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Abstract. We investigate deterministically simulating (i.e., solving the member-
ship problem for) nondeterministic finite automata (NFA), relying solely on the
NFA’s resources (states and transitions). Unlike the standard NFA simulation, in-
volving an algorithm which stores at each step all the states reached nondetermin-
istically while reading the input, we consider deterministic finite automata (DFA)
with lookahead, which choose the “right” NFA transitions based on a fixed num-
ber of input symbols read ahead. This concept, known aslookahead delegation,
arose in a formal study of web services composition and its subsequentpractical
applications. Here we answer several related questions, such as“when is looka-
head delegation possible?”and“how hard is it to find a delegator with a given
lookahead buffer size?”. In particular, we show that only finite languages have
the property that all of their NFA’s have delegators. This implies, among oth-
ers, that delegation is a machine property, rather than a language property. We
also prove that the existence of lookahead delegators for unambiguousNFA is
decidable, thus partially solving an open problem. Finally, we show that finding
delegators (even for a given buffer size) is hard in general, and is efficient for
unambiguous NFA, and we give an algorithm and a compact characterization for
NFA delegation in general.

1 Introduction

Finite automata models are ubiquitous in a wide range of applications. The
well-known classical applications of automata involve parsing, string match-
ing and sequential circuits. Recently, formal models based on finite automata
have been applied in service-oriented computing, a newly emerging frame-
work to harness the power of the World Wide Web [Berardi et al., 2003].One
basic computational problem that arises in this framework isautomated ser-
vice composition[Gerede et al., 2004]. Informally, this problem can be de-
scribed as follows: an activity automaton is a finite state acceptor that ac-
cepts a sequence of tasks (each represented by an input symbol). Automated
composition involves breaking down a sequence of tasks and assigning them
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to individual activity automaton. Formally, a system of finite automata<
A;A1,A2, ...,Ak > is said to be composable if every stringw accepted by the
DFA A can be written as a shuffle product of stringsw1, ..., w j where each
wi is accepted byA j for some j. This formal framework for e-services com-
position was introduced by [Berardi et al., 2003] and has recently beenstudied
extensively by a number of authors: [Ibarra et al., 2006], [Hull and Su, 2004],
[Mecella and Giacomo, 2004], [Gerede et al., 2004], [Gerede et al., 2005] etc.

A requirement more stringent than composability is the existence ofk-
lookahead delegators (ork-delegators for brevity) which is defined as follows.
Given a system< A1,A2, ...,Ak > of DFA’s or even NFA’s, letA′ be the “shuffle-
product” of the system. Informally, a DFAA is said to bek-delegator forA′ if the
states ofA are a subset of the states ofA′. Further, based on the current state and
the nextk-input symbols, the transition table ofA makes a deterministic choice
among the possible choices of the NFA in such a way that if (and only if) the in-
put string is accepted byA′, the simulation ofA also results in an accepting state
when the simulation is complete. For a given NFA, a basic question is whether
it has ak-delegator forsomeintegerk. One can also ask whether an NFA has a
k-delegator for agiven k.

k-Delegators were first introduced informally in [Dang et al., 2004] in their
study of e-services composability. In the same paper was established that the
existence ofk-delegators is decidable for a givek. However, the complexity of
this problem was not addressed. Moreover, the problem of deciding theexis-
tence of ak-delegator forsome kwas left as an open problem. In this work, we
address these and some related questions, without addressing the implications
of our results in e-service applications.

The main results of this work can be summarized as follows. First, we define
delegability as a property which can be viewed both as a language and machine
property. When viewed as a language property, we characterize the family of
regular languages whose all NFA have delegators. Since this family turns out to
be that of finite languages, we adopt the second point of view, that of delegability
as a machine property. We consider the complexity of determining if a given
NFA has ak-delegator, and we formulate three versions of this problem. The first
one involves a fixedk, the second one includesk (in unary) as part of the input
and the third one involves determining if ak-delegator exists for some arbitrary
k. When the input is restricted to anunambiguousNFA, the first problem is
shown to have a polynomial time algorithm, the second one is shown to be in
co-NP and the third one is shown to be in PSPACE. When the input may be an
ambiguous NFA, even the first version is shown to be PSPACE-complete. We
then provide an algorithm for Problem 2 in the general case, that is more efficient
than the brute-force algorithm. This algorithm also leads to a simple necessary
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and sufficient condition for the existence of ak-delegator, for some arbitraryk.
Although the decidability of Problem 3 in the general case still remains open,
our characterization provides a promising approach towards its resolution. We
conclude with some open problems and directions for future work.

2 The Delegation Problem

In the following we assume known basic notions of automata theory (see, for
example, [Hopcroft and Ullman, 1979] and [Yu, 1997]). Notation-wise,an NFA
is a tupleM = (Q,Σ ,δ ,q0,F) with Q a finite set of states,Σ an alphabet,δ ⊆
Q× Σ ×Q a transition relation,q0 an initial state, andF ⊆ Q a set of final
states.M is trim if each of its states is useful:accessible (there exists a
computation from the initial state and ending with it) andco-accessible
(there exists a computation starting from it and ending with some final state). If
δ is a function (as opposed to a relation), thenM becomes a DFA (deterministic
finite automaton). We say that two automata are equivalent if they recognize the
same language. In the following we denote byε the empty word, byΣ k the set
of all words overΣ of lengthk, by pre f(L) the set of all prefixes of words in a
languageL, and bypre fk(L) the setpre f(L)∩Σ k.

By a DFA withk-lookahead buffer we understand a DFAA= (Q,Σ , f ,q0,F)
with f : Q×Σ k →Q, which operates as follows.Ahas a buffer withk cells which
initially contains the firstk symbols of the input word (or, if the word has fewer
symbols, the entire word). At each computation step,A consumes one input
symbol and stores the followingk symbols of the input tape in its buffer. The
function f decides the next state based on the current state ofA and its buffer
content. It is easy to see that DFA withk-lookahead buffer are equivalent with
standard DFA: one can view the buffer content as part of automaton’s internal
state.

We begin with the definition of ak-delegator, equivalent with, however dif-
ferent from, that provided in [Dang et al., 2004] – for the reason of improving
the formalism.

Definition 1. An NFA M= (Q,Σ ,δ ,q0,F) has a k-delegator if there ex-
ists an equivalent DFA with k-lookahead buffer A= (Q,Σ , f ,q0,F) such that
f (q,a1 . . .ak) ∈ δ (q,a1) for all (q,a1 . . .ak) in the domain of f .

We say thatA is a k-delegator forM or, when the context makes it clear, we
denotef in the above definition to be ak-delegator forM (implying that there
exists a DFA withk-lookahead as in the definition, withf its transition function).
Indeed,M andA share the same resources (states and transitions) and the pair
(M, f ) uniquely identify thek-delegatorA for M.
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It is clear that any DFAM has a 1-delegator: simply choosef in the above
definition as being the transition function ofM. There are also NFA’s that can
have a 1-delegator. On the other hand, for any givenk, it is not hard to construct
an example of a NFA that has ak-delegator, but not a(k−1)-delegator.

The following example shows that there are NFA’s that do not have ak-
delegator for anyk.

Example 1.Consider the NFAM in Figure 1, for the languageL of all words
w∈ {0,1}∗ in which some pair of successive occurrences of 1 has an odd num-
ber of 0’s in between them. It is easy to see thatM does not have ak-delegator
for any positive integerk. The NFA in Figure 2 is anunambiguous NFA (i.e.,

0,10,1

11

0

0

q3q2q1q0

Fig. 1.An NFA which has nok-delegator for anyk.

any word is the label of at most one successful computation), and yet, it has no
k-delegator for anyk.

q4q3

1

1

0

0

q2q1

0

0

q0

Fig. 2.An unambiguous NFA which has nok-delegator for anyk.
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Remark 1.We restrict our study to trimε-free NFA, since anε-NFA has nok-
lookahead delegators for some/any integerk if and only if its ε-free equivalent
(considering the standardε-elimination) has the same property.

Proof. It suffices to notice that a delegatorf which follows anε-transition does
not “consume” the input, hence its buffer remains unchanged. Consequently,
theε-closure andε-elimination (as shown in Figure 3) can be performed onf
in order to obtain a delegator for theε-free equivalent NFA. ⊓⊔

f (q1,a1 . . .ak)

f (q1,a1 . . .ak) f (q2,a1 . . .ak)

a1

a1

ε q3q2q1

Fig. 3.Theε-removal for ak-delegator.

The basic idea in Definition 1 is that if a NFAM has ak-delegatorA (or equiv-
alently, f ), then given as input for the delegator the sequence of buffer content
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A simulatesM by entering a sequence of states of the NFA in such a way that if
there is an accepting computation inM for the stringx1x2...xn (i.e., a sequence
of states leading to an accepting state) thenA goes through one such sequence of
states leading to acceptance as well. Notice thatA is not required to check that
the input is in the “correct format”, that is, it does not check that each successive
“super symbol”, consisting of a buffer ofk symbols from the original alphabet, is
obtained by subsequently dequeuing one symbol from the buffer and enqueuing
a new symbol. Furthermore, notice that when the right-end of the input string
is reached, a padding symbol # is added to the buffer content in order to keep
the buffer always filled (always containingk symbols). We will show later that
padding the input is just a matter of formalism, and will be ignored most of the
time.
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Remark 2.Notice that “delegation” can be used as a measure of NFA nonde-
terminism. If NFAM has anm-delegator andM′ has ann-delegator, withm,n
being the smallest such integers, and ifn > m then the cost of deterministically
simulatingM′ is greater than that forM. In this sense,M′ is “more nondeter-
ministic” thanM.

It is clear that every regular languageL is accepted by an NFA that has a 1-
delegator, namely a DFA forL. On the other hand, it may be the case that for
some regular languages, every associated NFA may have ak-delegator for some
k. The next definition is intended to characterize such regular languages.

Definition 2. Let L be a regular langauge.

(i) L is said to beweakly delegable if for any NFA M for L, there exists
a k such that M has a k-delegator.

(ii) L is said to bestrongly delegable if there exists a k such that for
every NFA M for L, M has a k-delegator.

The next result shows that the classes of regular languages that are weakly del-
egable and strongly delegable coincide. LetM be an NFA and letp be a state of
M. By Lp we will denote the language accepted byM if p is chosen as the start
state ofM (with no other change to its definition).

Theorem 1. The following statements are equivalent:

(1) L is finite.
(2) L has a strong delegator.
(3) L has a weak delegator.

Proof.

1 ⇒ 2 Let m be the length of the longest string inL. It is easy to see that any
NFA for L can be “m-simulated” using a DFA, hence it has anm-delegator.

2⇒ 3 is obvious from the definition.

3⇒ 1 We prove the contrapositive, namely, ifL is not finite then there exists an
NFA M′ for L that does not have ak-delegator for anyk. Let M be a DFA forL.
We assume thatM is trim, that is, it does not have any useless states. Thus,M
may be incomplete. SinceL is infinite,M has at least one cycle.

First we consider the simpler case, in which some accepting state lies in a
cycle. Fix one such cycle containing the statesp1, p2, ..., pr . Thus, one of the
states in the set{p1, p2, ..., pr} is an accepting state. LetLi be the set of labels
on the transition frompi to p(i+1) mod r. We define a NFAM′ as follows. We
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start withM and remove the statesp2, ..., pr . Then, we add 4r statesq1, ...,q2r

ands1, ...,s2r , and add transitions to these states in such way, that for all states
q j , qr+ j , sj andsr+ j , the equalityLq j ∪Lqr+ j ∪Lsj ∪Lsr+ j = Lp j holds.

For all j ∈ {1, . . . , r} we consider all transition labels ofL j and add them
to transitions fromq j to q j+1, from q j+r to q( j+r+1) mod 2r , from sj to sj+1, and
from sj+r to s( j+r+1) mod 2r . Next, we add the labels ofL1 to transitions from
p1 to q2 as well as tos2. Finally, for each transition inM from p j to any state
not in the cycle, we add inM′ transitions with the same label fromq j , qr+ j ,
sj andsr+ j to that state. A transition inM from a state not in the cycle to a
statep j in the cycle is replaced inM′ by the transitions from that state to each
stateq j , qr+ j , sj and sr+ j . Finally, consider a transition inM from p j to pt

wheret 6= ( j +1) mod r. In M′ we replace these transitions by a corresponding
transition fromq j to qt , from qr+ j to qr+t as well as fromsj to st and fromsr+ j

to sr+t . The accepting states inM′ are chosen as follows. The accepting states of
M that have not been removed will continue to be accepting states. Among the
added states, accepting states are determined as follows: Ifpi was an accepting
state inM, thenqi as well assr+i will be chosen accepting states inM′. This
construction is reflected on a small scale in Figure 4. Notice that ifM′ is in state

s3
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p2p1

a

a
b

b

a

ap1

q4

q3

q2

q1

s4

c

c
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d

d

d

d

c

c

c

b

a

a
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Fig. 4.A cycle inM and its corresponding twin cycles inM′.
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p1 after reading some input symbols, then by readinga and looking ahead at
the nextk−1 symbols does not suffice for predicting which transition should
be followed. Indeed, from statep1 both wordsa(ba)2k anda(ba)2k+1 lead to
acceptance inM; however, if a hypotheticalk-delegator forM′ commits to any
particular transition fromp1 on inputa, then one of these two words would lead
to a failing computation. It can be shown thatL(M′) = L and thatM′ does not
have ak-delegator for anyk. The details are straightforward.

Consider now the case when the cycle containingp1, p2, ..., pr does not
have an accepting state. SinceM is trim, there are states in this cycle which
have transitions to some states that do not belong to the cycle (in order to have
successful paths, the states in the cycle should be connected with some final
states). Assume one such state isp j , with j ∈ {1, . . . , r} and that the set of labels
of transitions fromp j to states not in the cycle is denoted byout(p j). This state
will play the role similar to that of the final states in the previous construction.
Without loss of generality, we assume thatj 6= 1. We construct an automaton
M′ as before, with the following exception: the statessj andq( j+r) mod 2r have
no transitions to states which do not belong to the cycle (however,s( j+r) mod 2r

and q j do have such transitions with labels inout(p j)). This modification is
reflected in Figure 5.M′ does not have ak-delegator for a reason similar to

out(p j )

s(r+ j) mod 2r

q(r+ j) mod 2r

out(p j )

sj

q j

p1

Fig. 5.The construction for a cycle with no final states.
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that in the previous construction: committing to a transition out ofp1 would
discriminate among paths using an even versus odd number of statesp j . The
details are straightforward. ⊓⊔

In the following section we investigate machine properties related to the exis-
tence ofk-delegators, as a preamble to the algorithmic approach on NFA dele-
gation.

3 Basic Results on NFA Delegation

Let M = (Q,Σ ,δ ,q0,F) be a trim NFA andq ∈ Q, a ∈ Σ such thatδ (q,a) =
{q1, . . . ,qt} with t > 1 (q has non-deterministic transitions on inputa). As usual,
by Lq we understand the language obtained by settingq to be initial state in
M. Notation wise, we denote byav a word that starts witha and whose suffix
obtained by removinga is v.

Definition 3. With the above notations, we say that q is av-blind if for all
i ∈ {1, . . . , t} the following inequality holds:

(

⋃

j∈{1,...,t}, j 6=i

v−1Lq j

)

\v−1Lqi 6= /0 .

This definition has the following delegation-related interpretation: ifM has
reached aw-blind state, then reading aheadw from the input tape does not suf-
fice for deterministically choosing a certain next transition: each transition can
potentially lead to non-acceptance for a word that should be accepted byM.

Definition 4. With the above notations, we denote theblindness of q (or,
the language of blind words for q) as being the language Bq = {w ∈ Σ ∗/
q is w-blind} .

Lemma 1. State blindness is regular and effectively computable. If Bq is finite

for some q∈ Q, then for every w∈ Bq, |w| ≤ (4|Q|2 +1)|Σ | .

Proof. Let M = (Q,Σ ,δ ,q0,F) be a trim NFA andq∈ Q. We construct a DFA
Mq that accepts the languageBq and show that the number of states inMq is at
most(4|Q|2 +1)|Σ |. Then, ifBq is finite, the length of the longest string accepted
by Mq must be bounded by(4|Q|2 +1)|Σ |, and the claim will follow. The details
behind the construction of the DFAMq are as follows.

For a symbola∈Σ , letδ (q,a1) = {q1,q2, ...,qt}. By definition,w= a1a2...ak

is in Bq if and only if for eachi ∈ {1, . . . , t}, the following condition holds:
(

⋃

j∈{1,2,...,t}, j 6=i

(a2a3...ak)
−1Lq j

)

\ (a2a3...ak)
−1Lqi 6= /0 .
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Denote the language on the left-side of the above expression asBq,a,i . We con-
struct a DFAMq,a,i to acceptBq,a,i as follows. The states of this DFA are of the
form < S1,S2 >, whereS1,S2 ⊂ Q. The transition functionδ ′ of Mq,a,i is es-
sentially that of the cross-product of the “subset construction” DFA for M with
itself. More precisely,δ ′(< S1,S2 >,a) = < S3,S4 > whereS3 = {q|q∈ δ (p,a)
for somep∈ S1} and similarlyS4 = {q|q∈ δ (p,a) for somep∈ S2}. The start
state of the DFA is chosen to be< {qi},< {q1, ...,qi−1,qi+1, ...,qt >} and the
set of accepting states isF ′ = {< S1,S2 > /

(
⋃

q∈S2
Lq

)

\
(
⋃

q∈S1
Lq

)

6= /0}.
It can be checked that the above DFAMq,a,i accepts the languageBq,a,i . The

number of states inMq,a,i is upper-bounded by 4|Q|. Next, we construct a DFA
Mq,a accepting the languageLq,a =

⋂

i∈{1,...,t}Bq,a,i . The size ofMq,a is upper-

bounded by 4|Q|2, sincet ≤| Q |. Then, a DFA foraBq,a has one extra state, and
the DFA forBq =

⋃

a∈Σ∗ aBq,a will have a size upper-bounded by(4|Q|2 +1)|Σ |.
This completes the proof. ⊓⊔

Remark 3.One may notice that if the blindness of a stateq of M is finite, thenq
may potentially be used in somek-lookahead delegator forM, with k sufficiently
large. Indeed, denotingk−1 to be the length of a longest word inBq, one can
observe that a buffer content of sizek allows a delegator to make deterministic
decisions on which transition fromq should be followed. The reason is that for
any buffer contentw, with | w |≥ k, the stateq is notw-blind . Consequently, the
“interesting” states are those with infinite blindness.

Lemma 2. For any state q, Bq is prefix-closed, except for the empty word.

Proof. It suffice to prove that if a stateq is auv-blind then it isau-blind as well.
Let δ (q,a) = {q1, . . . ,qt}, and assume by contradiction thatq is not au-blind.
Then, there exists an indexi ∈ {1, . . .t} such thatu−1Lqi ⊃

⋃

j 6=i u
−1Lq j . But

sinceq is auv-blind, there existsz∈ Σ ∗ such thatuvz∈
⋃

j 6=i Lq j anduvz 6∈ Lqi .
This contradicts the previous statement, through the wordvz. ⊓⊔

The following corollary gives a sufficient condition for the existence of looka-
head delegators.

Corollary 1. If an NFA M has all its states finitely blind, then it accepts a looka-
head delegator.

Proof. One can construct ak-lookahead delegator, withk greater than the max-
imum length of the words belonging to any blind language of a state inM. This
is a generalization of Remark 3. ⊓⊔

Definition 5. A state q is k-blind if there exists a word w∈ Σ k such that q is
w-blind.
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The following result is a reflection of Lemma 2.

Lemma 3. If a state q of an NFA A is k-blind, k≥ 2, then it is l-blind for all
l ∈ {1, . . . ,k−1}.

Proof. (sketch) If a stateq is k-blind, then there exists a wordw = av with
|w |= k such thatq is w-blind. Letav= ayzbe a factorization ofw with | ay|= l .
We prove thatq is ay-blind.

Let δ (q,a) = {q1, . . . ,qt}. Since q is w-blind we have that for alli ∈
{1, . . . , t} the following holds:

(

⋃

j∈{1,...,t}, j 6=i

(yz)−1Lq j

)

\ (yz)−1Lqi 6= /0 .

If we denote by∆i the above set-difference, we have that
(

⋃

j∈{1,...,t}, j 6=i

y−1Lq j

)

\y−1Lqi ⊇ z∆i 6= /0

holds for alli ∈ {1, . . . , t}, which shows thatq is ay-blind, hence it isl -blind. ⊓⊔

The following result provides a necessary condition for the existence ofNFA
delegators.

Corollary 2. If the initial state of an NFA is infinitely blind then the NFA has
no k-lookahead delegator for any integer k.

Proof. (sketch) Suppose the automaton accepts ak-lookahead delegator despite
the fact that its initial stateq0 is infinitely blind. We choose a wordw = av
with | w |> k such thatq0 is w-blind. Observe thatw ∈ pre f(L), whereL is
the language accepted by the NFA. Letδ (q0,a) = {q1, . . . ,qt} and assume that
the input word hasw as a prefix. In this case, the lookahead delegator must
commit deterministically (regardless on what follows afterw) to one transition,
say,(q0,a,qi), with i ∈{1, . . . , t}. But by the definition ofav-blindness, we know
that there exist a wordz∈ Σ ∗ such thatavz∈ L andδ (qi ,vz) does not contain
any final state. This word is rejected by the delegator, despite the fact thatit
belongs to the language.

Here we have silently used the fact that ifq0 is | w |-blind, then it must be
alsok-blind, sincek <| w |. This fact ensured the existence ofz. ⊓⊔

Remark 4.Notice that, by Lemma 1, the conditions in Corollary 1 and Corol-
lary 2 are testable. Notice also that ak-lookahead delegator for an NFAM must
havek≥ r, wherer is the smallest integer such that the initial state ofM is not
r-blind.
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Definition 6. A delegator for M, f: Q×Σ k×Q istrim if all its “predictions”
(or, delegations) are used in some successful computations ( f needs not be de-
fined everywhere).

The following results will be used in proving the correctness of Algorithm 1 in
Section 4.2, which computesk-delegators.

Lemma 4. If f : Q×Σ k → Q is a trim delegator for M, then

f (p,av) = q ⇒
(

∀b∈ Σ s.t. vb∈ pre f(Lq) : f (q,vb) 6= /0
)

.

Proof. Assume thatf (p,av) = q, and takevb∈ pre f(Lq). There exists a word
z such thatvbz∈ Lq. Since f is trim, there exists a wordx such that while read-
ing xav the delegator reachesdeterministically pwhile holdingav in its buffer.
Observe now thatxavbz∈ L and the only way for the delegator to accept it is to
make a choice forf (q,vb). ⊓⊔

Corollary 3. If f : Q×Σ k → Q is a trim delegator for M, then

f (p,av) = q ⇒
(

∀b∈ Σ s.t. vb∈ pre f(Lq) : vb 6∈ Bq

)

.

Corollary 4. If f : Q×Σ k → Q is a trim delegator for M, and if v1 . . .vk ∈ Bq

for some state q∈ Q then f(p,av1 . . .vk−1) 6= q for all p∈ Q, a∈ Σ .

Proof. Suppose there existsp∈Q such thatf (p,av1 . . .vk−1) = q. By Lemma 4,
f (q,v1 . . .vk−1b) 6= /0, for all b ∈ Σ such thatv1 . . .vk−1b ∈ pre f(Lq). But
v1 . . .vk−1vk ∈ Bq ⊆ pre f(Lq), which implies thatf (q,v1 . . .vk) must be defined
despite the fact thatq is v1 . . .vk- blind. This is a contradiction. ⊓⊔

In the following we give another definition (hence, another formalism) for
NFA delegation, equivalent to Definition 1. ByLM we understand the language
accepted byM.

Definition 7. Let M = (Q,Σ ,δ ,q0,F) be an NFA. A DFA D with k-lookahead
buffer is adelegator for M if

1. LM = LD ,
2. M and D have identical transition graphs with the exception of labels,

which are in the following relation:

For each transitionδ (q,a) = {q1, . . . ,qt} in M, as depicted in Figure 6.A,
there correspond t lookahead transitions in D, as shown in Figure 6.B, with
the following properties: (a) for all i∈ {1, . . . , t} the language Li has words
of length less than k; and (b) for all i, j ∈ {1, . . . , t} with i 6= j we have
aLi ∩aL j = /0.
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(B)(A)

q

q1

q2

qt

q1

q2

q

qt

a

a

aL1

aL2

aLt

. . .
a

. . .

Fig. 6.Transitions in a NFA and its delegator.

In the previous definition we allowLi to be /0, with the meaning that a transition
labeleda/0 = /0 is “non-existent”, i.e., the delegator chooses to never use it.

Notice that the second condition of Definition 7 implies thatD is a deter-
ministic lookahead automaton. Indeed,D operates as following: if a stateq is
reached and a wordav is in the lookahead buffer, the automaton searches for
av in all languagesaLi . If it finds it, i.e.,av∈ aLi for somei, it will choose the
corresponding transition labeledaLi and will advance in the next stateqi .

Corollary 5. With the above notations, if M has a lookahead delegator, then it
has one such that for every state q∈Q and every letter a∈Σ , we have Bq∩aLi =
/0, ∀i ∈ {1, . . . , t}.

Proof. Let q be a state inM and a be a symbol withδ (q,a) = {q1, . . . ,qt},
t > 1. Suppose that the corresponding transitions in a delegatorD for M are
(q,aL1,q1), . . . ,(q,aLt ,qt). If for somei ∈ {1, . . . , t} we haveav∈Bq∩aLi , then
one can easily observe that the delegator can never use the transition(q,av,qi)
sinceq is av-blind. Hence, one can safely removeav from the languageaLi . ⊓⊔

This corollary gives a “normal form” for lookahead delegators, by discarding
label information that is never used.

We now have sufficient tools for investigating algorithmic aspects related to
NFA delegation.

4 Complexity of Determining if a k-Delegator Exists

We consider the following computational problems.
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Problem 1.Let k be a fixed integer (not part of the input)
Input: An NFA M
Output:“YES” if and only if M has ak-delegator, “NO” otherwise.

Problem 2.
Input: An NFA M and an integerk (in unary)
Output:“YES” if and only if M has ak-delegator, “NO” otherwise.

Problem 3.
Input: An NFA M
Output:“YES” if and only if M has ak-delegator for somek, “NO” otherwise.

As in the previous sections, we assume thatM is trim. Recall the result in
Lemma 1, which turns out to be useful in addressing the complexity of the above
problems: for a stateq of an NFAM, the languageBq, of blind words forq, is
regular and(4|Q|2 + 1)|Σ | provides an upper-bound on the state complexity of
Bq. In the following section we first tackle the special case in which the input
NFA is unambiguous. The subsequent section will deal with the general case of
NFA’s that may be ambiguous.

4.1 The Case of Unambiguous NFA’s

In this subsection we show that in the case of anunambiguousNFA as input,
Problem 1 is in P, Problem 2 is in co-NP, and Problem 3 is inPSPACE.

Note 1. We leave for further work to answer the question whether Problem 2 is
co-NP-complete and Problem 3 is PSPACE-complete for unambiguous NFA’s.

We begin with a definition, which turned out to be very useful in providing
characterizations for NFA delegation in the unambiguous case, and necessary
conditions for the general case.

Definition 8. Let M = (Q,Σ ,δ ,q0,F) be a NFA, and let q∈ Q and w∈ Σ ∗.
A pair (q,w) is said to becrucial for M if the following holds: There exist
strings x and y such that

1. xwy is in L(M), and
2. every accepting computation of xwy reaches state q after reading the input

x.

Then, the following lemmas hold for unambiguous NFA.

Lemma 5. If M is unambiguous, then for every state q and for every string
w∈ pre f(Lq), the pair(q,w) is crucial.
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Proof. SinceM is assumed to be trim, every stateq ∈ Q is useful, i.e., there
exists a stringx such thatq∈ δ (q0,x) and a stringy such thatδ (q,wy)∩F 6= /0.
Existence of another accepting computation of the stringxwythat does not reach
the stateq after readingx would imply that there are two accepting computations
for the stringxwycontradicting the fact thatM is unambiguous. ⊓⊔

Lemma 6. Let M be an unambiguous NFA, q be a state of M and w∈ Σ k for
some integer k. If(q,w) is crucial for M and if q is w-blind, then M cannot have
a k-delegator.

Proof. (sketch) By definition, there exist stringsx andy such thatxwy∈ L(M)
and the unique accepting computation on the stringxwyreachesq after reading
the prefixx. SupposeM has ak-delegator. LetD be ak-delegator(simulator) for
M, as defined in Definition 7. It is clear that the state reached byD on reading
the prefixx of the input stringxwy is q. Now D will not able to continue the
simulation from the stateq since it isw-blind. ⊓⊔

Lemma 7. An unambiguous NFA M has a k-delegator if and only if for every
state q of M there exists no string w of length greater than or equal to k such
that q is w-blind.

Proof. (“⇒”) Let M have ak-delegator. Suppose there is a stateq and a string
w of length greater than or equal tok such thatq is w-blind. It is clear that
w ∈ pre f(Lq); and by the above lemmas,M cannot have ak-delegator - fact
which contradicts the hypothesis.

(“⇐”) It follows immediately from the above lemmas. ⊓⊔

Lemma 8. Let M= (Q,Σ ,δ ,q0,F) be an unambiguous NFA, k be an arbitrary
integer, and let Q1,Q2 ⊆ Q with Q1∩Q2 = /0 and Q1∪Q2 ⊆ δ (q0,w) for some
word w∈ Σ ∗. Then testing whether

(

⋃

q ∈ Q1

Lq

)

\
(

⋃

q ∈ Q2

Lq

)

6= /0

can be done in polynomial time.

Proof. The basic idea for such a polynomial time algorithm is due to Stearns and
Hunt [Stearns and Hunt, 1985], that containment and equivalence problems are
polynomial time decidable for unambiguous NFA’s. Their approach was to use
linear recurrence equations for designing an efficient algorithm for thisproblem.
Here we use a simpler (but essentially equivalent) approach based on thetransfer
matrix technique.
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We first show that containment problem for unambiguous NFA is solvable
in polynomial time. For an unambiguous NFAM = (Q,Σ ,δ ,q0,F), let us define
a |Q| × |Q| matrix TM as follows. We label the states ofM as{1,2, ..., |Q|}. If
there arek transitions from statei to statej, then setTM[i, j] = k. Denote byv
the column vectorv = [v1,v2, ...,v|Q|] wherevi is 1 if i is an accepting state and
0 otherwise. Denote also byu the row vector[u1,u2, ...,u|Q|] whereui is 1 if i is
the start state and 0 otherwise. Now, it is easy to check that the number of strings
of lengthm (for any integerm) accepted byM is given byuTm

M v. It is clear that,
for a givenm, the entries ofTm

M can be computed usingO(|Q|3log m) arithmetic
operations by the “repeated squaring” technique. Note also that the bit-size of
the integers in the matrixTm

M is bounded byO(mc) bits for some constantc -
proving that the claim of polynomial time bound is “genuine”, i.e., it holds in
the bit complexity model as well. In summary, the number of strings of lengthm
accepted by an unambiguous NFAM can be computed in time complexity that
is a polynomial in|M| andlog m.

Now let M1 andM2 be two unambiguous NFA’s. We show, using Stearns
and Hunt’s technique, that the containment problemL(M1) ⊆ L(M2) (or its
complement, namelyL(M2) \ L(M1) 6= /0) can be solved in time polynomial in
|M1|+ |M2|. The basic idea is to reduce (in polynomial time) the containment
problem to theconditional equivalenceproblem, which is as follows:

Conditional Equivalence Problem.Given two unambiguous NFA’sM3 andM4

such thatL(M3) ⊆ L(M4), determine ifL(M3) = L(M4).

SinceL(M1)⊆ L(M2) if and only if L(M1) = L(M1)∩L(M2), we can chooseM4

= M1 andM3 to be an NFA that acceptsL(M1)∩L(M2). The standard “pair con-
struction” [Hopcroft and Ullman, 1979] for intersection for languages accepted
by NFA’s results in the size ofM3 being bounded by|M1|× |M2| and it is also
easy to check thatM3 is unambiguous as well. In view of the above reduc-
tion, it is enough to show that there exists a polynomial time algorithm for the
conditional equivalence problem for unambiguous NFA’s. This algorithmis as
follows: for everyk∈ {1,2, ..., |Q3|+ |Q4|} check whether the number of strings
of lengthk accepted byM3 andM4 agree. ThenL(M3) = L(M4) if and only if
the above check succeeds. It is not hard to show that this check provides a nec-
essary and sufficient condition for the conditional equivalence problem. From
the algorithm based on the transfer matrix technique, this check can be donein
polynomial time and the claim follows.

We conclude the proof by showing that the given problem can be reduced to
the containment problem for unambiguous NFA’s. Let us define the NFA’sM1

andM2 as follows:M1 (M2) is constructed from a copy ofM by creating a new
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start staten1 (n2) and adding anε-transition fromn1 (n2) to each state inQ1

(Q2). Finally, we remove theε-transitions and trimM1 andM2. We now show
thatM1 andM2 are unambiguous NFA’s. We present an argument only forM1,
since a similar argument holds forM2 as well. SupposeM1 is ambiguous. Then
there are two accepting computations for some accepting string inM1. Suppose
the two accepting paths branch for the first time at states. Let the label of the
two successful paths branching froms bey. If s 6= n1, thens is a state inM. Let
x be a string that takes the start stateq0 of M to states. It follows that there are
at least two accepting computations for the stringxy in M, contradicting the fact
that it is unambiguous. Ifs= n1 on the other hand, then it follows that the string
xy can be derived in two ways inM, again a contradiction. ThusM1 (andM2)
are both unambiguous. It is easy to see thatL(M1)\L(M2) 6= /0 if and only if

(

⋃

q ∈ Q1

Lq

)

\
(

⋃

q ∈ Q2

Lq

)

6= /0

and this completes the proof of the lemma. ⊓⊔

We are now ready to show the first main result of this subsection.

Theorem 2. Problem 1 can be solved in polynomial time when the input NFA
is unambiguous.

Proof. The input to the problem are: a (trim) unambiguous NFAM =
(Q,Σ ,δ ,q0,F) and an integerk (in unary). By the Lemmas 5 and 6, it is clear
that M has ak-delegator if and only if, for every stateq ∈ Q, all strings inBq

have a length smaller thank. To check this condition, we proceed as follows:
For a symbola∈ Σ , let δ (q,a) = {q1,q2, ...,qt}. Recall thatw = av2...vk is in Bq

if and only if for eachi, the following condition holds:

(

⋃

j∈{1,2,...,t}, j 6=i

(v2v3...vk)
−1Lq j

)

\ (v2v3...vk)
−1Lqi 6= /0 .

We employ a notation used in Lemma 1, that the language on the left-side of
the above expression is denotedBq,a,i . For each pair(q,w) wherew = v1v2...vk,
we check whetherw 6∈ Bq,v1,i as follows. We compute the sets of statesR1 = {p|
p is reachable fromqi on v2v3...vk}, andR2 = {p| p is reachable fromq j for
some j 6= i on v2...vk}. Note that for a given pair(q,w), all these sets can be
constructed in time polynomial in|M|, and use the algorithm of Lemma 8 to test
if

(

⋃

q ∈ R2

Lq

)

\
(

⋃

q ∈ R1

Lq

)

6= /0
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If this is true, then we try the nexti from the setδ (q,a). If no i works for a
particularw, then we return “NO”. Otherwise, we continue with the next string
w of lengthk in Lq. If we find a successful simulating move for every pair(q,w)
whereq ∈ Q andw ∈ Lq, then the algorithm returns “YES”. It is not hard to
check that the total time complexity of this algorithm isO(2kP(|M|)) for some
polynomialP and hence for a fixedk, the algorithm runs in polynomial time.

⊓⊔

The proof of the next theorem follows very closely that of the above theorem
so we will only present a sketch.

Theorem 3. Problem 2 is in co-NP when the input NFA M is unambiguous.

Proof. The algorithm is similar to the above - except that the algorithm will
guess a pair(q,v1 . . .vk) for someq ∈ Q and some stringw = v1 . . .vk ∈ Σ k

and will check thatw ∈ Bq,v1,i for every i. Note that the setsR1 andR2 can be
computed in timeO(k|M|) and this is why it is crucial to assume thatk is given
in unary. The rest of the details are the same. ⊓⊔

It is not hard to modify the algorithm(s) described previously for Problems
1 and 2 such that it actually constructs thek-delegator in the case of an “YES”
answer.

We will finally discuss Problem 3 for unambiguous NFA’s. The following
lemma is easy to prove.

Lemma 9. An unambiguous NFA M has a delegator if and only if Bq is finite
for every state q of M.

Proof. (“⇐”) Let l be the length of the longest string in
⋃

qBq. It is easy to see
that, withk = l −1, M has ak-delegator.
(“⇒”) Suppose thatM has ak-delegator for some integerk and assume by con-
tradiction that the conclusion does not hold. Then there exists a stateq such that
Bq is infinite. This implies thatBq has a string of length greater thank. Let w
be such a string. Clearly,w is also inpre f(Lq). SinceM is unambiguous, by
Lemma 5,(q,w) is crucial. This leads to a contradiction. ⊓⊔

Theorem 4. Problem 3 is decidable in PSPACE for unambiguous NFA.

Proof. Given an unambiguous NFAM, it is enough to check thatBq is finite for
every stateq of M. Since we can explicitly construct a DFA for each languageBq

and since finiteness of a regular language is decidable, the conclusion follows.



19

To show that the problem is inPSPACE, we have to show that finiteness
of eachBq can be tested inPSPACE. One way to show this is by showing that
the complement problem is inPSPACE(sincePSPACEis closed under com-
plement.) Recall that in Lemma 1, we described a construction of the DFA for
Bq,a,i . Instead of constructing this DFA explicitly, the algorithm guesses a string
τ of length r and it checks whetherτ is in Bq,a,i for eacha ∈ Σ and eachi.
Note thatτ cannot be explicitly written down since it would require exponential
space to do so. Instead,r = |τ| is written in binary, and the successive sym-
bols ofτ are guessed, followed by the check whetherτ is in Bq,a,i . Finally, it is
checked whetherr > 4|Q|2. Using the fact that [if a DFAM with mstates accepts
a string of lengthm or more thenL(M) is infinite], it follows that the algorithm
described above verifies “NO” instances correctly. The above algorithm is a non-
deterministic polynomial space algorithm, but sinceNPSPACE= PSPACE, and
sincePSPACEis closed under complement, the above algorithm can be readily
converted into aPSPACEalgorithm. ⊓⊔

4.2 The Case of Ambiguous NFA’s

In this section, we describe an algorithm for Problem 1 in the general case,
namely the case in whichM can be ambiguous. We will show that the prob-
lem isPSPACE-complete. This immediately implies that Problems 2 and 3 are
PSPACE-hard in the general case.

Theorem 5. Problem 1 for the general case is PSPACE-complete.
The hardness holds for every fixed k= 1,2,3, . . . .

Proof. To show its membership toPSPACE, we will use the brute-force,
exhaustive search approach as in [Dang et al., 2004]. Given an NFAM =
(Q,Σ ,δ ,q0,F), we generate all possiblek-delegators and check if one of them is
a validk-delegator. For a fixedk, the size of ak-delegator is bounded byO(|M|)
and thus each one of them can be successively generated inPSPACE. Since
whether a givenk-delegatorM′ correctly simulates a NFAM can be checked in
PSPACE(this problem is equivalent to NFA equivalence problem), it follows
that Problem 1 is inPSPACE.

To show that it isPSPACE-hard, we will reduce to it the problem “Is
L(N) ⊆ L0 ?” whereN is a NFA andL0 is a fixedunbounded language. It is
known ([Hunt et al., 1976]) that this problem isPSPACE-hard when the size of
the alphabet over whichN is defined is at least 2 (if the alphabet size ofN is
1, it is easy to see that the test “IsL(N) ⊆ L0 ?” can be done in co-NP). The
reduction is as follows: we describe a polynomial time algorithm that, givenN,
constructs an NFAM such thatM has a 1-delegator if and only ifL(N) ⊆ L0.
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Let Q′′ be the state set ofN, q′′0 be its start state, and letM′ be a DFA that
accepts the languageL0, Q′ be the state set ofM′ and q0

′ be its start state.
DenoteΣ ′ to be the alphabet over whichM′ is defined. We define an automaton
M = (Q,Σ ,δ ,s,F) as following. We choose the alphabetΣ to beΣ ′ ∪{a,c},
wherea andc are two new symbols. We setQ = {s,1,2,3,4,5,6}∪Q′ ∪Q′′,
wheres, 1, 2, 3, 4, 5 and 6 are new state symbols. The transition relationδ is
defined as follows:δ (s,a) = {1,q′′0}, δ (1,ε) = {q′0}, δ (1,c) = {6}, δ (q′′0,c) =
{2,4}, and for allb ∈ Σ ′ we haveδ (2,b) = {3}, δ (3,b) = {2}, δ (4,b) = {5},
δ (5,b) = {4} andδ (6,b) = {6}. In addition,δ includes all the transitions of
N andM′. Figure 7 details the construction ofM in terms ofN andM′. The
set of accepting states ofM will be the set of accepting states ofM′ andN, to
which we add the states 2, 5 and 6. To finalize the construction ofM we remove
the onlyε-transition from state 1 using the standardε-removal algorithm. The

q′0

q′′0

Σ ′

Σ ′

Σ ′

Σ ′

2 3

54

1

s

6

M′, for L0

N

Q′′

Q′, Σ ′

Σ ′

a

a

c ε

c

c

Fig. 7.The construction ofM, acceptinga
(

cΣ ′∗∪L0∪L(N)
)

.
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proof is complete by the following claim:

Claim. M has a 1-delegator if and only ifL(N) ⊆ L0.

Proof.SupposeM has a 1-delegator, which reads the inputa from the initial state
s. The delegator has two choices, namely 1 andq0

′′. Note that the choiceq0
′′ is

not a valid one since all strings incΣ ′∗ are in its blind set. Thus, the delegator is
forced to choosef (s,a) = 1. At this point (being in state 1), in order to correctly
simulateM it is necessary thatL(N) ⊆ L0. Indeed, if this was not true, then
there would be a stringw∈ L(N)\L0 with aw∈ L(M), and the delegator would
rejectaw (since there would be no successful computation starting at state 1 and
labeledw).

Conversely, supposeL(N) ⊆ L0. Then, it is easy to see thatM has a 1-
delegator. Starting at states and on inputa, the delegator choosesf (s,a) =
1, and from this point it continues the simulation ofM deterministically, since
the set of states reachable from 1 have deterministic transitions. This simulation
is correct since all the strings that can be accepted by taking the other branch
(namely viaq0

′′) can also be accepted from state 1.
This completes the proof fork = 1. The proof for the other values ofk can

be obtained by minor modifications of the above proof, hence the detains will
be omitted. ⊓⊔

Note 2. In the above construction, we needed a 4-letter alphabet for the con-
struction ofM. It would be interesting to extend thePSPACE-completeness
proofs to smaller size alphabets.

Next, we describe a more efficient algorithm for Problem 1 in the general
case. We start with a simple, yet important remark.

Remark 5.Let p be a state ofM, av∈ Σ k, andδ (p,a) = {q1, . . . ,qt} (t > 0). If
a k-delegator forM reaches statep with av in its buffer, it must/will choose a
stateqi ∈ δ (p,a) such that

v−1Lqi ⊇
⋃

l∈{1,...,t},l 6=i

v−1Lql .

If two such choices,qi andq j , were possible in two delegator instance, then

v−1Lqi = v−1Lq j .

Consequently, an algorithm that aims at constructing ak-delegator would con-
sider all state choicesqi as above, and test each against a same test setW = {vb/
vb∈ pre f(Lqi )} which is independent ofqi :

{vb/vb∈ pre f(Lqi )} = {vb/vb∈ pre f(Lq j )} .
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To improve algorithm’s formalism, we give the following definition.

Definition 9. Let q be a state in M, w= a1 . . .ak and δ (q,a1, . . .ak) =
{q1, . . .qt}. A state qi is potential for (q,w) if it verifies:

(a2 . . .ak)
−1Lqi ⊇

⋃

l∈{1,...,t},l 6=i

(a2 . . .ak)
−1Lql .

Denote P(q,w) the set of all potential states for(q,w).

Notice that the above condition is related to “state blindness”, in the sense
that a stateq is w-blind if and only if P(q,w) = /0. Notice also thatP(q,w) is
obviously computable for anyq andw.

Algorithm 1 at page 23 computes ak-delegator for a given trim NFAM and
an integerk > 0. It uses a vectorV which stores, for every stateq of M, a set
of wordsw ∈ pre fk(Lp) for which a hypothetical delegator must not reachp
with w in its buffer (w is called a “forbidden” word forp). The first part of the
algorithm decides whether ak-delegator forM exists, by constructingV and
testing whetherV[q0] = /0, whereq0 is the initial state ofM. If V[q0] = /0, the
second part of the algorithm constructs ak-delegator stored in a tableT[Q,Σ≤k].
It does so in two phases: first, it computes the values inT[Q,Σ=k], which are
filled recursively by procedure “construct”, after which it completes the table
with the values inT[Q,Σ<k] - done by function “extend”.

Correctness of Algorithm 1.

We start by making the following observations:

1. If the algorithm responds “YES”, then the obtainedk-delegator is trim. In
some sense, this shows an improvement from the brute-force algorithm
which tests for any imaginablek-delegator whether it is or it is not equiva-
lent withM.

2. Corollary 4 justifies the step denoted by (*) in the main algorithm.
3. Lemma 4 and Remark 5 are the theoretical support for the step denoted by

(**) in the definition ofconstruct.
4. Corollary 3 justifies why after the initialization ofT there is no more need

to set cells ofT to NIL.

Definition 10. For w ∈ pre f(Lq), we say that(q,w) is forbidden, or that
w = a1 . . .ak is a forbidden word for q, if one of the following two conditions is
satisfied, recursively:

1. q is w-bind;
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Algorithm 1 Computing ak-delegator.

Input: a trim NFA M = (Q,Σ ,δ ,q0,F) and an integerk > 0
Output: “YES” and ak-delegator (T) if it exists, “NO” otherwise

for all q∈ Q do
V[q] ← /0, computepre fk(Lq), and computeP(q,w) for all w∈ pre fk(Lq)

while
(

V is updated
)

do
for all q∈ Q anda1 . . .ak ∈ pre fk(Lq)\V[q] do

if P(q,a1 . . .ak) = /0 then
appenda1 . . .ak to V[q] // (*)

else
if

(

∀p∈ P(q,a1 . . .ak) : a2 . . .akΣ ∩V[p]∩ pre fk(Lp) 6= /0
)

then
appenda1 . . .ak to V[q]

if V[q0] 6= /0 then
print “NO”

else
print “YES”

for all q∈ Q andw∈ Σ≤k do
T[q,w] = NIL

construct
(

q0, pre fk(Lq0)
)

extend(T)

return T
⊓⊔

definition ofconstruct(q,W)

for all a1 . . .ak ∈W do

if T[q,a1 . . .ak] = NIL then

choosep∈ P(q,a1 . . .ak) s.t.a2 . . .akΣ ∩ pre fk(Lp)∩V[p] = /0

T[q,a1 . . .ak] ← p, W′ ←{a2. . .akb/a2 . . .akb∈ pre fk(Lp)} // (**)

construct(p,W′)
⊓⊔

definition ofextend(T)

if k > 1 then
for all statesq∈ Q reachable inT do

for all w∈ Lq∩Σ<k do

find a successful pathc in M starting withq and labeled withw

assign toT values such that thek-delegator will follow the pathc, once being
in stateq and havingw in its buffer.

⊓⊔
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2. for every state p∈ P(q,w) there exists bp ∈ Σ such that a2 . . .akbp ∈
pre f(Lp) and(p,a2 . . .akbp) is known to be forbidden.

We denote by Fq the set of all forbidden words for q.

Remark 6.Let q be a state inM anda1 . . .ak 6∈Fq. There existsp∈P(q,a1 . . .ak)
such that

∀a2 . . .akb∈ pre f(Lp) : a2 . . .akb 6∈ Fp .

The set of all statep verifying this condition will be denoted byC(q,a1 . . .ak),
called the set ofchosen states for (q,a1 . . .ak). Convention-wise, ifw∈Fp

thenC(p,w) = /0.

Lemma 10. At the end of the “while-loop” of Algorithm 1 we have V[q] =
Fq∩Σ k, for all states q of M.

Proof. We first notice that Definition 10 establishes recursively that a word is
forbidden based on forbidden words of same length (it is “length aware”). We
also notice thatBq∩Σ k ⊆V[q]. Indeed, ifa1 . . .ak ∈ Bq thenP(q,a1 . . .ak) = /0
anda1 . . .ak is among the first words added toV[q] at the step denoted by (*).
Then it suffices to observe that the test

“if
(

∀p∈ P(q,a1 . . .ak) : a2 . . .akΣ ∩V[p]∩ pre fk(Lp) 6= /0
)

then”

used for updatingV[q] checks whether condition2 of Definition 10 is satisfied.
⊓⊔

Lemma 11. If the start state q0 of M verifies Fq0 ∩ pre fk(L) = /0 then M has a
k-delegator and Algorithm 1 terminates with an “YES” answer and returns a
k-delegator.

Proof. If Fq0 ∩ pre fk(L) = /0, then the algorithm prints “YES” since the test
V[q0] 6= /0 fails as a consequence of Lemma 10. It remains to prove that the
proceduresconstruct() andextend() deliver a delegator. We first make the point
that the recursive call toconstruct(q,W) always verifiesW ⊆ pre fk(Lq) \Fq.
This is true forq0 and it holds for subsequent calls toconstruct(p,W′) by virtue
of the code lines:

choosep∈ P(q,a1 . . .ak) s.t.a2 . . .akΣ ∩ pre fk(Lp)∩V[p] = /0
T[q,a1 . . .ak] ← p, W′ ←{a2 . . .akb/a2 . . .akb∈ pre fk(Lp)}
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which ensure thatW′ ∩V[p] = /0. By Remark 6,p is chosen such thatp ∈
C(q,a1 . . .ak).

It is clear that the recursive call toconstructwill end in a finite number
of steps, due to the finiteness ofT and to the fact that each subsequent call
is preceded by filling an empty(NIL) cell of T. It remains to prove that at the
end of Algorithm 1,T provides indeed ak-delegator.T represents the transition
table of ak-lookahead DFAA, since each cell ofT stores at most one state. We
give an informal reason for whyL(M) = L(A). It is clear thatL(M) ⊇ L(A).
If a1 . . .an ∈ L(M) with n < k, then by definition of procedureextendit follows
thata1 . . .an∈ L(A). Whenn≥ k, we make the observation (which can be proven
by induction) that there is a deterministic computation inA labeleda1 . . .an. In
order to show that this computation is successful, we notice that after scanning
the fistn−k symbols,A will have in its buffer the wordan−k+1 . . .an and will be
in a stateq such thatan−k+1 . . .an 6∈ Fq. After scanning another input symbol,A
will be in a statep, with an−k+2 . . .an in its buffer andan−k+2 . . .an ∈ Lp. Then,
yet again by definition ofextend, A will finish the scanning in a final state. ⊓⊔

Lemma 12. If M has a k-delegator, then the start state q0 of M verifies Fq0 ∩
pre fk(L) = /0 and Algorithm 1 terminates with an “YES” answer and returns a
k-delegator.

Proof. Assume f : Q× Σ≤k → Q is a delegator forM. We first prove the
following:

Claim.With the previous notations, the following implication holds:

f (p,w) 6= /0⇒ w 6∈ Fp .

Suppose thatf contradicts the claim for some instance ofp andw = a1 . . .ak,
hencef (p,a1 . . .ak) = p1 anda1 . . .ak ∈ Fp. Sincef is a trim delegator, we have
the following sequence:

f (p,a1 . . .ak) = p1, a1 . . .ak ∈ Fp ⇒
⇒∃b1 : a2 . . .akb1 ∈ Fp1

f (p1,a2 . . .akb1) = p2, a2 . . .akb1 ∈ Fp1 ⇒
⇒∃b2 : a3 . . .akb1b2 ∈ Fp2

. . .

f (pn−1,av) = pn, av∈ Fpn−1 ⇒
⇒∃bn : vbn ∈ Fpn

. . .
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Notice that by the recursive definition of forbidden words (Definition 10), there
exists a choice for the lettersb1, . . . ,bn, . . . such that in the above sequence
there exists a stepn for which Fpn = Bpn. Observe that there may also exist
cycles in this sequence, that is, pairs(p,v) which are repeated. However, by a
proper choice ofb1, . . . ,bn, . . . we can enforce that the situationn : Fpn = Bpn

appears before any repetition, fact ensured by Definition 10. Now it suffices to
notice thatFpn = Bpn contradicts Corollary 3 by the fact thatf (pn−1,av) = pn

and there existsbn : vbn ∈ Bpn.

We now use the proven claim as following: sincef is defined in all(q0,w) with
w∈ pre fk(L), we havew 6∈ Fq0 for all w∈ pre fk(L), henceFq0 ∩ pre fk(L) = /0.
The fact that the algorithm terminates with an “YES” answer and it returns a
k-delegator can now be proven similar to the proof of Lemma 11. ⊓⊔

Corollary 6. If no k-delegator exists for M then Algorithm 1 answers “NO”.

Proof. Assume by contradiction that the Algorithm answers “YES”. Then by
Lemma 10 we haveFq0 ∩Σ k = /0, and by Lemma 11 the Algorithm returns a
k-delegator, which contradicts that such delegator does not exist. ⊓⊔

The previous two lemmas prove more than the correctness of Algorithm 1,
namely:

Corollary 7. There exists a k-delegator for M if and only if

Fq0 ∩ pre fk(L) = /0 .

Consequently, we give the following characterization of NFA delegation:

Theorem 6. There exists a delegator for M if and only if

| Fq0 |< ℵ0 .

Proof. The “if” part is straightforward:| Fq0 |< ℵ0 implies that for ak large
enough we haveFq0 ∩ Σ k = /0, and by the virtue of Lemma 11 there exists a
k-delegator forM.

For the “only if” part, we know that there existsk such thatM has a
k-delegator and, by Corollary 7, thatFq0 ∩ pre fk(L) = /0. But having ak-
delegator implies that for anyl > k there exists anl -delegator forM. Then,
Fq0 ∩ pre f≥k(L) = /0, and sinceFq0 ⊆ pre f(L), it follows that| Fq0 |< ℵ0. ⊓⊔

It is not hard to see that there is an exponential space algorithm to determine
membership inFq (for any q). The reason is as follows: From the foregoing
discussion, it is clear that there is a PSPACE algorithm to determine if a string
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w is q-blind. It is also clear that it can be determined in PSPACE the set of states
in P(q,w). Now, we will describe an algorithm to determine membership of a
string w1w2...wk in Fq. w1w2...wk is in Fq if and only if condition (1) or (2) is
true. (1) can be checked in PSPACE. To check (2), we can create a table (as
in memorized version of dynamic programming algorithm) that corresponds to
various instances of the form(p,x1x2...xk). When the decision about an instance
is reached, the table entry is filled (with ‘yes’ or ‘no’). When a new instance
needs to be solved, the table is checked to see if the decision is already reached.
It is clear that the total space of this algorithm is dominated by the table required
to maintain the solutions of various instances and hence the resulting algorithm
is an exponential space algorithm. Thus,Fq is recursive.

If we can show thatFq0 is regular or context-free, then clearly, the decidabil-
ity of Problem 3 will follow since finiteness problem is decidable for both these
classes. We do not know if the former is true.

5 Conclusion and Future Work

In this paper we have addressed the question of whether a NFA can be simu-
lated deterministically using only its states and transitions, by taking advantage
of reading ahead a fixed number of input symbols. This problem complements
the extensive prior work on methods of simulating nondeterminism by using ex-
ponentially augmented state sets. We have provided a characterization of when
this is possible, and have presented an efficient algorithm to determine when
such a simulation is possible in restricted cases.

The main problem that remains open is the decidability of Problem 3 for
general NFA’s. We believe that this problem is decidable, and Theorem 6may
provide a direction to establish such a result. The complexity of Problems 2
and 3 (in the case of unambiguous NFA’s) have not been completely resolved.
Specifically, are the problems complete for co-NP and PSPACE respectively?
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