CS-2006-28

Deterministic Simulation of NFA

with k-symbol Lookahead

Bala Ravikumar and Nicolae Santean

Technical Report 28

David R. Cheriton School of Computer Science
University of Waterloo

2006

Deterministic Simulation of NFA with k-symbol
Lookahead

Bala Ravikumar and Nicolae Santedn

Department of Computer Scierlce
Sonoma State University, Rohnert Park, CA 94928
School of Computer Sciente
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Abstract. We investigate deterministically simulating (i.e., solving the member-
ship problem for) nondeterministic finite automata (NFA), relying solely @n th
NFA's resources (states and transitions). Unlike the standard NFA gionylan-
volving an algorithm which stores at each step all the states reachedteonafe
istically while reading the input, we consider deterministic finite automata (DFA)
with lookahead, which choose the “right” NFA transitions based on a fixead-n
ber of input symbols read ahead. This concept, knowoalsahead delegatign
arose in a formal study of web services composition and its subsepreatical
applications. Here we answer several related questions, sufethas is looka-
head delegation possible®nd“how hard is it to find a delegator with a given
lookahead buffer size?'In particular, we show that only finite languages have
the property that all of their NFA's have delegators. This implies, amahg o
ers, that delegation is a machine property, rather than a languagetgrafe
also prove that the existence of lookahead delegators for unambidiiéiss
decidable, thus partially solving an open problem. Finally, we show thahfind
delegators (even for a given buffer size) is hard in general, anditseet for
unambiguous NFA, and we give an algorithm and a compact charaatterizor
NFA delegation in general.

1 Introduction

Finite automata models are ubiquitous in a wide range of applications. The
well-known classical applications of automata involve parsing, string match-
ing and sequential circuits. Recently, formal models based on finite automata
have been applied in service-oriented computing, a nhewly emerging frame-
work to harness the power of the World Wide Web [Berardi et al., 2008

basic computational problem that arises in this frameworaimmated ser-

vice compositionGerede et al., 2004]. Informally, this problem can be de-
scribed as follows: an activity automaton is a finite state acceptor that ac-
cepts a sequence of tasks (each represented by an input symboinaiedo
composition involves breaking down a sequence of tasks and assigning the

2

to individual activity automaton. Formally, a system of finite automata
A A1, A2, ..., Ac > is said to be composable if every strimgaccepted by the
DFA A can be written as a shuffle product of strings, ..., w; where each
w; is accepted byA; for somej. This formal framework for e-services com-
position was introduced by [Berardi et al., 2003] and has recently steeied
extensively by a number of authors: [Ibarra et al., 2006], [Hull and2804],
[Mecella and Giacomo, 2004], [Gerede et al., 2004], [Gerede et &l5]24c.

A requirement more stringent than composability is the existenclke- of
lookahead delegators (&rdelegators for brevity) which is defined as follows.
Given a system: Ay, Ay, ..., Ay > of DFA's or even NFA's, letd’ be the “shuffle-
product” of the system. Informally, a DFAIs said to be&k-delegator fo®' if the
states ofA are a subset of the states®f Further, based on the current state and
the nextk-input symbols, the transition table Afmakes a deterministic choice
among the possible choices of the NFA in such a way that if (and only if) the in-
put string is accepted b¥/, the simulation ofA also results in an accepting state
when the simulation is complete. For a given NFA, a basic question is whether
it has ak-delegator forsomeintegerk. One can also ask whether an NFA has a
k-delegator for aiven k

k-Delegators were first introduced informally in [Dang et al., 2004] in their
study of e-services composability. In the same paper was establishedahat th
existence ok-delegators is decidable for a gikeHowever, the complexity of
this problem was not addressed. Moreover, the problem of decidingxike
tence of &-delegator foisome kwas left as an open problem. In this work, we
address these and some related questions, without addressing the im@ication
of our results in e-service applications.

The main results of this work can be summarized as follows. First, we define
delegability as a property which can be viewed both as a language and machin
property. When viewed as a language property, we characterizerttily faf
regular languages whose all NFA have delegators. Since this family tutms o
be that of finite languages, we adopt the second point of view, thatexjalaility
as a machine property. We consider the complexity of determining if a given
NFA has &-delegator, and we formulate three versions of this problem. The first
one involves a fixed, the second one includ&gin unary) as part of the input
and the third one involves determining ikedelegator exists for some arbitrary
k. When the input is restricted to amambiguousNFA, the first problem is
shown to have a polynomial time algorithm, the second one is shown to be in
co-NP and the third one is shown to be in PSPACE. When the input may be an
ambiguous NFA, even the first version is shown to be PSPACE-complete. We
then provide an algorithm for Problem 2 in the general case, that is nfimie ef
than the brute-force algorithm. This algorithm also leads to a simple necessary

3

and sufficient condition for the existence ok-alelegator, for some arbitraky
Although the decidability of Problem 3 in the general case still remains open,
our characterization provides a promising approach towards its resol\imn
conclude with some open problems and directions for future work.

2 The Delegation Problem

In the following we assume known basic notions of automata theory (see, for
example, [Hopcroft and Ullman, 1979] and [Yu, 1997]). Notation-wéeNFA
is a tupleM = (Q, 2, d,qo, F) with Q a finite set of states an alphabety C
Q x Z x Q a transition relationgg an initial state, andc C Q a set of final
statesM is t ri mif each of its states is usefudiccessi bl e (there exists a
computation from the initial state and ending with it) amol accessi bl e
(there exists a computation starting from it and ending with some final state). If
d is a function (as opposed to a relation), tiibecomes a DFA (deterministic
finite automaton). We say that two automata are equivalent if they recogeize th
same language. In the following we denotesothe empty word, by the set
of all words overX of lengthk, by pref(L) the set of all prefixes of words in a
language., and bypre fi(L) the setpre f(L) N =,

By a DFA withk-lookahead buffer we understand a DRA= (Q, 2, f,qo,F)
with f : Q x X — Q, which operates as followA has a buffer wittk cells which
initially contains the firsk symbols of the input word (or, if the word has fewer
symbols, the entire word). At each computation st&gonsumes one input
symbol and stores the followinkgsymbols of the input tape in its buffer. The
function f decides the next state based on the current stafeaoid its buffer
content. It is easy to see that DFA witHookahead buffer are equivalent with
standard DFA: one can view the buffer content as part of automatdeisai
state.

We begin with the definition of &-delegator, equivalent with, however dif-
ferent from, that provided in [Dang et al., 2004] — for the reason of avipig
the formalism.

Definition 1. An NFA M= (Q,2,d,00,F) has a k del egat or if there ex-
ists an equivalent DFA with k-lookahead buffe=AQ, X, f,qo, F) such that
f(g,a1...8) € 6(q,a1) for all (g,as...ax) in the domain of f.

We say thatA is a k-delegator forM or, when the context makes it clear, we
denotef in the above definition to be ladelegator foM (implying that there
exists a DFA withk-lookahead as in the definition, withits transition function).
Indeed,M andA share the same resources (states and transitions) and the pair
(M,) uniquely identify thek-delegatorA for M.

Itis clear that any DFAM has a 1-delegator: simply choo§én the above
definition as being the transition function Bf. There are also NFA's that can
have a 1-delegator. On the other hand, for any gksénis not hard to construct
an example of a NFA that haskadelegator, but not & — 1)-delegator.

The following example shows that there are NFAs that do not hake a
delegator for ank.

Example 1.Consider the NFAM in Figure 1, for the languagk of all words

w e {0,1}* in which some pair of successive occurrences of 1 has an odd num-
ber of 0’'s in between them. It is easy to see thatloes not have k-delegator

for any positive integek. The NFA in Figure 2 is annanbi guous NFA(i.e.,

0,1 0,1
0

B a@r e
0

Fig. 1. An NFA which has nk-delegator for ank.

any word is the label of at most one successful computation), and yas itd
k-delegator for ank.

Fig. 2. An unambiguous NFA which has rnedelegator for ank.

Remark 1.We restrict our study to tring-free NFA, since arg-NFA has nok-
lookahead delegators for some/any intelgdrand only if its e-free equivalent
(considering the standagdelimination) has the same property.

Proof. It suffices to notice that a delegatbmvhich follows ane-transition does
not “consume” the input, hence its buffer remains unchanged. Coestygu
the e-closure andc-elimination (as shown in Figure 3) can be performedfon
in order to obtain a delegator for tlsefree equivalent NFA. O

BV E a;

f(oa...a)

Fig. 3. Thee-removal for ak-delegator.

The basic idea in Definition 1 is that if a NA¥ has ak-delegatorA (or equiv-
alently, f), then given as input for the delegator the sequence of buffer donten

X1 X2 Xn—k+1 Xn—k42 #
X2 X3 Xn—k+2 Xn—k+3 #
X X1 Xn # #

A simulatesM by entering a sequence of states of the NFA in such a way that if
there is an accepting computationNhfor the stringxix...x, (i.€., a sequence

of states leading to an accepting state) tAgoes through one such sequence of
states leading to acceptance as well. Notice ghigtnot required to check that
the input is in the “correct format”, that is, it does not check that eacbessive
“super symbol”, consisting of a buffer &fsymbols from the original alphabet, is
obtained by subsequently dequeuing one symbol from the buffer apokeimg

a new symbol. Furthermore, notice that when the right-end of the input string
is reached, a padding symbol # is added to the buffer content in ordeef k
the buffer always filled (always containifkgsymbols). We will show later that
padding the input is just a matter of formalism, and will be ignored most of the
time.

Remark 2.Notice that “delegation” can be used as a measure of NFA nonde-
terminism. If NFAM has anm-delegator and’ has am-delegator, withm, n
being the smallest such integers, and if mthen the cost of deterministically
simulatingM’ is greater than that fdv. In this senseM’ is “more nondeter-
ministic” thanM.

It is clear that every regular languageis accepted by an NFA that has a 1-
delegator, namely a DFA fdr. On the other hand, it may be the case that for
some regular languages, every associated NFA may hiekekegator for some

k. The next definition is intended to characterize such regular languages.

Definition 2. Let L be a regular langauge.

(i) Lis said to beneakl y del egabl e if for any NFA M for L, there exists
a k such that M has a k-delegator.

(i) L is said to bestrongly del egabl e if there exists a k such that for
every NFA M for L, M has a k-delegator.

The next result shows that the classes of regular languages thataké/wel-
egable and strongly delegable coincide. Mebe an NFA and lep be a state of
M. By Lp we will denote the language acceptedMyif p is chosen as the start
state ofM (with no other change to its definition).

Theorem 1. The following statements are equivalent:

(1) Lis finite.
(2) L has a strong delegator.
(3) L has aweak delegator.

Proof.

1= 2 Letm be the length of the longest string lin It is easy to see that any
NFA for L can be fn-simulated” using a DFA, hence it has andelegator.

2 = 3 is obvious from the definition.

3 =1 We prove the contrapositive, namelyiifs not finite then there exists an
NFA M’ for L that does not havelkadelegator for ank. Let M be a DFA forL.
We assume tha¥l is trim, that is, it does not have any useless states. TWus,
may be incomplete. Sindeis infinite, M has at least one cycle.

First we consider the simpler case, in which some accepting state lies in a
cycle. Fix one such cycle containing the stapgspy, ..., pr. Thus, one of the
states in the seftps, p2, ..., pr} IS an accepting state. Lef be the set of labels
on the transition fronp; t0 P 1) mod - We define a NFAM' as follows. We

start withM and remove the statgs, ..., pr. Then, we add éstateqys, ..., Oor
andsy, ..., S, and add transitions to these states in such way, that for all states
dj, Or+j, Sj andsr+j, the equalitylq ULg,,; ULs; ULs,; =Ly, holds.

For all j € {1,...,r} we consider all transition labels &f and add them
to transitions fromg; to dj1, from djr t0 q(j1r11) mod 2r» froms;j to sy, and
from sjir t0 S(jr+1) mod2r- NEXt, we add the labels df; to transitions from
p1 to g2 as well as tos,. Finally, for each transition il from p; to any state
not in the cycle, we add iM’ transitions with the same label from), o,
sj andsj to that state. A transition i from a state not in the cycle to a
statep; in the cycle is replaced iM’ by the transitions from that state to each
stateqj, gr+j, Sj andsj. Finally, consider a transition iM from p; to p
wheret # (j+ 1) mod r. In M” we replace these transitions by a corresponding
transition fromg; to ¢, from g, j to gr1+ as well as frons; to s, and froms;
tos.¢. The accepting states M’ are chosen as follows. The accepting states of
M that have not been removed will continue to be accepting states. Among the
added states, accepting states are determined as follopjsnvés an accepting
state inM, thenq; as well ass;j will be chosen accepting states M. This
construction is reflected on a small scale in Figure 4. Notice th\ati$ in state

Fig. 4. A cycle inM and its corresponding twin cycles M .

p1 after reading some input symbols, then by readirgnd looking ahead at
the nextk — 1 symbols does not suffice for predicting which transition should
be followed. Indeed, from state; both wordsa(ba)? anda(ba)?*! lead to
acceptance iM; however, if a hypotheticadt-delegator foM’ commits to any
particular transition fronp; on inputa, then one of these two words would lead
to a failing computation. It can be shown thaM’) = L and thatM’ does not
have ak-delegator for ank. The details are straightforward.

Consider now the case when the cycle containagpz, ..., pr does not
have an accepting state. Singeis trim, there are states in this cycle which
have transitions to some states that do not belong to the cycle (in order to have
successful paths, the states in the cycle should be connected with some fina
states). Assume one such statgjiswith j € {1,...,r} and that the set of labels
of transitions fromp; to states not in the cycle is denotedduyt(p;j). This state
will play the role similar to that of the final states in the previous construction.
Without loss of generality, we assume tha¥ 1. We construct an automaton
M’ as before, with the following exception: the stagg®nddj.) mog2r have
no transitions to states which do not belong to the cycle (howeygF) mod 2
andg; do have such transitions with labels d@uit(p;j)). This modification is
reflected in Figure 5M’ does not have &-delegator for a reason similar to

c1(r-t,-j) mod 2r

- S
- ~
. N
’ \
/ \

s(r-«-j) mod 2r

/.\?ut(pj)

Fig. 5. The construction for a cycle with no final states.

9

that in the previous construction: committing to a transition ouppfvould
discriminate among paths using an even versus odd number of p{afése
details are straightforward. O

In the following section we investigate machine properties related to the exis-
tence ofk-delegators, as a preamble to the algorithmic approach on NFA dele-
gation.

3 Basic Results on NFA Delegation

LetM = (Q,2,0,00,F) be a trim NFA andq € Q, a € Z such thatd(qg,a) =
{q1,...,qt} witht > 1 (g has non-deterministic transitions on ingitAs usual,
by Lq we understand the language obtained by sefttjig be initial state in
M. Notation wise, we denote gv a word that starts witla and whose suffix
obtained by removingisv.

Definition 3. With the above notations, we say that q is Bizi nd if for all
i €{1,...,t} the following inequality holds:

U v‘quj> \v Ly #0 .
JE{L) A
This definition has the following delegation-related interpretatiorMifhas
reached av-blind state, then reading aheadrom the input tape does not suf-
fice for deterministically choosing a certain next transition: each transition ca
potentially lead to non-acceptance for a word that should be acceptdd by

Definition 4. With the above notations, we denote thleé ndness of q (or,
the language of blind words for q) as being the language=B{w € >*/
qis w-blind} .

Lemma 1. State blindness is regular and effectively computablegq lisBinite
for some ¢ Q, then for every ve Bq, [w| < (497 +1)1=1 .

Proof. LetM = (Q, X, J, o, F) be a trim NFA andj € Q. We construct a DFA
Mg that accepts the langua@g and show that the number of statedMg is at
most(4‘Q|2 + 1)|Z‘. Then, ifBy is finite, the length of the longest string accepted
by Mq must be bounded b + 1)1%], and the claim will follow. The details
behind the construction of the DR#, are as follows.

Forasymbobe %, letd(q,a1) ={q1,q, ..., G }. By definition,w=ajay...ax
is in By if and only if for eachi € {1,...,t}, the following condition holds:

U (azas...ak)’quj) \ (agag...a) Lg #£0 .
je{1,2,..t}, j#i

10

Denote the language on the left-side of the above expressiBy.asWe con-
struct a DFAMq 5 to accepBya; as follows. The states of this DFA are of the
form < §,$ >, whereS;, S C Q. The transition functiord’ of Mg is es-
sentially that of the cross-product of the “subset construction” DEAfavith
itself. More preciselyd’ (< S, >,a) = < $3,S > whereS; = {q|q € d(p,a)
for somep € S} and similarlyS, = {q|q € &(p,a) for somep € S;}. The start
state of the DFA is chosen to Be {q;},< {q,...,0i—1,Gi+1,...,G >} and the
set of accepting statesis = {< $1,S >/ (Uges,Lq) \ (Uges, La) # 0}

It can be checked that the above DNR 5 accepts the languadi ai. The
number of states iMq i is upper-bounded by'@. Next, we construct a DFA
Mq,a accepting the languade,a = Nicqy,...1) Bgai. The size ofMga is upper-
bounded by #°, sincet <| Q|. Then, a DFA foraBy 4 has one extra state, and
the DFA forBy = ac s+ aBqa Will have a size upper-bounded i/Q° + 1)1,
This completes the proof. O

Remark 3.0ne may notice that if the blindness of a statef M is finite, thenq
may potentially be used in sorkdookahead delegator féd, with k sufficiently
large. Indeed, denoting— 1 to be the length of a longest word By, one can
observe that a buffer content of sikallows a delegator to make deterministic
decisions on which transition frompshould be followed. The reason is that for
any buffer contentv, with | w |> k, the state is notw-blind . Consequently, the
“interesting” states are those with infinite blindness.

Lemma 2. For any state q, Bis prefix-closed, except for the empty word.

Proof. It suffice to prove that if a statgis auw-blind then it isau-blind as well.
Let 5(q,a) = {a,...,0}, and assume by contradiction thts notau-blind.
Then, there exists an indéx {1,...t} such thatu 'L D Uj4u Lg. But
sinceq is auv-blind, there existz € 2* such thatvze (J; Lq; anduvz¢ Lg.
This contradicts the previous statement, through the ward O

The following corollary gives a sufficient condition for the existence ok
head delegators.

Corollary 1. Ifan NFA M has all its states finitely blind, then it accepts a looka-
head delegator.

Proof. One can constructlalookahead delegator, withgreater than the max-
imum length of the words belonging to any blind language of a staté. ifihis
is a generalization of Remark 3. O

Definition 5. A state q is k-blind if there exists a wordav>k such that q is
w-blind.

11

The following result is a reflection of Lemma 2.

Lemma 3. If a state g of an NFA A is k-blind, k 2, then it is I-blind for all
le{1,...,k—1}.

Proof. (sketch) If a statey is k-blind, then there exists a wond = av with
| w|=k such thatjis w-blind. Letav= ayzbe a factorization ofvwith | ay|=1.
We prove that is ay-blind.

Let 6(q,a) = {Q1,...,G}. Sinceq is w-blind we have that for ali €
{1,...,t} the following holds:

U (yz)iquj> \(yz)ill—cﬁ 3"é 0.
Je{d,...t}j#

If we denote by the above set-difference, we have that

U vity) iy iy 2o 40
Je{l..t} A

holds for alli € {1,...,t}, which shows thag is ay-blind, hence itid-blind. O

The following result provides a necessary condition for the existenid&Af
delegators.

Corollary 2. If the initial state of an NFA is infinitely blind then the NFA has
no k-lookahead delegator for any integer k.

Proof. (sketch) Suppose the automaton accept$écankahead delegator despite
the fact that its initial stateyg is infinitely blind. We choose a wordr = av
with | w |> k such thatgp is w-blind. Observe thatv € pref(L), whereL is
the language accepted by the NFA. I%t),a) = {q1,...,q } and assume that
the input word hasv as a prefix. In this case, the lookahead delegator must
commit deterministically (regardless on what follows aft@ito one transition,
say,(qo,a,qi), withi € {1,...,t}. But by the definition o&v-blindness, we know
that there exist a word € >* such thatavze L and d(q;,vz) does not contain
any final state. This word is rejected by the delegator, despite the fadt that
belongs to the language.

Here we have silently used the fact thagifis | w |-blind, then it must be
alsok-blind, sincek <| w|. This fact ensured the existencezof 0

Remark 4.Notice that, by Lemma 1, the conditions in Corollary 1 and Corol-
lary 2 are testable. Notice also that-tookahead delegator for an NBA must
havek > r, wherer is the smallest integer such that the initial staté/ois not
r-blind.

12

Definition 6. A delegator for M, f: Q x =K x Qist r i mif all its “predictions”
(or, delegations) are used in some successful computations (f neelds de-
fined everywhere).

The following results will be used in proving the correctness of Algorithm 1 in
Section 4.2, which computésdelegators.

Lemma 4. If f : Qx =K — Q s a trim delegator for M, then
f(p,av)=q = (Vbe > s.t.vbe pref(Lq) : f(q,vb) # (Z)) .

Proof. Assume thaff (p,av) = g, and takevb € pref(Lq). There exists a word
zsuch thawvbze Lq. Sincef is trim, there exists a word such that while read-
ing xavthe delegator reacheleterministically pwvhile holdingavin its buffer.
Observe now thatavbze L and the only way for the delegator to accept it is to
make a choice fof (g, vb). 0

Corollary 3. If f : Q x X — Qis a trim delegator for M, then
f(pav)=q = <Vbe 2 s.t.vbe pref(Lg): vb¢g Bq> .

Corollary 4. If f : Qx X — Q is a trim delegator for M, and if ... vk € By
for some state g Q then f(p,av;...w_1) #qforallpe Q, ac .

Proof. Suppose there exispsc Q such thatf (p,av; ... vk_1) = q. By Lemma 4,
f(Q,vi...w_1b) # 0, for all b € > such thatv;...v_1b € pref(Lg). But
V1...Vk_1Vk € Bq C pref(Lq), which implies thatf (g, v1 ... Vi) must be defined
despite the fact thajis vi ... - blind. This is a contradiction. O

In the following we give another definition (hence, another formalism) for
NFA delegation, equivalent to Definition 1. By, we understand the language
accepted by.

Definition 7. Let M= (Q,%,d,0qo,F) be an NFA. A DFA D with k-lookahead
buffer is adel egat or for M if

1. lm=Llp,
2. M and D have identical transition graphs with the exception of labels,
which are in the following relation:

For each transitiond(qg,a) = {q1,...,q} in M, as depicted in Figure 6.A,
there correspond t lookahead transitions in D, as shown in Figure 6.B, with
the following properties: (a) for all € {1,...,t} the language Lhas words

of length less than k; and (b) for allj € {1,...,t} with i # j we have
aLin aLj =0.

13

(A) (B)

Fig. 6. Transitions in a NFA and its delegator.

In the previous definition we alloly; to be 0, with the meaning that a transition
labeledad = 0 is “non-existent”, i.e., the delegator chooses to never use it.
Notice that the second condition of Definition 7 implies tBaits a deter-
ministic lookahead automaton. Indeddloperates as following: if a statgis
reached and a wordv is in the lookahead buffer, the automaton searches for
avin all languagesl,;. If it finds it, i.e., av € al; for somei, it will choose the
corresponding transition labeledl; and will advance in the next state

Corollary 5. With the above notations, if M has a lookahead delegator, then it
has one such that for every state @ and every letter & >, we have BnalL; =
0, Vie{d,...,t}.

Proof. Let q be a state irM anda be a symbol withd(q,a) = {au,...,0},
t > 1. Suppose that the corresponding transitions in a dele@ator M are
(9,al1,q1),...,(0,als,q). If for somei € {1,...,t} we haveave Bgnal,, then
one can easily observe that the delegator can never use the tra(giaomm;)
sinceqis av-blind. Hence, one can safely remasefrom the languagal;. O

This corollary gives a “normal form” for lookahead delegators, by aliding
label information that is never used.

We now have sufficient tools for investigating algorithmic aspects related to
NFA delegation.

4 Complexity of Determining if a k-Delegator Exists

We consider the following computational problems.

14

Problem 1.Letk be a fixed integer (not part of the input)
Input: An NFA M
Output:“YES” if and only if M has ak-delegator, NO' otherwise.

Problem 2.
Input: An NFA M and an integek (in unary)
Output:“YES” if and only if M has ak-delegator, NO' otherwise.

Problem 3.
Input: An NFA M
Output:*YES” if and only if M has ak-delegator for somk, “NO’ otherwise.

As in the previous sections, we assume tiails trim. Recall the result in
Lemma 1, which turns out to be useful in addressing the complexity of theeabov
problems: for a statg of an NFAM, the languag®y, of blind words forq, is
regular and(4‘Q‘2 + 1)|Z‘ provides an upper-bound on the state complexity of
Bg. In the following section we first tackle the special case in which the input
NFA is unambiguous. The subsequent section will deal with the genesalata
NFA's that may be ambiguous.

4.1 The Case of Unambiguous NFA's

In this subsection we show that in the case oumambiguousNFA as input,
Problem 1 isin P, Problem 2 is in co-NP, and Problem 3 BSPACE

Note 1. We leave for further work to answer the question whether Problem 2 is
co-NP-complete and Problem 3 is PSPACE-complete for unambiguous.NFA

We begin with a definition, which turned out to be very useful in providing
characterizations for NFA delegation in the unambiguous case, andsaeges
conditions for the general case.

Definition 8. Let M= (Q,X,d,do,F) be a NFA, and let ¢ Q and we X*.
A pair (g,w) is said to becr uci al for M if the following holds: There exist
strings x and y such that

1. xwyisin M), and

2. every accepting computation of xwy reaches state q after reading the inp
X.

Then, the following lemmas hold for unambiguous NFA.

Lemma 5. If M is unambiguous, then for every state g and for every string
w € pref(Lg), the pair(qg,w) is crucial.

15

Proof. SinceM is assumed to be trim, every stajec Q is useful, i.e., there
exists a string such thag € d(qo,Xx) and a string/ such thatd (g, wy) N F # 0.
Existence of another accepting computation of the strimgthat does not reach
the statey after readingc would imply that there are two accepting computations
for the stringxwy contradicting the fact tha#l is unambiguous. O

Lemma 6. Let M be an unambiguous NFA, q be a state of M and 8 for
some integer k. Ifg, w) is crucial for M and if g is w-blind, then M cannot have
a k-delegator.

Proof. (sketch) By definition, there exist stringsaandy such thakwy € L(M)
and the unique accepting computation on the stxingreacheg after reading
the prefixx. Supposévl has ak-delegator. LeD be ak-delegator(simulator) for
M, as defined in Definition 7. It is clear that the state reacheD oy reading
the prefixx of the input stringxwy is g. Now D will not able to continue the
simulation from the statq since it isw-blind. O

Lemma 7. An unambiguous NFA M has a k-delegator if and only if for every
state g of M there exists no string w of length greater than or equal to k such
that q is w-blind.

Proof. (“=") Let M have ak-delegator. Suppose there is a sigi@nd a string
w of length greater than or equal kosuch thatq is w-blind. It is clear that
w e pref(Lq); and by the above lemmal] cannot have &-delegator - fact
which contradicts the hypothesis.

(*<=") It follows immediately from the above lemmas. O

Lemma 8. LetM= (Q, 2, d,qo,F) be an unambiguous NFA, k be an arbitrary
integer, and let @, Q2 C Q with Q1N Q2 =0and Q UQ2 C d(qo,w) for some
word we Z*. Then testing whether

(U k) v (U)0

qeQ aeQ

can be done in polynomial time.

Proof. The basic idea for such a polynomial time algorithm is due to Stearns and
Hunt [Stearns and Hunt, 1985], that containment and equivalenbéepne are
polynomial time decidable for unambiguous NFA's. Their approach wasdo us
linear recurrence equations for designing an efficient algorithm foptbislem.

Here we use a simpler (but essentially equivalent) approach basedtcartier
matrix technique.

16

We first show that containment problem for unambiguous NFA is solvable
in polynomial time. For an unambiguous NFA= (Q, %, d,qo, F), let us define
a|Q| x |Q| matrix Ty as follows. We label the states bf as{1,2,...,|Q|}. If
there arek transitions from stateto statej, then sefly[i, j] = k. Denote by
the column vectov = [vy,Va,...,V|q] wherey, is 1 if i is an accepting state and
0 otherwise. Denote also lythe row vectoruy, Uy, ..., Uig] whereu; is Lif i is
the start state and 0 otherwise. Now, it is easy to check that the numbeng$str
of lengthm (for any integemm) accepted by is given byuTyjv. It is clear that,
for a givenm, the entries of,' can be computed usir@(|Q|3log m) arithmetic
operations by the “repeated squaring” technique. Note also that the dibkiz
the integers in the matriX,;' is bounded byO(m°) bits for some constant -
proving that the claim of polynomial time bound is “genuine”, i.e., it holds in
the bit complexity model as well. In summary, the number of strings of lemgth
accepted by an unambiguous NFAcan be computed in time complexity that
is a polynomial inM| andlog m

Now let M1 andM; be two unambiguous NFA's. We show, using Stearns
and Hunt's technique, that the containment problefivi;) C L(My) (or its
complement, namell(M;) \ L(M1) # 0) can be solved in time polynomial in
IM1] 4 |[M2|. The basic idea is to reduce (in polynomial time) the containment
problem to theconditional equivalencproblem, which is as follows:

Conditional Equivalence Problen@iven two unambiguous NFAM3 andMy
such that.(M3) C L(Ma), determine ifL(M3) = L(Ma).

SinceL(M;) C L(My) if and only if L(M1) = L(M1) NL(Mz), we can choos®ls
= M; andMgs to be an NFA that acceptsM;) NL(My). The standard “pair con-
struction” [Hopcroft and Ullman, 1979] for intersection for languagesepted
by NFA's results in the size dfl3 being bounded byM;| x [M;| and it is also
easy to check thatl; is unambiguous as well. In view of the above reduc-
tion, it is enough to show that there exists a polynomial time algorithm for the
conditional equivalence problem for unambiguous NFAs. This algorithas
follows: for everyk € {1,2, ..., |Qs| +|Q4| } check whether the number of strings
of lengthk accepted b3 andM, agree. Theri(M3) = L(M,) if and only if
the above check succeeds. It is not hard to show that this check psavidec-
essary and sufficient condition for the conditional equivalence pmobfgom
the algorithm based on the transfer matrix technique, this check can béndone
polynomial time and the claim follows.

We conclude the proof by showing that the given problem can be rddace
the containment problem for unambiguous NFA's. Let us define the NBA's
andMs as follows:M; (M) is constructed from a copy &l by creating a new

17

start staten; (np) and adding arz-transition fromn; (n,) to each state i1Q;
(Qo). Finally, we remove the-transitions and trinM; andM,. We now show
thatM; andM, are unambiguous NFAs. We present an argument onlywfgr
since a similar argument holds fbt, as well. Suppos#l; is ambiguous. Then
there are two accepting computations for some accepting striklg.iSuppose
the two accepting paths branch for the first time at stateet the label of the
two successful paths branching frabey. If s# nq, thensis a state irM. Let
X be a string that takes the start stggeof M to states. It follows that there are
at least two accepting computations for the steiggn M, contradicting the fact
that it is unambiguous. K= n; on the other hand, then it follows that the string
Xy can be derived in two ways ikl, again a contradiction. Thud; (andM,)
are both unambiguous. It is easy to see th{ad;) \ L(M2) # 0 if and only if

(U)V (U)20

qgeQ aeQ

and this completes the proof of the lemma. O
We are now ready to show the first main result of this subsection.

Theorem 2. Problem 1 can be solved in polynomial time when the input NFA
is unambiguous.

Proof. The input to the problem are: a (trim) unambiguous NRKA =
(Q,Z,d,q0,F) and an integek (in unary). By the Lemmas 5 and 6, it is clear
thatM has ak-delegator if and only if, for every statpe Q, all strings inBq
have a length smaller thdn To check this condition, we proceed as follows:
Forasymbob e 2, letd(qg,a) = {01,02, ..., }. Recall thatv=aw...v is in By

if and only if for eachi, the following condition holds:

U (V2V3...Vk)_quj> \ (Vava. Vi) iy £ O .
je{12..t}, j#i

We employ a notation used in Lemma 1, that the language on the left-side of
the above expression is denotggl ;. For each paifg,w) wherew = vqVa...V,

we check whethew ¢ By, i as follows. We compute the sets of stefRes= { p|

p is reachable frong; on vovs...v}, andRx = {p| p is reachable frony; for
somej # i onvz...w}. Note that for a given paifqg,w), all these sets can be
constructed in time polynomial itM|, and use the algorithm of Lemma 8 to test

(Ut (U Lg)-e

qge R ge Ry

18

If this is true, then we try the nextfrom the setd(q,a). If no i works for a
particularw, then we return NO'. Otherwise, we continue with the next string
w of lengthk in Lq. If we find a successful simulating move for every gajw)
whereq € Q andw < Lq, then the algorithm returnsyES”. It is not hard to
check that the total time complexity of this algorithmQg2¢P(|M|)) for some
polynomialP and hence for a fixeH, the algorithm runs in polynomial time.

O

The proof of the next theorem follows very closely that of the aboverdmo
so we will only present a sketch.

Theorem 3. Problem 2 is in co-NP when the input NFA M is unambiguous.

Proof. The algorithm is similar to the above - except that the algorithm will
guess a paifqg,vi...v) for someq € Q and some stringv = v;...vg € 3K
and will check thatv € By, for everyi. Note that the setR; andR, can be
computed in timeO(k|M|) and this is why it is crucial to assume thais given
in unary. The rest of the details are the same. O

It is not hard to modify the algorithm(s) described previously for Problems
1 and 2 such that it actually constructs #idelegator in the case of alYES”
answer.

We will finally discuss Problem 3 for unambiguous NFAs. The following
lemma is easy to prove.

Lemma 9. An unambiguous NFA M has a delegator if and only {fi8finite
for every state q of M.

Proof. (“<") Let | be the length of the longest stringliy, By. It is easy to see
that, withk =1 — 1, M has ak-delegator.

(*=") Suppose thaM has &k-delegator for some integ&rand assume by con-
tradiction that the conclusion does not hold. Then there exists agstaitsh that
Bq is infinite. This implies thaBq has a string of length greater thanLet w
be such a string. Clearlyy is also inpref(Lg). SinceM is unambiguous, by
Lemma 5,(g,w) is crucial. This leads to a contradiction. 0

Theorem 4. Problem 3 is decidable in PSPACE for unambiguous NFA.

Proof. Given an unambiguous NF¥, it is enough to check th& is finite for
every state of M. Since we can explicitly construct a DFA for each languBge
and since finiteness of a regular language is decidable, the conclubmwsto

19

To show that the problem is IRSPACE we have to show that finiteness
of eachBy can be tested iRSPACE One way to show this is by showing that
the complement problem is IRSPACE(since PSPACEis closed under com-
plement.) Recall that in Lemma 1, we described a construction of the DFA for
Bg.ai- Instead of constructing this DFA explicitly, the algorithm guesses a string
T of lengthr and it checks whether is in By for eacha € = and each.

Note thatr cannot be explicitly written down since it would require exponential
space to do so. Instead,= |t is written in binary, and the successive sym-
bols of T are guessed, followed by the check whethés in By ;. Finally, it is
checked whethar> 4/, Using the fact that [if a DFAM with m states accepts

a string of lengthm or more therL.(M) is infinite], it follows that the algorithm
described above verifie®NO' instances correctly. The above algorithm is a non-
deterministic polynomial space algorithm, but sileSPACE= PSPACE and
sincePSPACEis closed under complement, the above algorithm can be readily
converted into &SPACEalgorithm. O

4.2 The Case of Ambiguous NFA's

In this section, we describe an algorithm for Problem 1 in the general case
namely the case in whicM can be ambiguous. We will show that the prob-
lem isPSPACEcomplete. This immediately implies that Problems 2 and 3 are
PSPACEhard in the general case.

Theorem 5. Problem 1 for the general case is PSPACE-complete.
The hardness holds for every fixeetK., 2,3,... .

Proof. To show its membership t®SPACE we will use the brute-force,
exhaustive search approach as in [Dang et al., 2004]. Given an MFA
(Q,Z,d,00,F), we generate all possibkedelegators and check if one of them is
a validk-delegator. For a fixel, the size of &-delegator is bounded (|M|)
and thus each one of them can be successively generafR8RACE Since
whether a giverk-delegatoM’ correctly simulates a NFM can be checked in
PSPACE(this problem is equivalent to NFA equivalence problem), it follows
that Problem 1 is ilPSPACE

To show that it isSPSPACEhard, we will reduce to it the problem “Is
L(N) C Lo ?" whereN is a NFA andL, is afixedunbounded language. It is
known ([Hunt et al., 1976]) that this problemRSPACEhard when the size of
the alphabet over whicN is defined is at least 2 (if the alphabet sizeNbfs
1, it is easy to see that the test Il§N) C Ly ?” can be done in c&P). The
reduction is as follows: we describe a polynomial time algorithm that, giien
constructs an NFM such thaM has a 1-delegator if and onlylifiN) C Lo.

20

Let Q" be the state set df, g be its start state, and I8’ be a DFA that
accepts the languade), Q' be the state set dfI’ and gy’ be its start state.
DenoteZ’ to be the alphabet over whidW’ is defined. We define an automaton
M = (Q,Z,d,sF) as following. We choose the alphah®tto be 2’ U {a,c},
wherea andc are two new symbols. We s& = {s,1,2,3,4,5,6} UQ UQ",
wheres, 1, 2, 3, 4, 5 and 6 are new state symbols. The transition relatisn
defined as followsd(s,a) = {1,035}, 6(1,€) = {ap}, (1,¢c) = {6}, d(0y,C) =
{2,4}, and for allb € X" we haved(2,b) = {3}, 3(3,b) = {2}, 6(4,b) = {5},
0(5,b) = {4} andd(6,b) = {6}. In addition,d includes all the transitions of
N andM’. Figure 7 details the construction bf in terms ofN andM'’. The
set of accepting states & will be the set of accepting states df andN, to
which we add the states 2, 5 and 6. To finalize the constructivhwé remove
the onlye-transition from state 1 using the standardemoval algorithm. The

(M/, for Lg
@ @ %
O T |
5
/Z/\
: o@i§o
S E
{ N
s %
2
| ‘

P

ZI

Fig. 7. The construction ok, acceptinga(cZ’* ULy UL(N)).

21
proof is complete by the following claim:
Claim. M has a 1-delegator if and onlyliff N) C Lo.

Proof.SupposéM has a 1-delegator, which reads the inptrom the initial state
s. The delegator has two choices, namely 1 gsid Note that the choicgy” is
not a valid one since all strings @x’* are in its blind set. Thus, the delegator is
forced to choosé (s,a) = 1. At this point (being in state 1), in order to correctly
simulateM it is necessary that(N) C Lo. Indeed, if this was not true, then
there would be a stringg € L(N) \ Lo with aw € L(M), and the delegator would
rejectaw (since there would be no successful computation starting at state 1 and
labeledw).

Conversely, supposk(N) C Lo. Then, it is easy to see thdd has a 1-
delegator. Starting at stakeand on inputa, the delegator chooselgs,a) =
1, and from this point it continues the simulationMfdeterministically, since
the set of states reachable from 1 have deterministic transitions. This simulation
is correct since all the strings that can be accepted by taking the othehbra
(namely viagp”) can also be accepted from state 1.

This completes the proof fdc = 1. The proof for the other values kfcan
be obtained by minor modifications of the above proof, hence the detains will
be omitted. O

Note 2. In the above construction, we needed a 4-letter alphabet for the con-
struction of M. It would be interesting to extend tHeSPACEcompleteness
proofs to smaller size alphabets.

Next, we describe a more efficient algorithm for Problem 1 in the general
case. We start with a simple, yet important remark.

Remark 5.Let p be a state oM, ave 3K, andd(p,a) = {a,...,q} (t > 0). If
a k-delegator forM reaches statp with av in its buffer, it must/will choose a
stateq; € d(p,a) such that
vilg2 U vig .
le{1,... t} 14
If two such choicesg; andq;, were possible in two delegator instance, then
V_qui = V_:LLqJ .

Consequently, an algorithm that aims at constructitkedalegator would con-
sider all state choiceg as above, and test each against a same teat sefvb/
vb e pref(Lg)} which is independent aj:

{vb/vbe pref(Lq)} = {vb/vbe pref(Lq)} .

22

To improve algorithm’s formalism, we give the following definition.

Definition 9. Let q be a state in M, w= a;...a and 6(q,a,...8) =
{q1,...qt}. A state gispot ent i al for (q,w) if it verifies:

(a2...a) g2 |J (a2...a) 'Lg -
le{L. thIA

Denote R, w) the set of all potential states fdg, w).

Notice that the above condition is related to “state blindness”, in the sense
that a statey is w-blind if and only if P(g,w) = 0. Notice also thaP(q,w) is
obviously computable for ang andw.

Algorithm 1 at page 23 computeskadelegator for a given trim NFAM and
an integelk > 0. It uses a vectoy which stores, for every statgpof M, a set
of wordsw € prefi(Lp) for which a hypothetical delegator must not regeh
with win its buffer (v is called a “forbidden” word fomp). The first part of the
algorithm decides whether ladelegator forM exists, by constructingy and
testing whetheW [qo] = 0, whereq is the initial state oM. If V[go] = 0, the
second part of the algorithm constructs-delegator stored in a tablgQ, ==K).

It does so in two phases: first, it computes the values[i, ==X, which are
filled recursively by procedurecbnstruct, after which it completes the table
with the values ifT [Q, Z<K] - done by function éxtend.

Correctness of Algorithm 1.

We start by making the following observations:

1. If the algorithm respondsYES”, then the obtained-delegator is trim. In
some sense, this shows an improvement from the brute-force algorithm
which tests for any imaginabledelegator whether it is or it is not equiva-
lent with M.

2. Corollary 4 justifies the step denoted by (*) in the main algorithm.

3. Lemma 4 and Remark 5 are the theoretical support for the step denoted by
(**) in the definition of construct

4. Corollary 3 justifies why after the initialization df there is no more need
to set cells ofT to NIL.

Definition 10. For w € pref(Lq), we say thatq,w) is f or bi dden, or that
w=a;...8 is a forbidden word for q, if one of the following two conditions is
satisfied, recursively:

1. qis w-bind;

23

Algorithm 1 Computing &-delegator.

Input: atrim NFAM = (Q, %, J,qp,F) and an integek > 0
Output: “YES” and ak-delegator T) if it exists, “NO’ otherwise

for allg e Qdo
V[q] + 0, computeprefi(Lg), and computé(qg,w) for all w € prefi(Lq)

while (V is updatedi do
for allge Qanda; ...a € pref(Lg) \V[q] do

if P(q,a;...a8) =0then
appenda; ...actoV[g //(¥)
else
if (VpeP(g,ar...ax): az...aZNV[p|Nprefi(Lp) # 0) then
appendh; ...ax toVIq]

if V[go] # 0 then
print “NCO’
else
print “YES”

for all ge Q andw € >k do
T[g,w] = NIL

construc{do, prefi(Lg,))
extendT)

return T

definition ofconstrucfq, W)

foralla;...ax e Wdo
if T[g,a1...8] = NIL then
choosep € P(q,a;...a¢) S.t.az...a> Npref(Lp) NV([p] =0
Tlg,a;...a] — pW —{a2...ab/ay...akb € pref(Lp)} 1/ (**)

constructp,W’)

definition ofextendT)

if k> 1then
for all stateqq € Q reachable i do

for allwe Lgn =< do
find a successful pathin M starting withg and labeled wittw
assign tal values such that tHedelegator will follow the patle, once being

in stateq and havingw in its buffer.
]

24

2. for every state g P(q,w) there exists p € > such that a...acbp €
pref(Lp) and(p,az...akbp) is known to be forbidden.

We denote byfthe set of all forbidden words for g.

Remark 6.Letqbe a state iM anda; ... ax ¢ Fy. There existp € P(qg,a; ... &)
such that

Vag...abe pref(Lp): ax...ab g Fp .

The set of all statg verifying this condition will be denoted b§(q,a; . .. a),
called the setofhosen st at es for (g,a; . ..ax). Convention-wise, iv € Fy
thenC(p,w) = 0.

Lemma 10. At the end of the “while-loop” of Algorithm 1 we have[yy =
FqN =K, for all states q of M.

Proof. We first notice that Definition 10 establishes recursively that a word is
forbidden based on forbidden words of same length (it is “length ajavés
also notice thaBy N = C V[q]. Indeed, ifa; ... a € By thenP(g,a;...a) = 0
anda; ...ax is among the first words added ¥q] at the step denoted by (*).
Then it suffices to observe that the test

“if (VpeP(qa...a): a...aZnV[p|Nnpref(Ly) #0) then”

used for updatiny [q] checks whether conditiadof Definition 10 is satisfied.
0

Lemma 11. If the start state g of M verifies |, N pref(L) = 0 then M has a
k-delegator and Algorithm 1 terminates with alVES” answer and returns a
k-delegator.

Proof. If Fy, N prefi(L) = 0, then the algorithm printsYES” since the test
Vo] # 0 fails as a consequence of Lemma 10. It remains to prove that the
proceduresonstruct) andextend) deliver a delegator. We first make the point
that the recursive call toonstructg,W) always verifiesV C prefi(Lq) \ Fg.

This is true forgp and it holds for subsequent callsdonstruct p, W’) by virtue

of the code lines:

choosep € P(q,a;...a¢) s.t.az...aZ Nprefi(Lp) NV[p| =0
Tlg,a...a] — p,W —{a...ab/ay...akb € pref(Lp)}

25

which ensure thatv’ NV |[p] = 0. By Remark 6,p is chosen such thap €
C(g,a1...8).

It is clear that the recursive call twonstructwill end in a finite number
of steps, due to the finiteness dfand to the fact that each subsequent call
is preceded by filling an emptMiL) cell of T. It remains to prove that at the
end of Algorithm 1,T provides indeed &-delegatorT represents the transition
table of ak-lookahead DFAA, since each cell of stores at most one state. We
give an informal reason for whiy(M) = L(A). It is clear thatL(M) D L(A).

If a;...an € L(M) with n < k, then by definition of procedurextendit follows
thata; ...a, € L(A). Whenn > k, we make the observation (which can be proven
by induction) that there is a deterministic computatioiilabeleda; ...a,. In
order to show that this computation is successful, we notice that afterisgann
the fistn — k symbols A will have in its buffer the wordy, k. 1. ..a, and will be
in a stateq such that, 1 ...an ¢ Fq. After scanning another input symbd,
will be in a statep, with a,_i2...a, in its buffer anda,_k2...a, € Lp. Then,
yet again by definition oéxtend A will finish the scanning in a final state. O

Lemma 12. If M has a k-delegator, then the start state @f M verifies g, N
prefi(L) = 0 and Algorithm 1 terminates with anYES” answer and returns a
k-delegator.

Proof. Assumef : Q x =<K — Q is a delegator foM. We first prove the
following:

Claim. With the previous notations, the following implication holds:

f(lpw) #0=>w¢F, .

Suppose that contradicts the claim for some instancepéndw = a; .. . &,
hencef (p,a;...a) = pr anda; ... ax € Fp. Sincef is a trim delegator, we have
the following sequence:

f(par...a) =p1, ar...a € Fp=
=dby: ay...akb € Fpl

f(pr,az...ab1) =p2, a...ab € Fp, =
= dby: az...abibs € sz

f(pnflvav) = pn, AVE Fpnfl =

= dbn: vbheFy,

26

Notice that by the recursive definition of forbidden words (Definition, 1®}re
exists a choice for the lettets,...,b,,... such that in the above sequence
there exists a step for which Fy, = Bp,. Observe that there may also exist
cycles in this sequence, that is, paisVv) which are repeated. However, by a
proper choice oby,...,by,... we can enforce that the situation Fp, = Bp,
appears before any repetition, fact ensured by Definition 10. Noviffices to
notice thatF,, = By, contradicts Corollary 3 by the fact th&fpy_1,av) = pn
and there existby : v, € Bp,.

We now use the proven claim as following: sintces defined in all(go, w) with
w e prefi(L), we havew ¢ Fq, for all w € prefi(L), henceFy, N pref(L) = 0.
The fact that the algorithm terminates with a¥iES” answer and it returns a
k-delegator can now be proven similar to the proof of Lemma 11. O

Corollary 6. If no k-delegator exists for M then Algorithm 1 answelC'.

Proof. Assume by contradiction that the Algorithm answe¥YES”. Then by
Lemma 10 we havég, N >k =0, and by Lemma 11 the Algorithm returns a
k-delegator, which contradicts that such delegator does not exist. O

The previous two lemmas prove more than the correctness of Algorithm 1,
namely:

Corollary 7. There exists a k-delegator for M if and only if
Fonprefi(l)=0 .

Consequently, we give the following characterization of NFA delegation:

Theorem 6. There exists a delegator for M if and only if

Proof. The “if” part is straightforward; Fy, |< 0o implies that for ak large
enough we havéy, N =X = 0, and by the virtue of Lemma 11 there exists a
k-delegator foM.

For the “only if” part, we know that there exists such thatM has a
k-delegator and, by Corollary 7, th&k, N prefi(L) = 0. But having ak-
delegator implies that for any> k there exists an-delegator forM. Then,
Foo N prefsi(L) = 0, and sincd, C pref(L), it follows that| Fg, |< Oo. O

Itis not hard to see that there is an exponential space algorithm to determine
membership inFy (for any g). The reason is as follows: From the foregoing
discussion, it is clear that there is a PSPACE algorithm to determine if a string

27

wis g-blind. It is also clear that it can be determined in PSPACE the set of states
in P(g,w). Now, we will describe an algorithm to determine membership of a
string wiWa...W in Fg. wiwe... W is in Fq if and only if condition (1) or (2) is
true. (1) can be checked in PSPACE. To check (2), we can creatdea(ah
in memorized version of dynamic programming algorithm) that corresponds to
various instances of the for(p, x;x2...xx). When the decision about an instance
is reached, the table entry is filled (with ‘yes’ or ‘no’). When a new instanc
needs to be solved, the table is checked to see if the decision is alreakdgdeac
Itis clear that the total space of this algorithm is dominated by the table required
to maintain the solutions of various instances and hence the resulting algorithm
is an exponential space algorithm. ThEgjs recursive.

If we can show thal, is regular or context-free, then clearly, the decidabil-
ity of Problem 3 will follow since finiteness problem is decidable for both these
classes. We do not know if the former is true.

5 Conclusion and Future Work

In this paper we have addressed the question of whether a NFA can be simu
lated deterministically using only its states and transitions, by taking advantage
of reading ahead a fixed number of input symbols. This problem complements
the extensive prior work on methods of simulating nondeterminism by using ex-
ponentially augmented state sets. We have provided a characterizatioemf wh
this is possible, and have presented an efficient algorithm to determine when
such a simulation is possible in restricted cases.

The main problem that remains open is the decidability of Problem 3 for
general NFA's. We believe that this problem is decidable, and Theoreray6
provide a direction to establish such a result. The complexity of Problems 2
and 3 (in the case of unambiguous NFAs) have not been completely eglsolv
Specifically, are the problems complete for co-NP and PSPACE respgetive

References

[Berardi et al., 2003] Berardi, D., Calvanese, D., Giacomo, GLBnzerini, M., and Mecella,
M. (2003). Automatic Composition of e-Services that Export their Bajrain Orlowska, E.,
Papzoglou, M., Weerawarana, S., and Yang, J., edit6&OC 2003volume 2910 ol ecture
Notes in Computer Sciengeages 43-58. Springer.

[Dang et al., 2004] Dang, Z., Ibarra, O. H., and Su, J. (2004mg@osability of Infinite-State
Activity Automata. In Fleischer, R. and Trippen, G., editdSAAC 2004 volume 3341 of
Lecture Notes in Computer Scienpages 377-388. Springer.

[Gerede et al., 2004] Gerede, C., Hull, R., Ibarra, O., and §8004). Automated Composition
of e-Services: Lookaheads. In [Traverso and Weerawaraf4d] 20ages 252—-262.

28

[Gerede et al., 2005] Gerede, C., Ibarra, O., Ravikumar, Bl,San J. (2005). On-line and Ad-
hoc Minimum Cost Delegation in e-Service CompositionlHEE SCC pages 103-112. IEEE
Computer Society.

[Hopcroft and Ullman, 1979] Hopcroft, J. E. and Uliman, J. D. (19T®roduction to Automata
Theory, Languages, and Computation - 1st editidddison-Wesley Longman Publishing Co.
Inc., Boston, MA.

[Hulland Su, 2004] Hull, R. and Su, J. (2004). Tools for Design ofmposite Web Services.
In Weikum, G., Kénig, A. C., and Del3loch, S., editd&GMOD 2004 pages 958-961. ACM
Press.

[Huntetal., 1976] Hunt, H., Rosenkrantz, D. J., and Szymanskiz.T1976). On the Equiv-
alence, Containment, and Covering Problems for the Regular and Gémeex Languages.
Journal of Computer and Systems Scient@¢2):222—268.

[Ibarra et al., 2006] Ibarra, O., Ravikumar, B., and Gerede- Q2006). Quality-Aware Ser-
vice Delegation in Automated Web Service Composition. To appedounnal of Automata,
Languages and Combinatorics

[Mecella and Giacomo, 2004] Mecella, M. and Giacomo, G. D. (2004)vie Composition:
Technologies, Methods and Tools for Synthesis and Orchestrationrop@site Services and
Processes (tutorial). In [Traverso and Weerawarana, 2004].

[Rozenberg and Salomaa, 1997] Rozenberg, G. and SalomaaQ¥)(Handbook of Formal
Languages Springer-Verlag, Berlin Heidelberg New York.

[Stearns and Hunt, 1985] Stearns, R. and Hunt, H. (1985). On thigdtepuce and Containment
Problems for Unambiguous Regular Expressions, Regular Gramemar$-inite Automata.
SIAM Journal on Computind.4(3):598-611.

[Traverso and Weerawarana, 2004] Traverso, P. and Weaaaaa6., editors (2004)Service
Oriented Computing, 2nd International Conference, ICSOC 2004, Nelv Gity, NY, USA,
November 15-18, 2004, Proceeding&€M Press.

[Yu, 1997] Yu, S. (1997). Regular Languagds.[Rozenberg and Salomaa, 1997}41-110.

