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Abstract. Genome sequence data and annotations are subject to fre-
quent changes resulting from re-assembly and re-annotation, or commu-
nity feedback based on experimental evidence, giving rise to new data
releases. These releases are rarely accompanied by a description of the
changes, making it difficult for biologists working with the data to iden-
tify and work through the consequences of the changes that have taken
place. This paper explores the extent to which existing XML difference
algorithms, namely X-Diff, JXyDiff and 3DM, can be used to identify
and document genome changes, in particular investigating: (i) their abil-
ity to detect typical changes in genome sequence documents; and (ii) the
ease with which the difference report can be used to determine whether
genes of interest are affected by changes to the genome. The evaluation
compares the performance of the algorithms both with synthetic modifi-
cations and for detecting changes in a public genomic database. Typical
behaviours of the algorithms are identified and a root cause analysis
carried out.

1 Introduction

Genomic data, including the annotation of predicted genes and proteins, is avail-
able for an increasing number of genomes. The genomic data for each of those
genomes undergoes regular re-annotation, and in many cases even re-assembly
of the sequence data, resulting in new releases that replace previous versions.
In particular in the early stages of a genome release, re-annotation generally
involves automatic annotation of the (re-assembled) sequence from scratch us-
ing a computational analysis pipeline (e.g., the Ensembl analysis pipeline [112]).
In the later stages, i.e., a few years after the initial genome release, this process
might be complemented or increasingly replaced by manual changes to the anno-
tation based on experimental evidence provided by the community. In contrast
to the manual annotation, which explicitly introduces a change to the previous
annotation and therefore, if captured appropriately, provides a delta description
between two different releases of the same genome (e.g., the summary of chromo-
some sequence and annotation updates provided by the Saccharomyces Genome
Database (SGD) [3]), the automatic re-annotation of a genome does not result
in such a delta description. Therefore, very little or no information about the
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changes carried out is made available by providers of genomic data. For example,
Ensembl [4] only provides very general information on the type of data updated
as news for each new release, but no detailed information on gene level changes.
In contrast, the Fungal Genome Initiative (FGI) at the Broad Institutd!] provides
a list of the changes between two releases for some genomes. The information
provided on the changes, however, is limited and only lists the identifiers of newly
predicted, updated, split and deleted genes, but no further details. The limited
information on changes between genome data releases presents significant chal-
lenges to biologists and bioinformaticians working with the genomic data and
the corresponding annotation, in some cases even resulting in the continued use
of an out-of-date genome release.

A number of data providers make previous genome releases available in archives
(e.g., Ensembl, EMBL [56]), provide tools for converting data from one release to
another release of a genome (Ensembl), or provide tools for comparison of two
genome versions, the result of which can be inspected manually (EMBL). Those
tools, however, are not generally applicable. The converter provided by Ensembl
is currently only available for converting mouse assembly data between the cur-
rent release and the previous one, and is not available for conversion between
other combinations of releases or other genomes. The comparison tool provided
by EMBL can be used to compare any two versions of a genome, but it compares
the files line by line and highlights lines that have been removed or inserted be-
tween the two versions. Lines that contain changes are also presented as removed
and inserted. The user has to inspect the highlighted file manually to identify the
consequences for genes of interest, a labour-intensive task when carried out for a
whole genome and/or a number of releases. Changes between two releases of the
same genome can be of varied nature (see the following section). Without a his-
tory of changes, however, it is hard for users of the data to track genes of interest
through time, i.e., various genome releases and determine, e.g., whether a missing
gene has been removed, renamed, moved to a different location, or merged with a
neighbouring gene.

Genomic data is represented in a variety of formats, amongst others XML
(e.g., EMBL XML Schema), and converters are available to convert data be-
tween different formats and also to convert it into the EMBL XML format (e.g.,
converters are provided by EMBL [5] and BioJavaE). A number of XML differ-
ence tools and algorithms have also been published previously (e.g., X-Diff [7],
XyDift [§], 3DM [9]). In the original publications these algorithms have mainly
been applied to merging of XML documents that have been edited by differ-
ent people (3DM), and for detecting changes of XML documents on the web
(X-Diff, XyDiff). In this paper we evaluate the applicability of XML difference
algorithms on XML documents representing genomic data and associated anno-
tation. In so doing, we seek both to obtain insights into the algorithms and to
identify an effective means of understanding the changes that have been made
to genomes.

! http://www.broad.mit.edu/annotation /fgi/
2 http://biojava.org
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The paper is structured as follows. Section 2 provides a detailed description
of the problem, including an introduction to the format in which genomic data
is represented. Section 3 introduces the XML difference algorithms evaluated
here. Section 4 describes the experimental setup and discusses the results. This
is followed by an evaluation of the XML difference algorithms on real data in
Section 5. Section 6 concludes by reviewing the lessons learned.

2 Problem Description

In this section the XML representation of genomic data is introduced. Further-
more, a number of typical changes to genomic data are presented.

Genomic data is represented in a number of flat file formats established by the
major data providers, including Genbank [10] and EMBL [5]. For both Genbank
and EMBL formats, XML representations of the data are available, namely Insd
XML and EMBL XML, respectively. Due to its slightly more intuitive represen-
tation of genomic data, we have chosen to use the EMBL XML representation.
The majority of genomic data is made available separately for each chromosome
of a genome. For this reason, we have chosen a chromosome as the unit in which
we analyse changes in genomic data. Therefore, we do not consider changes that
affect multiple chromosomes, such as a move of a predicted gene between chro-
mosomes; such changes would be detected as a deletion in one chromosome and
an insertion in another.

A gene is a defined strand of DNA that contains regions that code for a protein
(exons) and those that do not (introns). The complete sequence of exons for a
gene is also called a coding sequence (CDS). The whole DNA sequence of a gene
is transcribed from DNA to (pre-)mRNA, followed by a process called splicing
during which the introns are removed and the exons spliced together to form the
messenger RNA (mRNA). The mRNA is then translated into a protein.

In both the well established flat file formats and the corresponding XML rep-
resentations a predicted gene is represented as follows: (i) an element capturing
information on the gene; (ii) an element describing the corresponding mRNA;
(iii) an element containing information on the coding sequence (CDS); and
(iv) elements with information on the corresponding exons (elements <feature
name="gene"> <feature name="mRNA"> <feature name="CDS">, and <feature
name="exon">, respectively, in Figure[l). Usually, information on the predicted
genes appear in the order of the genes on the chromosome, i.e., the order among
siblings is important, and the genomic sequence is included as a whole for the
chromosome and not for each gene separately. However, to ease the identifica-
tion of changes in the sequence of a gene, we retrieve the sequence for each gene
and include it alongside the corresponding gene information. An example of the
resulting XML representation of the elements describing the gene, its mRNA,
CDS, genomic sequence and exon is provided in Figure [[l Usually, the descrip-
tions of all exons for all genes can be found at the end of the document (indicated
by ‘... in the example). As can be seen in the example, all the elements corre-
sponding to a gene are located at the same level in the hierarchical structure
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<EMBL>
<entry accession="chromosome:SGD1.01:1:1:230308:1" lastUpdated="8-APR-2007" name="I">

<feature name="gene">
<qualifier name="gene">YALOO3W</qualifier>
<qualifier name="note"> Elongation factor 1-beta (EF-1-beta) </qualifier>
<location complement="false" type="single">
<locationElement complement="false" type="range">
<basePosition type="simple">142176</basePosition>
<basePosition type="simple">142255</basePosition>
</locationElement> </location> </feature>
<feature name="mRNA">
<qualifier name="gene">YALOO3W</qualifier>
<qualifier name="note">transcript_id=YALOO3W</qualifier>
<location complement="false" type="single">
<locationElement complement="false" type="range">
<basePosition type="simple">142176</basePosition>
<basePosition type="simple">142255</basePosition>
</locationElement> </location> </feature>
<feature name="CDS">
<dbreference db="RefSeq _peptide" primary="NP_009398.1"/>
<qualifier name="gene">YALOO3W</qualifier>
<qualifier name="protein_id">YALOO3W</qualifier>
<qualifier name="note" >transcript_id=YALOO3W</qualifier>
<qualifier name="translation"> MASTDFSKIETLKQLNASLADKSYIEGTAVSQA...</qualifier>
<location complement="false" type="single">
<locationElement complement="false" type="range">
<basePosition type="simple">142176</basePosition>
<basePosition type="simple">142255</basePosition>
</locationElement> </location> </feature>
<sequence length="987" type="DNA" version="0.0"> agttgcgcatgaatttctcc...</sequence>

<feature name="exon">
<qualifier name="note">exon_id=YALOO3W.1</qualifier>
<location complement="false" type="single">
<locationElement complement="false" type="range">
<basePosition type="simple">142176</basePosition>
<basePosition type="simple">142255</basePosition>
</locationElement> </location> </feature>
</entry>
< /EMBL>

Fig. 1. Example of genomic data represented using a variant of EMBL XML [5l6]

of the XML representation. There are no parent elements for each gene that
contain all the associated elements; instead the parent element of all elements
describing all the genes is the element describing the chromosome on which the
genes are located. It can also be seen that the elements contain partly redundant
information, such as the location and the identifier of the gene.

With increasing knowledge of a genome, its genomic data and associated anno-
tation can change in a number of different ways. Changes include modifications
of the genomic sequence itself, the identification of new genes with their associ-
ated proteins, and the removal of a previously predicted gene that is no longer
thought to be a gene. Further changes include the merging of two neighbouring
genes into one gene or the splitting of one gene into two neighbouring genes.
Examples of such changes can be found in the change history provided by SGD
for the yeast genomeﬁ In the remainder of the paper we focus on five types of

3 http://www.yeastgenome.org/cache/genomeSnapshot.html#ChrSeqAnnot Updates
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changes, which are explained in more detail below. A number of other changes,
such as the update of the name or identifier of a gene or the update of its lo-
cation, are essentially updates to the value of a text node. As is shown later,
an update to the value of a text node does not present a challenge to the XML
difference algorithms.

Change to the genomic sequence. The genomic sequence can undergo changes,
for example, to correct mistakes introduced in an earlier release. To change the
sequence of a gene, the value of the corresponding text node with name sequence
is updated.

Identification of a new gene. When a new gene that has been missed previously
is identified, all elements capturing information on the gene, its mRNA, CDS,
sequence and exons are inserted. As the genes appear in the document in the
same order as on the chromosome, the first four elements (gene, mRNA, CDS,
sequence) for the new gene are inserted after the element containing the sequence
of the preceding gene and before the elements describing the following gene. As
the exons are listed at the end of the document in the same order as on the
chromosome, the elements with information on the exons of the new gene are
inserted between the exons of the preceding gene and those of the following gene.

Removal of a previously predicted gene. Analysis of the genome and its sequence
can reveal that a previously identified gene isn’t actually a gene. Thus, all ele-
ments describing this gene, its mRNA, its CDS, its sequence and its exons need
to be removed.

Both identification and removal of a gene result in a change of the positions
of elements following the inserted or removed elements within the sequence of
elements describing all the genes on a chromosome.

Merging of two neighbouring genes, genel and gene2, into one gene. Biological
experiments can reveal that two separate genes actually correspond to a single
gene. In such a case the annotation needs to be updated as follows (see also

Figure 2):

— Update of the elements corresponding to genel. Changes include (i) update
of the identifiers of the elements describing the gene, its mRNA and CDS; (ii)
update of the location of genel and insert of additional location elements for
the exons of gene2, which after the merge belong to genel; and (iii) update
of the sequence and translation of genel by appending the corresponding
sequence and translation of gene2.

— Update the identifiers of all the exons belonging to genel and gene2 before
the merge to reflect that they belong to the merged gene.

— Delete the elements (with information on gene, mRNA, CDS, sequence) cor-
responding to gene2.

Splitting of one gene into two neighbouring genes, genel and gene2. As the
complementary change to merging of two neighbouring genes, a single gene can



A Comparative Evaluation of XML Difference Algorithms 263

(entry accession = “chromosome I - » entry accession = “chromosome I’}
Split Merge N

N N

{—{feature name = “gene’) feature name = “gene™}—

(qualifier name = “gene J—|

o (qualifier name = “locus_tag”}—|

Update

(qualifier name = “note”}—

feature name = “mRNA"}

locationElement
start1(bascPosition (start)

end(basePosition (end)
1

— | start2(bascPosition (start) H

end2|bascPosition (end)

(feature name = “CDS™}—{

T ——
| [eremr—
|

Update ‘

a name = “protein_id o o
lifier name = “note”) [qualifier name = “gene”j—
4

o qualifier name = “protein_id"J—
(qualifier name = “translation”) translation1 — ——
[qualifier name = “note™}—|
— translation? + (qualifier name - “translation’)
PP translation2 &
locationElement]
start1 [basePosition (start)

end1(basePosition (end))
n T

| oo i
end2|basePosition (end))
oot e
ion (start) 1477
/ e/
// ? sequence? + sequence2 §eguencd——|
C name N/\

Move
// Insgt Delete -
4 dhrclereme
i /
i Move

//;

//,/ %07

y

Update

asePosition (start)) start2 start2
(basePosition (end)) end2 end2

locationElement)
[basePosition (start)

bascPosition (end)

3

Fig. 2. Split of one gene into two neighbouring genes and merge of two neighbouring
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also be split into two neighbouring genes. The annotation is updated as follows
(see also Figure [2)):

— Insert elements (gene, mRNA, CDS, sequence) corresponding to gene2 with

the appropriate part of the translation and sequence that belongs to gene2
after the merge and the appropriate location elements. This information can
be obtained from the single gene that is to be split.

Update of the elements corresponding to the single gene to reflect that it
represents genel after the split. Changes include (i) update of the identifiers
of the elements describing the gene, its mRNA and CDS; (ii) update of the
location of the gene and delete of the additional location elements for the ex-
ons that belong to gene2 after the split; and (iii) update of the sequence and
translation of genel by removing the part of the sequence and translation
that belongs to gene2 after the split.

Update of the identifiers of all the exons belonging to the gene to be split to
reflect that they belong to either genel or geme2. If there is only one exon,
this needs to be split by updating the existing exon appropriately to reflect
that it belongs to genel and inserting a new element with information on
the exon belonging to gene2.

As shown above, changes to genomic sequence data and its annotation generally
lead to a number of (different) changes to the document, not something the

techniques evaluated here were designed to support.

3 XML Difference Algorithms

Three published XML difference algorithms for which working Java implemen-
tations were obtained are evaluated in this paper. The key properties of the
algorithms are summarised in Table [[l and described below.

X-Diff [7]. The X-Diff algorithm involves the following steps:

— Preprocessing: In the preprocessing phase, both XML documents are parsed

into tree representations and using XHash (a special hash function similar to
DOMHash [13], but working on unordered trees), hash values for all nodes in
both trees are calculated. The hash value of an element node « is calculated
based on the hash values of its child nodes and the resulting value, therefore,
represents the entire subtree rooted at the node a.

Table 1. Summary of key properties of XML difference algorithms

Algorithm|Source Ordered/ Changes detected

Unordered Tree

X-Diff [id] Unordered Insert, Delete of leaf nodes or subtrees; Update of

values of text- or attribute nodes

JXyDiff XyDiff [8[11][Ordered Insert, Delete, Move of leaf nodes or subtrees; Update

of values of text- or attribute nodes

3DM [9112] Ordered Insert, Delete, Move of leaf nodes; Update of values

of text- or attribute nodes
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— Matching: The matching step consists of the following three steps.

e To reduce the search space, subtrees with the same hash value are filtered
out.

e Starting from the leaf node pairs and moving upwards, nodes of the same
type (i.e., text-, element-, or attribute node) and with matching ancestor
names are matched, and their edit distance computed using a cost model
with a uniform distance of 1 for update, insert and delete. To compute
the edit distance between subtrees, the minimum-cost maximum flow
algorithm [T4JT5] is used to find the minimum-cost bipartite matching.
Both matching and edit distance are stored.

e Starting from the root node and using the matchings and edit distances
calculated in the previous step, create minimum-cost matchings between
nodes of the two trees, allowing only one-to-one matchings and matching
only child nodes of parents that are matched.

— FEdit script: Starting from the root nodes and based on the minimum-cost
matching and the edit distance, a minimum-cost edit script is generated.
Nodes or subtrees found in the base document, but not found in the match-
ing, are marked as deleted; nodes or subtrees found in the updated docu-
ment, but not in the matching, are marked as inserted; and leaf nodes that
are found in the matching but have different values are marked as updated.

JXyDiff (Java implementation of XyDiff [8I11]). The algorithm, called Bottom-
Up, Lazy-Down (BULD) propagation, consists of the following steps:

— Preprocessing: Starting from the leaf nodes, hash values are calculated based
on content of the node itself and the hash values of its children. Similar to
X-Diff, the hash value of a node represents the entire subtree rooted in that
node. In addition to the hash value, a weight is calculated for each node
as follows: for a text node the weight is the size of the content and for an
element node the weight is the sum of the weights of its child nodes. Subtrees
represented by their root nodes are inserted into a priority queue where they
are ranked by their weight.

— Matching: Starting with the heaviest subtree of the updated document (when
there are several subtrees with the same weight, the first one in the queue
is chosen), nodes with the same hash value (representing the entire subtree
rooted at that node) are identified in the base document. If there is only
one node in the base document with the same hash value, they are matched.
If there are no nodes with the same hash value and the node is an element
node, its children are inserted into the priority queue. If there are several
nodes with the same hash value, the node whose parent matches the parent
of the node from the updated document is chosen. The matching is followed
by an optimisation phase in which already matched nodes are used to prop-
agate matches further to nodes not matched in the previous matching step.
During this phase, nodes are matched when their parents and/or children
are matched and they have the same label. Bottom-up propagation of the
matchings is controlled by the weight of the matching subtrees, i.e., the
heavier/larger a subtree the further the matching is propagated.
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Edit script: Based on the matchings, the edit script is generated. Unmatched
nodes in the old document are marked as deleted, and those unmatched in
the new document are marked as inserted. Matched text nodes with changed
content are marked as updated. Nodes that are matched, but without match-
ing parents, are marked as moved. JXyDiff also detects moves of nodes within
the same parent, i.e., changes to the order of matched siblings under matched
parents. This is done by finding the largest order-preserving subsequence and
adding move operations for the remaining pairs of nodes. As this step is ex-
pensive for large sequences of elements, in such cases the sequence is cut
into smaller subsequences of a fixed maximum length and the same process
applied to all the smaller subsequences. This improves the performance, but
does not guarantee the optimal number of moves.

3-Way Merge and Diff (3DM) [9]12]. 3DM is a merge and diff tool that can
merge 3 documents, the base document and two updated versions of the docu-
ment for the purpose of reintegrating changes from two independently modified
copies into a single document containing all the modifications. It can, however,
also be used to find differences between two documents by providing two copies
of the same document, e.g., the base document and the updated document as
input. The algorithm consists of the following steps:

Matching: For each node in the base document, find exact or close matching
nodes in the updated document. The similarity of close matching nodes is
based on the g-gram string distance measure [16]. Q-grams are substrings of
length ¢ and the g-gram distance is the number of g-grams that appear in
only one of the two strings. For all pairs of matched nodes, match the subtrees
by depth-first traversal starting with the two matched nodes. Continue as
long as the child nodes are matched too. Select the best matching subtree.
Post-processing: The postprocessing phase can be divided into the following
steps:

e Remove matches of small copies: All nodes in the updated document
whose matching node in the base document has several matches in the
updated document are checked, and matches to nodes that are part of a
subtree containing only little information are removed to avoid copying
small amounts of data.

e Propagate matches: Using the structure of the document, nodes so far
not matched are matched if their parents and left or right siblings are
matched.

e Set type of match: All matches are classified as structural, content or
full (structural and content) matches.

e Merge documents: Starting from the root node and based on the match-
ings between the base document and each of the two updated documents,
the merged document and the edit script is created. This is done by pair-
ing up children of matched nodes, determining the sequence of these pairs
according to any moves made, and merging the contents of the matched
pairs. The merged node is added to the merge tree.
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— Edit script: During the merging step, the edit script is created. Nodes found
in either of the updated copies but not the base version of the document
are marked as inserted; matched nodes with different contents are marked
as updated; nodes that are matched, but appear in a different order are
marked as moved; and nodes not found in either of the two updated copies
but in the base document are marked as deleted.

4 Experiments Involving Controlled Modifications

In this section the experimental setup is introduced and the results of the ex-
periments are discussed. The experiment consists of two parts: (i) evaluation of
the XML difference algorithms on synthetic modifications to enable controlled
exploration of a number of different kinds of change; and (ii) exploration of the
use of the algorithms with real modifications between different releases of ge-
nomic data obtained from Ensembl [4].

Experimental setup: Beginning with a base document of genomic data from
chromosome 10 of yeast containing about 400 genes, changes are introduced in
a systematic manner. For each type of change and each pairwise combination
of changes mentioned in Section [2, new documents are produced with n (n =
4, 20, 40, 60, 80) of the genes subject to each change. The changes are intro-
duced randomly, but conform to the constraints imposed by the well established
representation of the data: for example, elements describing a gene, its mRNA,
its CDS and its sequence are neighbouring siblings, genes appear in the order
they are on the chromosome, and exons appear at the end of the document in
the same order as they are on the chromosome. In addition to the updated doc-
uments, a change report for each updated document is produced, detailing the
changes introduced, gathering corresponding gene-level changes, and presenting
them in a manner meaningful to biologists, as illustrated in Figure [3

Using each of the XML difference algorithms, the base document is compared
with each of the updated documents. In a post-processing step, the edit scripts
produced by each of the algorithms are processed to: (i) identify the changes
reported; (ii) gather changes affecting the same gene; and (iii) reproduce as
much as possible of the change report corresponding to each updated document.

A number of observations could be made in the post-processing phase for the
majority of edit scripts produced by JxyDiff and 3DM, and for this reason, are
summarised here: (i) Edit scripts produced by JXyDiff tend not to be minimal,
in that they contain a number of moves of sibling elements within the same
parent, an observation reported previously [7]. These move operations are a re-
sult of incorrect matching of subtrees (where, for example an updated subtree
is matched incorrectly to a different subtree, that is then updated accordingly
followed by move operations to restore the order of the siblings). To restore the
order of the siblings, large sequences of siblings are split into smaller sequences
to improve the performance of the analysis step that seeks to detect moves of
nodes within the same parent (see Section Bl). As no moves are introduced as
changes, the reported move operations are not included in the change report
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<changeReport>
<insert_biological_concept concept="gene" name="newGene55" >
<insert> <feature name="gene">
<qualifier name="gene" >newGene55</qualifier>
<qualifier name="locus_tag" >newGene55 _YEAST</qualifier>
<qualifier name="note">Uncharacterized protein newGene55</qualifier>
<location complement="false" type="single">
<locationElement complement="false" type="range">
<basePosition type="simple">95483< /basePosition>
<basePosition type="simple">95483</basePosition>
</locationElement>
</location> </feature> </insert>
<insert> <feature name="mRNA">
. </feature> </insert>
<insert> <feature name="CDS">
. </feature> </insert>
<insert>
<sequence length="0" type="DNA" version="0.0">agtgaataatttaa...</sequence>
</insert>
<insert> <feature name="exon">
... </feature> </insert>
</insert_biological_concept>
<delete_biological_concept concept="gene" name="YALO11W">
<delete> <feature name="gene">
. </feature> </delete>
<delete> <feature name="mRNA">
. </feature> </delete>
<delete> <feature name="CDS">
. </feature> </delete>
<delete>
<sequence length="1878" type="DNA" version="0.0">agtttctgggttt...</sequence>
</delete>
<delete> <feature name="exon">
... </feature> </delete>
</delete_biological_concept>
</changeReport >

Fig. 3. Example of a change report, developed to present changes in a manner mean-
ingful to biologists

generated from the edit scripts. (ii) Edit scripts produced by 3DM contain the
parent element as well as all the child elements that are affected by the change.
In cases where the child element is reported with the same type of change as
its parent element, i.e., the child element is subsumed by its parent element,
the child element is not included in the change report generated from the edit
script. If child and parent elements are reported with different types of changes,
both are included in the change report. The generated change reports are then
evaluated with respect to the quality of the results.

Experiment 1: Change of genomic sequences. In this experiment, which re-
quires the fewest atomic element-level changes to the document, the value of
the text node sequence is updated. This experiment analyses the ability of the
algorithms to detect updates to values of text nodes. As the change introduced
affects only a single node, this experiment is the least challenging. The number
and types of changes reported by each difference algorithm are compared with
those in the change report associated with the updated document.
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The following was observed: (i) Both X-Diff and 3DM detect all the introduced
changes correctly and as the correct type of change. (ii) JXyDiff, however, detects
all the introduced changes correctly, but as delete and insert of the text node
sequence and not as an update, resulting in twice as many reported changes.

Experiment 2: Identification of new genes. In the second experiment, all the
elements describing a gene, its mRNA, CDS, sequence and exons are inserted at
appropriate positions in the document, following the constraints imposed by the
representation of the data.

The following was observed: (i) Both X-Diff and JXyDiff detect all the intro-
duced changes correctly. (ii) 3DM detects all the introduced changes correctly
as inserts. In addition to the correctly identified inserts of elements, however,
it detects a subset of the inserted sequence elements also as copies and up-
dates of other sequence elements. The algorithm does not restrict the number
of matches that can be identified between an element in the updated document
and elements in the base document. As mentioned in Section [l 3DM calculates
the similarity of nodes using the g-gram string distance measure, and applies
a threshold on the similarity to determine which nodes should be matched. As
genomic sequence is basically a string of arbitrary length of the alphabet {a, c,
t, g}, it is quite likely that two strings of sufficient length will have a sufficient
number of g-grams in common to be regarded as similar enough to be copies of
each other. As the g-gram string distance doesn’t take into account the length of
the string, sequences of very different lengths are matched based on their g-gram
string distance, and one reported as an updated copy of the other. This results
in a higher number of changes reported. The numbers of changes reported by
each algorithm are compared with those in the change report associated with
the updated document, and the ratios are plotted in Figure [l

Experiment 3: Removal of previously predicted genes. In this experiment, all
the elements representing a gene, its mRNA, CDS, sequence and exons are
deleted.
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The following was observed: all three XML difference algorithms detect the
deletion of the subtrees correctly.

Experiment 4: Change of genomic sequences and identification of new genes /
Change of genomic sequences and removal of previously predicted genes. In this
experiment, the changes introduced in Experiment 1 are combined with those
introduced in Experiment 2 or 3.

The following was observed: all three algorithms were able to identify the
changes, exhibiting the same behaviour as in Experiments 1-3 with the corre-
sponding single changes.

Experiment 5: Identification of new genes and removal of previously predicted
genes. In this experiment, the changes introduced in Experiment 2 are combined
with those introduced in Experiment 3.

The ratios of the numbers of changes reported by each algorithm compared
with those in the corresponding change report are plotted in Figure Bl The fol-
lowing can be observed: (i) 3DM detects all the inserted elements and all the
deleted elements correctly. As before in Experiment 2, however, a number of the
inserted sequence elements are also detected as copies of other sequence ele-
ments combined with subsequent updates, resulting in a slightly higher number
of changes reported. In contrast, JXyDiff and X-Diff report a far greater num-
ber of changes. (ii) JXyDiff detects inserts and deletes of elements describing
the gene, mRNA, sequence and exons correctly, but fails to do so for a number
of elements containing information on the CDS. In such cases, the child ele-
ments dbreference, qualifier and basePosition are reported as updates,
deletes or inserts, resulting in the high number of changes reported. To restore
the order of the elements, a large number of move operations of the siblings
describing the elements of genes are reported. The incorrect matching of the in-
serted and deleted CDS elements principally results from the optimisation phase
(see Section B)) in which matches of children, e.g., of the location elements, are
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Fig. 5. Experiment 5, Introduction of new and removal of previously predicted genes,
relative performance
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propagated bottom-up to their parents. As the propagation is controlled by the
weight of the matched subtree, this step can result in incorrect matchings of
the CDS subtrees but not of the subtrees representing the other elements, as the
CDS subtrees tend to have the larger number of children and therefore tend to
be heavier. (iii) X-Diff reports the majority of deleted and inserted elements as
updates, inserts or deletes of their corresponding leaf nodes, resulting in a high
number of changes. As mentioned in Section Bl and listed in Table[I X-Diff has
the following properties: it regards the XML documents as unordered trees, uses
a uniform cost model, creates a match starting with the leaf nodes, and matches
nodes of the same type if their ancestors have matching names. These proper-
ties result in an almost arbitrary matching of the leaf nodes of the inserted and
deleted subtrees representing the elements of the inserted and deleted genes. In
the source documents though, order among siblings is significant.

Experiment 6: Merging of two meighbouring genes. In this experiment two
neighbouring genes are merged. For detailed information on the changes intro-
duced see Figure

The ratios of the number of changes reported by each algorithm compared
with those in the corresponding change report are plotted in Figure [6l The
following can be observed: (i) X-Diff correctly identifies the deleted elements
(representing one of the two neighbouring genes), but fails to match the up-
dated elements correctly, resulting in a number of additional deletes, updates
and inserts. For example, elements representing exons or CDS are matched with
those representing mRNAs. These incorrect matchings are a result of handling
the XML document as an unordered tree. However, no consistent pattern was
observed for these incorrect matchings. (ii) JXyDiff identifies only a fraction of
the deleted elements and matches very few of the updated elements correctly.
This results in a large number of deletes, inserts, updates and moves to com-
pensate for the incorrect matchings. In some cases, elements representing exons
are matched with elements representing CDS or genes, however, no consistent
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Fig.7. Experiments 7, Splitting of one gene into two neighbouring genes, relative
performance

pattern throughout all changes was observed. (iii) 3DM correctly identifies the
majority of deleted elements and matches the updated elements. However, the
majority of updates are not reported as such, but as deletes and inserts, resulting
in about twice as many changes reported as in a minimal description. Further-
more, a number of elements are reported both as inserted and as updated, a
result of the lack of a restriction on the number of matchings between an ele-
ment in the updated document and elements in the source document.

Experiment 7: Splitting of one gene into two neighbouring genes. In this ex-
periment one gene is split into two neighbouring genes. Detailed information
on the changes introduced are shown in Figure 2l The ratios of the number of
changes reported by each algorithm compared with those in the corresponding
change report are plotted in Figure [l The following was observed: (i) X-Diff
identifies all inserted elements correctly and matches the majority of updated
elements correctly. However, in some cases elements representing mRNAs are
matched with elements representing genes or exons, resulting in detection of
additional updates, deletes or inserts. (ii) JXyDiff identifies all the inserted ele-
ments correctly, but matches only a few of the updated elements correctly. This
results in the identification of a large number of inserts, deletes, updates and ad-
ditional moves to restore the order of the siblings and compensate for incorrect
matchings. (iii) 3DM identifies all the inserted elements correctly but doesn’t al-
ways match the updated elements correctly, resulting in a significantly increased
number of updates, inserts and deletes. In cases where elements are matched
correctly, the updates are sometimes reported as inserts and deletes.

5 Evaluation Involving Real Genomic Data

To explore the performance of the XML difference algorithms on detection of real
modifications, we compared two different releases (41 and 42) of the genomic data
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Table 2. Number of changes detected between different versions of genomic data

Chromosome|X-Diff | JXyDiff 3DM
3 1805 (13223 1864
5 1130 |18475 679

of yeast chromosomes 3 and 5 obtained from Ensembl. The numbers of changes
reported by each of the tools for both chromosomes are shown in Table 2l The
following observations were made:

X-Diff: While X-Diff performs reasonably well in the case of singular changes
within an element (describing gene, mRNA, CDS, or exon) and detects the
majority correctly, the fact that it represents XML documents as unordered trees
leads to incorrect reporting of changes in the following cases amongst others:
(i) Large number of changes within one element (e.g., inserts, updates, deletes
of elements dbreference or qualifier). In such cases, instead of reporting the
various updates, inserts and/or deletes within the element, they may be matched
incorrectly with other elements in the document. (ii) Update of the start and
end location of an element. As pairs of basePosition elements are affected and
the order among siblings is not taken into account in X-Diff, updates to the start
position can be confused with updates to the end position and vice versa. The
order of the start and end positions indicates the direction in which the gene is
transcribed.

JXyDiff: For the most part, JXyDiff seems unable to match elements correctly,
resulting in the reporting of significantly more changes in comparison to the other
two algorithms. The numbers shown for JXyDiff in Table [2] exclude the more
than 8,000 and 10,000 moves reported for chromosomes 3 and 5, respectively.
In particular CDS elements tend to be mismatched, resulting in a large number
of updates of all the subelements and attributes. Mismatching of CDS elements
was observed earlier in the synthetic experiments (see Experiment 5) and is the
result of the optimisation phase in which matches of leaf nodes are propagated
bottom-up to their ancestors. The extent of the propagation is controlled by the
weight of the subtree.

S8DM: 3DM performs reasonably well in detecting changes between the two
versions of genomic data. The following cases, amongst others, though, lead to
reporting of additional changes: (i) Insert or delete of dbreference or qualifier
elements within one element describing a CDS. In such cases, a newly inserted
element might be matched to an existing element, which is reported as updated
to represent the new element, and then the original is reported as inserted,
therefore increasing the number of changes reported. Similar incorrect matchings
can be observed for deleted elements, which aren’t reported as deletes, but as a
number of updates followed by deletes of different similar elements. This occurs
more frequently in cases of a larger number of changes within one element, but
also for newly inserted elements describing a gene or mRNA. (ii) Update of
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sequence elements. In such cases, the updated sequence might be reported as
both an update and a copy followed by an update of another sequence element.
(iii) Moves of elements, i.e., changes to the order of elements on the chromosome.
In this case, not only are the elements affected by the move reported as such,
but also a number of neighbouring elements, again resulting in an increase in the
number of changes reported. The majority of these mismatches are the result of
the g-gram distance measure used to match elements, and a lack of restriction
on the number of matches of elements in the updated document with elements
in the base document. Both cases have been observed in the experiments with
synthetic data.

6 Conclusions

This comparative evaluation has shown that all the algorithms tested contain
features that are effective at detecting a subset of changes relevant within the
context of genomic data. However, none are useable without significant post-
processing of the edit scripts. We have identified the following features of the
representation of genomic data and of the algorithms that affect performance.

The task of matching versions of genomic data correctly and detecting changes
between them is hindered by the following properties of the fairly flat structure
of the data representing genomic sequences and their annotation: (i) Large num-
bers of siblings. (ii) Related elements are not easily identifiable as such (e.g.,
elements describing gene, mRNA, CDS, exons and sequence of a gene are only
identifiable as related by the values of their qualifier child elements). (iii) Very
similar contents of nodes and subtrees. Elements or subtrees sometimes can only
be distinguished by values of attribute or descendant text nodes. The follow-
ing properties of the algorithms affected their performance: (i) Treating XML
documents as unordered trees can result in inappropriate matchings. (ii) Fuzzy
matching using g-gram string distance measure can result in incorrect matchings
of elements, in particular sequence elements. (iii) Propagating matches bottom-
up to nodes with the same labels. This, in combination with the similarity of
the contents of nodes and subtrees can result in incorrect matchings.

This suggests that selection and use of genome difference algorithms requires:
(i) good understanding of the data over which the algorithm is to be used during
algorithm selection; and (ii) significant tailoring of results to compensate for the
production of non-minimal and challenging-to-interpret edit scripts.
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