Skip to main content

Fast Point Decompression for Standard Elliptic Curves

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5057))

Abstract

Many standard elliptic curves (e.g. NIST, SECG, ANSI X9.62, WTLS, ...) over the finite field \(\mathbb{F}_p\) have p a prime of Mersenne-like form—this yields faster field arithmetic. Point compression cuts the storage requirement for points (public keys) in half and is hence desirable. Point decompression in turn involves a square root computation. Given the special Mersenne-like form of a prime, in this paper we examine the problem of efficiently computing square roots in the base field. Although the motivation comes from standard curves, our analysis is for fast square roots in any arbitrary Mersenne-like prime field satisfying \(p \equiv 3 \pmod 4\). Using well-known methods from number theory, we present a general strategy for fast square root computation in these base fields. Significant speedup in the exponentiation is achieved compared to general methods for exponentiation. Both software and hardware implementation results are given, with a focus on standard elliptic curves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. FIPS: Digital signature standard (DSS). FIPS PUB 186-2 (+ Change Notice). Technical report, U.S. DEPARTMENT OF COMMERCE/National Institute of Standards and Technology (2000)

    Google Scholar 

  2. IEEE: Standard specifications for public-key cryptography. Technical Report IEEE P1363 / D13, Institute of Electrical and Electronics Engineers, Inc. (1999)

    Google Scholar 

  3. ANSI: The elliptic curve digital signature algorithm. American National Standards Institute, ANSI X9.62-1998 (1998)

    Google Scholar 

  4. SECG: Standards for efficient cryptography. Standards for Efficient Cryptography Group, Version 1.0 (2000)

    Google Scholar 

  5. NIST: Recommended elliptic curves for federal government use. Technical report, National Institute of Standards and Technology (NIST) (1999)

    Google Scholar 

  6. WTLS: Wireless application protocol, wireless transport layer security specification. Wireless Application Forum (1999)

    Google Scholar 

  7. BSIG: Simple pairing whitepaper. Technical report, Bluetooth Special Interest Group (2006), http://www.bluetooth.com/Bluetooth/Apply/Technology/Research/.Simple_Pairing.htm .

  8. Cox, M., Engelschall, R., Henson, S., Laurie, B.: The OpenSSL Project. v0.9.8g (2007), http://www.openssl.org/

  9. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Information Theory IT-22(6), 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  10. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  11. Gordon, D.M.: A survey of fast exponentiation methods. J. Algorithms 27(1), 129–146 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Knuth, D.E.: Seminumerical Algorithms. 3rd edn. The Art of Computer Programming, vol. 2. Addison-Wesley, Reading (1998)

    MATH  Google Scholar 

  13. Brauer, A.: On addition chains. Bulletin of the American Mathematical Society 45, 736–739 (1939)

    Article  MATH  MathSciNet  Google Scholar 

  14. von zur Gathen, J., Nöcker, M.: Computing special powers in finite fields. Math. Comp. 73(247), 1499–1523 (2004) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bos, J.N., Coster, M.J.: Addition chain heuristics. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 400–407. Springer, Heidelberg (1990)

    Google Scholar 

  16. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Comm. ACM 21(2), 120–126 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  17. Brown, M., Hankerson, D., López, J., Menezes, A.: Software implementation of the NIST elliptic curves over prime fields. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 250–265. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Beiler, A.H.: Recreations in the Theory of Numbers. Dover, NY (1964)

    Google Scholar 

  19. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases. Inform. and Comput. 78(3), 171–177 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Montgomery, P.L.: Modular multiplication without trial division. Math. Comp. 44(170), 519–521 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Altera: Stratix II device handbook, vol. 1–2, ver. 4.1 (2006)

    Google Scholar 

  22. Solinas, J.A.: Generalized Mersenne numbers. Technical report CORR 99-39, Centre for Applied Cryptographic Research, University of Waterloo (1999)

    Google Scholar 

  23. Guajardo, J., Blümel, R., Krieger, U., Paar, C.: Efficient implementation of elliptic curve cryptosystems on the TI MSP430x33x family of microcontrollers. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 365–382. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  24. Crandall, R.: Method and apparatus for public key exchange in a cryptographic system. United States Patent 5,159,632 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stig F. Mjølsnes Sjouke Mauw Sokratis K. Katsikas

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brumley, B.B., Järvinen, K.U. (2008). Fast Point Decompression for Standard Elliptic Curves. In: Mjølsnes, S.F., Mauw, S., Katsikas, S.K. (eds) Public Key Infrastructure. EuroPKI 2008. Lecture Notes in Computer Science, vol 5057. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69485-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69485-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69484-7

  • Online ISBN: 978-3-540-69485-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics