appendix A

Here we complete the proof of Theorem 33 by proving the partial converse there
stated. Suppose that A is a computable simulation of S and that there is a set
of elementary embeddings ψp : A ↪→ S, one for each function p : ω → S which
enumerates a countable parameter set Qp = range(p) ⊆ S, such that:

– Qp ⊆ ψp(A); and
– ψp(A) is a simulation of S over Qp; and
– if p and p′ are two such functions and p�n = p′�n, then for all k < n,

ψ−1
p (p(k)) = ψ−1

p′ (p′(k)).
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We have to show that the existence of such an A implies that S has a uni-
formly computable cover with a correspondence system. Now A has a perfect
cover A, by Theorem 24. Let M be a perfect correspondence system for A and
A. The correspondence system N will consist of all maps of the form ψp ◦ α,
for all finite p : n → S and all α ∈ M such that range(α) is generated by
{ψ−1

p (p(i)) : i < n}. (Here we think of a finite function p : n → S as a function
from ω into S by repeating its image over and over: p(k + nm) = p(k) for all k
and m.)

Now each finitely generated C ⊆ S with generators enumerated by p lies
within the image of ψp, and the finitely generated substructure ψ−1

p (C) ⊆ A
must be the image of some Ai ∈ A under some α ∈ M , since M is a perfect
cover of A. Hence C = (ψp ◦ α)(Ai) is the image of some map in N . Likewise,
each Ai ∈ A is the domain of some α ∈ M , hence also of some map in N .
Moreover, each f ∈ IA

ij , for any i and j, lifts to an inclusion map within A, and
then lifts further to an inclusion map within S, via any ψp we like. Conversely,
any inclusion C′ ⊆ C of finitely-generated substructures of S is the lift (via ψp,
where p enumerates first the generators of C′, and then the generators of C) of an
inclusion in A, which in turn is the lift of some f in some IA

ij via some α, β ∈M .
If p′ is the restriction of p to the generators of C′, then the inclusion C′ ⊆ C is
the lift of f via (ψp′ ◦α) and (ψp ◦β), which both lie in N . Thus A is a uniformly
computable cover of S.

The preceding remarks also proved the first three parts in Definition 23. For
part 4, fix any f ∈ IA

ij for any i and j, along with any β ∈ N with domain Ai.
Then β = ψp ◦α for some α ∈M and some p : n→ S for which {ψ−1

p (p(k) : k <
n} generates range(α). Since M is a correspondence system, there is a γ ∈ M
with domain Aj such that α = γ ◦ f . But now there is a finite q such that
q�n = p and q(n + k) = ψp(ak), where a0, . . . , am generate γ(Aj) within A. So
(ψq ◦ γ) ∈ N , and

(ψq ◦ γ ◦ f) = (ψq ◦ α) = (ψp ◦ α),

with the last equality following because p� n = q� n and range(α) is generated
by the elements ψ−1

p (p(k)) = ψ−1
q (q(k)) for k < n. This proves part 4.

For part 5 of Definition 23, fix any β ∈ N with domain Ai and any finitely
generated C ⊆ S with β(Ai) ⊆ C. Now β = ψp◦α for some α ∈M and some finite
p : n → S, with the elements ψ−1

p (p(k)) generating range(α). Let q(k) = p(k)
for k < n, and let q(n), . . . , q(n+m− 1) enumerate the generators of C in S. By
assumption, ψq is an elementary embedding of A into S whose image contains
range(q). Let D = 〈ψ−1

q (q(k)) : k < m〉 ⊆ A. Since ψ−1
q (q(k)) = ψ−1

p (p(k)) for
all k < n, we know that α(Ai) ⊆ D, and since M is a correspondence system,
there is some β ∈M and some j and f ∈ IA

ij with D = range(β) and β ◦ f = α.
But then

(ψq ◦ β ◦ f) = (ψq ◦ α) = (ψp ◦ α),

proving part 5 of Definition 23, since (ψq ◦ β) ∈ N . Thus A is a uniformly
computable cover of S with correspondence system N . ut


