Skip to main content

Transitive q-Ary Functions over Finite Fields or Finite Sets: Counts, Properties and Applications

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5130))

Abstract

To implement efficiently and securely good non-linear functions with a very large number of input variables is a challenge. Partially symmetric functions such as transitive functions are investigated to solve this issue. Known results on Boolean symmetric functions are extended both to transitive functions and to q-ary functions (on any set of q elements including finite fields GF(q) for any q). In a special case when the number of variables is n = p k with p prime, an extension of Lucas’ theorem provides new counting results and gives useful properties on the set of transitive functions. Results on balanced transitive q-ary functions are given. Implementation solutions are suggested based on q-ary multiple-valued decision diagrams and examples show simple implementations for these kind of symmetric functions. Applications include ciphers design and hash functions design but also search for improved covering radius of codes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, G.E.: The theory of partitions, Encyclopedia of mathematics and its applications, vol. 2. Addison-Wesley Publishing Company, Reading (1976)

    Google Scholar 

  2. Ars, G., Faugere, J.-C.: Algebraic Immunities of functions over finite fields, INRIA Rapport de recherche N° 5532 (March 2005)

    Google Scholar 

  3. Berbain, C., Billet, O., Canteaut, A., Courtois, N., Debraize, B., Gilbert, H., Goubin, L., Gouget, A., Granboulan, L., Lauradoux, C., Minier, M., Pornin, T., Sibert, H.: DECIM-128, https://www.cosic.esat.kuleuven.be

  4. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers C35(8), 677–691 (1986)

    Article  Google Scholar 

  5. Butler, J.T., Herscovici, D.S., Sasao, T., Barton, R.J.: Average and Worst Case Number of Nodes in Decision Diagrams of Symmetric Multiple-Valued Functions. IEEE Transactions on computers 46(4) (April 1997)

    Google Scholar 

  6. Cameron Peter, J.: Permutation Groups. Cambridge Univ. Press, Cambridge (1999)

    MATH  Google Scholar 

  7. Camion, P., Canteaut, A.: Generalization of Siegenthaler inequality and Schnorr-Vaudenay multipermutations. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 372–386. Springer, Heidelberg (1996)

    Google Scholar 

  8. Canteaut, A., Videau, M.: Symmetric Boolean Functions. IEEE Transactions on information theory 51(8), 2791–2811 (2005)

    Article  MathSciNet  Google Scholar 

  9. Chen, H., Li, J.: Lower Bounds on the Algebraic Immunity of Boolean Functions, http://arxiv.org/abs/cs.CR/0608080

  10. Cusick, T., Li, Y., Stanica, P.: Balanced Symmetric Functions over GF(p). IEEE Transactions on information theory 54(3), 1304–1307 (2008)

    Article  Google Scholar 

  11. Dixon, J.D., Brian, M.: Permutation Groups. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  12. Heinrich-Litan, L., Molitor, P.: Least Upper Bounds for the Size of OBDDs Using Symmetry Properties. IEEE Transactions on computers 49(4), 271–281 (2000)

    Article  MathSciNet  Google Scholar 

  13. Knuth, D.: The art of Computer Programming. Sorting and Searching, vol. 3, pp. 506–542 (1973)

    Google Scholar 

  14. Lobanov, M.: Tight bound between nonlinearity and algebraic immunity, Cryptology ePrint Archive, Report 2005/441 (2005), http://eprint.iacr.org/

  15. Maitra, S., Sarkar, S., Dalai, D.K.: On Dihedral Group Invariant Boolean Functions. In: Workshop on Boolean Functions Cryptography and Applications, 2007 (BFCA 2007), Paris, France, May 2-3 (2007)

    Google Scholar 

  16. Mitchell, C.: Enumerating Boolean functions of cryptographic significance. Journal of cryptology 2(3), 155–170 (1990)

    MATH  MathSciNet  Google Scholar 

  17. Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 474–491. Springer, Heidelberg (2004)

    Google Scholar 

  18. Pieprzyk, J., Qu, C.X.: Fast Hashing and Rotation-Symmetric Functions. Journal of Universal Computer Science 5(1), 20–31 (1999)

    MathSciNet  Google Scholar 

  19. Qu, C.X., Seberry, J., Pieprzyk, J.: Relationships between Boolean Functions and symmetry group. In: International Computer Symposium 2000, ISC 2000, pp. 1–7 (2000)

    Google Scholar 

  20. Rivest, R., Vuillemin, J.: On recognizing graph properties from adjacency matrices. Theoretical Computer Science 3, 371–384 (1976)

    Article  MathSciNet  Google Scholar 

  21. Sarkar, P., Maitra, S.: Balancedness and Correlation Immunity of Symmetric Boolean Functions. In: Proc. R.C. Bose Centenary Symposium. Electronic Notes in Discrete Mathematics, vol. 15, pp. 178–183 (2003)

    Google Scholar 

  22. Stanica, P., Maitra, S.: Rotation symmetric Boolean Functions: Count and cryptographic properties. In: Proceedings of R.C. Bose Centenary Symposium on Discrete Mathematics and Applications. Indian Statistical Institute, Calcutta (December 2002)

    Google Scholar 

  23. Von Zur Gathen, J., Roche, J.R.: Polynomials with two values. Combinatorica 17(3), 345–362 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yuan, L.: Results on rotation symmetric polynomials over GF(p). Information Sciences 178, 280–286 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joachim von zur Gathen José Luis Imaña Çetin Kaya Koç

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mouffron, M. (2008). Transitive q-Ary Functions over Finite Fields or Finite Sets: Counts, Properties and Applications. In: von zur Gathen, J., Imaña, J.L., Koç, Ç.K. (eds) Arithmetic of Finite Fields. WAIFI 2008. Lecture Notes in Computer Science, vol 5130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69499-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69499-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69498-4

  • Online ISBN: 978-3-540-69499-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics