
Aspect-Oriented Programming in Higher-Order
and Linear Logic

Chuck C. Liang

Department of Computer Science, Hofstra University
Hempstead, NY 11550

Email: chuck.liang@hofstra.edu

Abstract. Essential elements of aspect-oriented programming can be
formulated as forms of logic programming. Extensions of Horn Clause
Prolog provide richer abstraction and control mechanisms. Definite clauses
that pertain to a common aspect, and which crosscut other program
components, can be encapsulated using the connectives of higher-order
intuitionistic logic. The integration or weaving of program fragments can
be formulated using normalized forms of proof search in linear logic.

1 Introduction

Aspect-oriented programming [7] is emerging as an important advancement in
software development. Its attraction lies in a new approach to modularity in
the structuring of programs. Multiple concerns in the construction of software,
such as security and optimization, crosscut each other and cannot be easily sep-
arated by traditional approaches to modular programming. AOP concerns pro-
gram specifications as well as programming language characteristics. This paper
focuses on the realization of AOP in a class of logic programming languages.

There is currently no widely accepted formal theory for AOP, unlike with
the case of functional programming. However, much work already exist on the
paradigm, including several formal specifications [2, 15, 16]. Logic programming
has also been used [14] as a meta-programming device for AOP, generating code
for conventional target languages (Java). Although the languages discussed here
can also be used for this purpose, we are interested in writing aspect-oriented
logic programs directly. One possible approach to this effect would be to extend
Prolog by imitating the constructs of existing AOP languages such as AspectJ [6].
We offer a different approach here. We show the extent to which AOP concepts
are already embodied in logics that are sufficiently expressive.

Using the terminology of AOP, one can consider a definite clause of a logic
program as a piece of advice on how to proceed when certain conditions are
encountered. These advice clauses are triggered at what are called join points in
a program. The organization of a logic program also does not need to mimic the
style of functionally or procedurally oriented programs. They can be grouped
according to the aspect that they aim to address. For example, one may wish to
consider all clauses concerned with error checking as a separate unit, regardless of

what predicate is at the head of a clause. In general, we can envision the following
style of programming. Let p1 . . . pn be the predicates of a logic program. Let
aspects (such as error checking) be represented by the symbols t1 . . . tm. Instead
of a singleton atom at the head of each definite clause we can qualify the atom
using a new operator @, to indicate the aspect that the clause pertains to. The
program will have the general form:

p1(. . .) @ t1 :− A1
1

...
pn(. . .) @ t1 :− A1

n
...

p1(. . .) @ tm :− Am
1

...
pn(. . .) @ tm :− Am

n

Formula Aj
i represents the “advice code” for predicate pi pertaining to aspect

tj . Goal formulas indicate the aspects it should be solved with respect to, and
have the form

G @ tj @ . . . @ tk.

Any subset of t1 . . . tm can be used in a query. It will be shown in Section 3
that the operator @ can be modeled with multiplicative disjunction in linear
logic. Each set of clauses pertaining to the same aspect constitute an aspect-
oriented program fragment. Each such fragment may include clauses for any of
the predicates p1 . . . pn, thus crosscutting the organization of the base predicates.

To fully realize this form of separation of concern in programming, however, at
least two important issues must be addressed. First, we wish to construct each
aspect-oriented fragment not just as a loose collection of clauses but as a modular
unit of abstraction, with the desired characteristics of locality and information
hiding. Secondly and most delicately, mechanisms must be available to integrate
or weave the various fragments into a coherent program. These issues are the
focus of this paper and are addressed respectively in the following sections.
Because of the lack of formal definitions for AOP concepts, our presentation
relies significantly on examples. The paper culminates in the formulation of
AOP as linear logic programming in Section 3.

2 Abstractions in Logic Programming

The first-order theory of Horn clauses that traditionally forms the foundation of
logic programming is limited in its ability to provide mechanisms for abstraction.
A formulation and classification of logic programming as deterministic proof
search was given in [11]. Under such a generalized context, logics richer than
Horn clauses can be considered as basis for logic programming. Higher-order,

2

intuitionistic and linear logics offer more complex mechanisms for expressing
abstraction.

To provide a framework for discussion, we consider the Java language extension
AspectJ [6], which seeks to support AOP in a general-purpose programming lan-
guage. It is now the most popular manifestation of the paradigm. Several lan-
guages based on AspectJ have also been developed, including Aspectual CAML
[13]. In AspectJ, program fragments that address a common concern can be en-
capsulated in modules called aspects. Such a structure may contain declarations
or modifications of data structures that are specific to the aspect in question.
For example, if the aspect concerns security, then a new field such as encryp-
tion key may be added to an existing class. Join points are identified using a
language (pointcuts) of regular expression-like patterns as well as primitives for
determining more meaningful computational context. Aspects define advice code
fragments that are executed at specified join points.

2.1 AOP in λProlog

λProlog, based on the theory of higher-order intuitionistic logic, extends tra-
ditional Prolog. Simply typed lambda terms and the associated unification al-
gorithm are used in place of first-order terms and unification. Universal quan-
tification, including quantification over predicates, can be used in goal clauses.
The operational meaning of a goal of the form ∀x.G is to prove G using a fresh
constant for x. The intuitionistic connective for implication, unlike its classi-
cal counterpart, provides a stronger notion of scope, and can be used without
restriction in λProlog. A goal A ⇒ B is provable if and only if B is provable
under the local assumption of A. These extensions provide a basis for expressing
abstraction in programming. There is now a high-performance, compiler-based
implementation [12] of λProlog.

Intuitionistic implication augments an existing program with a temporary
clause, and can also be thought of as adding a piece of advice to the existing pro-
gram. Likewise, higher-order universal quantification introduces a new constant,
which can be a predicate or function symbol, to the existing signature. As early
as in [9], it was demonstrated how these capabilities can be used to dynamically
define new data structures in a program.

To demonstrate how AOP can be manifested in this setting, we use a predi-
cate of the form

advice Aspect name Goal

as the head of λProlog clauses. Here, Aspect name identifies the aspect or con-
cern that the body of the clause gives advice to. Goal is a λProlog goal to which
the advice is to be applied. We present in Figures 1 and 2 a simplified exam-
ple to provide a comparison between a λProlog program and the corresponding
AspectJ program. The purpose of this comparison is not to argue about the
superiority of this or that language. We only wish to show how aspect-oriented
concepts can be realized in entirely different contexts.

3

class aopbase
{

static boolean divisible(int A, int B)
{ return (A % B == 0); }

static int factorial(int N, int Accum)
{ if (N==0) return Accum; else return factorial(N-1,N*Accum); }

} // class aopbase

aspect parameters
{

// advice to check that B is non-zero:
boolean around(int B) :

call(static boolean aopbase.divisible(..)) && args(..,B)
{

if (B==0)
{

System.out.println(”warning: B is zero, returning false”);
return false;

}
else return proceed(B);

}

// advice to check that x is non-negative
before(int x) : call(int aopbase.factorial(..)) && args(x,int)
{

if (x<0) throw new Error(”invalid parameter”);
}

// enforce that the initial value of the accumulator is 1
int around(int N, int A) :

call(int aopbase.factorial(..)) &&
!withincode(int aopbase.factorial(..)) && args(N,A)

{
return proceed(N,1);

}
} // aspect to check parameters

aspect trace
{

before() : call(int aopbase.*(..))
{ System.out.println(thisJoinPoint); }

declare precedence : trace, parameters; // trace has higher precedence
} // aspect to trace calls

Fig. 1. Sample AspectJ Program

4

module aopexample.

%% type declarations

type divisible int → int → o.
type fact int → int → int → o.
type advice string → o → o.
type useaspects (list string) → o → o.

%% base program

divisible A B :- 0 is (A mod B).
fact 0 A A.
fact N A B :- N1 is (N - 1), A1 is (N * A), fact N1 A1 B.

%% aspects

% clauses pertaining to aspect “parameters”
advice ”parameters” G :-

(∀A∀B (divisible A 0 :- print ”warning...”, !, fail))
⇒
∀ withinfact (

(∀A∀B∀C (fact A B C :- A < 0, print ”warning...”, stop))
⇒
(∀A∀B∀C (fact A B C :- not (withinfact), !,

withinfact ⇒ fact A 1 C))
⇒ G).

% clauses pertaining to aspect “trace”
advice ”trace” G :-

(∀A∀B (divisible A B :- printterm std out (divisible A B), fail))
⇒
(∀A∀B∀C (fact A B C :- printterm std out (fact A B C), fail))
⇒ G.

%% integrating multiple aspects:

useaspects [] G :- G.
useaspects [A|As] G :- useaspects As (advice A G).

Fig. 2. Separation of Concerns in λProlog

5

The syntax of λProlog follows Prolog conventions except that applications
are written in Curried form ((f x) instead of f(x)). For readability we use the
symbol ∀ for explicit universal quantification in goals. Other upper-case letters
are implicitly quantified over the entire clause, as usual.

The “base program” for our example consists of two simple operations: that of
checking for divisibility and the familiar tail-recursive factorial relation. We have
deliberately left out the checking for invalid parameters in the base program. In
the case of the factorial predicate, we have also not constrained that the initial
value of the second parameter should be 1. We leave these separate concerns
to an aspect module called “parameters”. The second, “trace” aspect, which
traces procedure calls, is perhaps the most popular example of AOP. These
small programs may not be best-suited to illustrate the advantages of AOP over
conventional methods, but it suffices to demonstrate the principle of separation-
of-concerns and the kind of programming devices that can realize the aspect-
oriented paradigm.

The use of the control primitive ! is required in these examples. Also required
is that in solving a goal of the form A ⇒ B the new clause A is consulted first.
These extra-logical characteristics are required to ensure that the advice clauses
must be applied, as well as to specify the precedence ordering among advice. In
other words, they control the weaving of the aspect-oriented fragments into the
program. We shall use linear logic in Section 3 to achieve this purpose declar-
atively. However, λProlog currently provides a more practical implementation.
The withinfact predicate, being quantified inside the body of the first clause, is
local to the clause and represents another instrument for weaving. It serves to
identify recursive calls to fact, for which the advice should not be applied, and
is comparable to the cflowbelow pointcuts of AspectJ. Integration of multiple
aspects is achieved with the useaspects clauses. The order of the aspect names in
the list argument determines the precedence of the aspects. For example, calling

?- useaspects [”trace”,”parameters”] G

will apply the trace aspect first while solving G. Critically, however, the use of
either aspect with the base program is optional.

Since λProlog was not implemented with AOP in mind, one cannot rea-
sonably expect features such as thisJoinPoint, even as extra-logical additions.
However, the essential aim of the separation of concerns is achieved. The advice
clauses clearly crosscut the base program procedures.

In addition to declaring advice, we can use second-order quantification to
introduce a new construct to a program. The purpose of the following clause is
to implement a password-checking aspect for some arbitrary predicate q A:

advice ”password protection” G :- ∀ pw ∀ passed (
(∀A∀X (q A :- not(passed), !, print ”enter password:”,

read X, pw X, passed ⇒ q A))
⇒
(print ”set password:”, read W, pw W ⇒ G)).

6

The predicate pw is introduced to assert the password, and passed is used to
signify that a valid password has been given. The scoping rules of the logical
connectives are crucial to the validity of this clause. In particular, pw is a pred-
icate symbol that is unique and local to the advice clause. It cannot appear free
in G, and thus cannot be circumvented. Likewise, the passed predicate cannot
be asserted arbitrarily except by the advice clause. The scope of ⇒ restricts its
assertion to individual goals. That is, multiple calls to q, excluding recursive
calls, which are within the scope of ⇒, will all require password checks.

Using logical abstraction mechanisms to reflect the aspect-oriented approach
to program organization has obvious benefits. One of the criticisms of the As-
pectJ manifestation of AOP has been that it conflicts with the conventional
notions of abstraction and information hiding found in Java-like languages. By
formulating advice in light of lambda abstraction, universal quantification and
implication, we can reconcile aspect orientation with well-understood notions
of abstraction. This observation suggests that the perceived conflict between
AOP and traditional abstraction principles are due to ad-hoc characteristics of
non-declarative systems such as Java and AspectJ.

2.2 Join Points in the Continuation Passing Style

There are certainly features of Java and AspectJ that cannot be emulated easily
in a logic programming language. On the other hand, there are also examples
where an enriched logic programming language can offer AOP-related capabili-
ties that are not found in conventional settings. Higher-order languages of both
the functional and logic-programming varieties support the continuation passing
style of programming. CPS introduces the sequential ordering of execution to
a logic program. CPS in λProlog, given its ability to inspect the structure of
λ-terms via higher-order unification, gives rise to interesting possibilities.

The following example is partially motivated by the image processing exam-
ple described in [7]. Compared to the examples of the previous section, it better
illustrates why one may wish to consider the AOP approach to program orga-
nization. The λProlog clauses of Figure 3 implement the typical higher order
predicates, map, fold and filter, using a form of CPS. The last parameter of
each predicate is a λ-term that relates the result of the current computation to
a continuation goal.

The base program clauses are relatively elegant but lack refinement. When
boolean operators are folded over lists, short-circuiting can be applied. Similarly,
when an operation such as filter is immediately followed by one such as map, it is
often possible to combine the operations, avoiding the generation of an interme-
diate list and improving efficiency. Adding such special-case clauses to the base
program directly would compromise its elegance. The conventional, procedurally
oriented approach would be to declare new procedures that encapsulate these
cases for special treatment. Problems occur, however, when multiple features are
required in combination. That is, combining the short circuit and merge traver-
sals features would require yet another procedure. There are also situations, such
as when no lists of booleans are present, when some refinements are not desired.

7

%% base program

type map (A → B) → (list A) → ((list B) → o) → o.
type fold (A → A → A) → A → (list A) → (A → o) → o.
type filter (A → o) → (list A) → ((list A) → o) → o.

map M [] G :- (G []).
map M [H|T] G :- map M T λx(G [(M H) | x]).

fold Op Id [] G :- (G Id).
fold Op Id [A|T] G :- fold Op Id T λx(G (Op A x)).

filter P [] G :- (G []).
filter P [H|T] G :- (P H), !, filter P T λx(G [H|x]).
filter P [H|T] G :- filter P T G.

%% aspects

advice ”short circuit” G :-
(∀L∀C (fold and true [false|L] C :- !, (C false)))
⇒
(∀L∀C (fold or false [true|L] C :- !, (C true)))
⇒ G.

advice ”merge traversals” G :-
(∀P∀L∀Op∀Id∀Cg (

map P L λx(fold Op Id x Cg) :- !, fold λaλb(Op (P a) (P b)) Id L Cg))
⇒
(∀P∀L∀M∀Cg (

filter P L λx(map M x Cg) :- !,
(∀H∀T (map M [H|T] Cg :- not (P H), !, map M T Cg))
⇒ map M L Cg))

⇒ G.

Fig. 3. Optimization Aspects in Continuation Passing Style

8

For n distinct refinements, it is unlikely that one can foresee which of the 2n

possible subsets should be encapsulated. These problems are avoided by encap-
sulating the refinements not as ordinary procedures but as aspects of separate
concern. They can be decoupled from a program as the situation demands.

Critical to this program is the use of higher-order unification, which identifies
the join points where the advice clauses are applicable. We note that the pointcut
language of AspectJ has no facility to identify situations when one function is
called immediately after another, (such as in f(); g(); or even just g(f()). The
higher-order patterns of the merge traversals aspect not only identify such cases
but also the condition that the result of the first operation is not used elsewhere
in the continuation goal (i.e, x is not free in Cg).

A further implication of CPS is that it becomes possible to logically distin-
guish between advice that should be applied before and after a join point.

3 Weaving in Linear Logic

Logic programming languages have also been devised for linear logic [3], among
them Forum [10], Lolli [5] (an executable fragment of Forum), LinLog [1] and
Lygon [4]. Linear logic have been used to declaratively express computational
properties such as side effects and concurrency. Forum in particular is complete
with respect to linear logic, although formulas must be converted to a certain
form. We have seen how the primitives of λProlog can provide a basis for aspect-
oriented abstraction, although extra-logical features were needed to precisely
control the weaving of aspects. Linear logic encompasses intuitionistic logic and
the abstraction mechanisms described in the forgoing. In this section we describe
how weaving can be formulated as proof search in linear logic. We shall write
abstract program clauses in the form Head ◦− Body where ◦− is the reverse
linear implication symbol. For sake of illustrations we assume the availability of
arithmetic operations and the IO primitives read and print . That is, we assume
that goals such as read W are provable from the empty linear context.

Linear logic requires the accounting of resources during proofs. This sensitiv-
ity can be used to formulate mechanisms for controlling the synthesis or weaving
of program fragments.

We formulate AOP in linear logic as follows. Every aspect is associated with a
unique predicate symbol or token, such as trace. Intuitively, each token identifies
an aspect and represents an obligation to apply some advice. An advice clause
that pertains to an aspect token tk will have the general form

Head
...

............
.................................. tk

...
............
.................................. . . . ◦− Body

and goals will have the general form

G
...

............
.................................. t1

...
............
.................................. t2

...
............
.................................. . . .

...
............
.................................. tn

where t1 . . . tn represent aspects that must be weaved into the solution of G. Since
all such tokens must be accounted for in solving G, their assertion entails the

9

application of the corresponding advice clauses. In other words, it is possible to
associate with any goal a multiset of aspects, and we shall refer to t1 . . . tn as
an aspect multiset . An equivalent scheme would be to have advice clauses of the
form H ◦− tk ⊗ . . . ⊗ Body and goals of the form t1 −◦ . . . −◦ tn −◦ G.
We prefer the form using ...

............
.................................. since it names the aspect at the head of the clause.

For the aspect tokens to be distributed to the subgoals of G, G should be
composed from connectives such as & and ⊕, which copy the linear context upon
right-introduction (applied bottom-up). For goals formed from multiplicative
connectives, multiple occurrences of the tokens may be required.

At first glance, the mechanism used here may seem little different from adding
parameters to predicates. The role of aspect tokens, however, is to specify syn-
chronization points during proof search. The tokens are associated not just with
predicates but also with goal formulas.

As a simplified example, an advice to trace calls to the divisible predicate of
Section 2 can be written as

!∀A∀B. divisible A B
...

............
.................................. trace ◦− print ”calling . . . ” ⊗ divisible A B.

The modal operator ! is intended to scope over the entire ∀-quantified clause 1.
The need for finer means for controlling weaving are illustrated by recursive

predicates. We may wish some advice to be applied to each recursive call, and
others to be applied only once and “as soon as possible.” Specific to the fact
example, one advice checks for an invariance on the first parameter and should
be applied for each recursive call. In contrast, the other advice ensures that the
initial value of the accumulator is one, and must be used only at the outset. For
recursive advice, we employ predicate tokens that are parameterized by the same
inductive measure as the base predicate. This ensures synchronization with the
corresponding advice clause each time the inductive measure is decreased:

!∀A∀B∀C. fact A B C
...

............
.................................. check A ◦− A > 0 ⊗ (fact A B C

...
............
.................................. check A−1)

!∀B∀C. fact 0 B C
...

............
.................................. check 0 ◦− fact 0 B C

In goal clauses, we complement this device by allowing for existential quantifi-
cation over parameterized aspect tokens. Solving goals of the form G

...
............
.................................. ∃x.tk,

where G is composed from additive connectives, may use multiple instantiations
for x should they be required.

The problem of ensuring that an advice is only applied at the outset is handled
in AspectJ by specially designed pointcuts such as !withincode(. . .). Such fine-
grained control over weaving can also be achieved by imposing a precedence
ordering on advice clauses. We first observe that the “base” program fragment
can be considered as just another aspect. We therefore introduce a base token
and uniformly write all program clauses as advice clauses2. Precedence relations
among advice can then determine the exact manner of weaving.
1 The examples suggest that goals separated by ⊗ are called from left to right. The

ordering of goals technically requires the continuation passing style. However, we
forgo this refinement for sake of clarity.

2 Implicitly there is a base token for each predicate, although it should also be possible
for multiple predicates to form a common base aspect.

10

3.1 Proof Search, Modalities and Advice Precedence

Much of the non-determinism in linear logic proof search can be brought under
control using normalized forms of proofs, such as the focused proofs of Andreoli
[1] and the uniform proofs of Forum and Lolli. In such systems, the manner of
proof search can be finely controlled. It is important to point out the following.
Let Γ represent the multiset {A...

............
.................................. C ◦−1, B◦−C}. Consider:

` 1
A ` A

C ` C B ` B
B◦−C,C ` B

−◦L

B◦−C,A
...

............
.................................. C ` A,B

...
............
.................................. L

Γ ` A,B
−◦L

B ` B

` 1
A ` A C ` C
A

...
............
.................................. C ` A,C

...
............
.................................. L

A
...

............
.................................. C ◦−1 ` A,C

−◦L

Γ ` A,B
−◦L

While both proofs are valid, only the right-hand one represents a focused proof
(assuming atoms of negative polarity). all atoms at the head of the clause is found
in the goal multiset. Thus the second clause in Γ must be applied first (from
the bottom). Andreoli used the focusing property to define backchaining for
clauses with multiple atoms at the head, thus providing a basis for linear logic
programming. Uniform proofs behave similarly. The characteristic of ordered
backchaining is the basis of our general scheme for weaving.

We define for each token tk a unique predicate symbol t̂k. If aspect tj is
to have lower precedence than tk . . . tl with respect to H, then their respective
advice clauses will have the forms

H
...

............
.................................. tj

...
............
.................................. t̂k . . .

...
............
.................................. t̂l ◦− [advice code . . .], and

H
...

............
.................................. tk . . . ◦− [advice code . . .]⊗ (H ...

............
.................................. ?t̂k).

That is, the head of a tj clause should contain t̂k . . . t̂l and the body of each clause
for tk asserts ?t̂k. The modal operator allows for the use of partial orderings, since
multiple clauses may require the token. In the context of focused or uniform
proofs, the assertion of ?t̂k grants permission to advice with lower precedence
than tk to become applicable. The presence of ?t̂k in a goal multiset also signifies
that the goal is no longer dependent on aspect tk.

Given aspects t1 . . . tn, a goal of the form

G
...

............
.................................. t1

...
............
.................................. . . .

...
............
.................................. tm

...
............
.................................. ?t̂m+1

...
............
.................................. . . .

...
............
.................................. ?t̂n

thus represents a computation that is dependent on aspects t1 . . . tm and inde-
pendent of aspects tm+1 . . . tn.

To allow maximum flexibility in combining aspects with goals, we also use
clauses of the form H

...
............
.................................. tk ◦− H, to explicitly declare that aspect tk is indepen-

dent of goals H.

To illustrate the usage of this paradigm, we present in Figure 4 a full set of
clauses based on the examples of Section 2. Assume it is desired that no advice
should be executed before those of the param aspect and that trace is to have
precedence over check.

11

!∀A∀B. divisible A B
...

............
.................................. base

...
............
.................................. ̂param ◦− A mod B = 0

!∀A∀B∀C. (fact A B C)
...

............
.................................. base

...
............
.................................. ̂param ◦− fact (A−1) (A∗B) C

...
............
.................................. base

!∀B. fact 0 B B
...

............
.................................. base

...
............
.................................. ̂param

!∀A∀B∀C. fact A B C
...

............
.................................. param ◦− (fact A 1 C)

...
............
.................................. ? ̂param

!∀A∀B. divisible A B
...

............
.................................. param ◦− B 6= 0 ⊗ (divisible A B

...
............
.................................. ? ̂param)

!∀A∀B∀C. fact A B C
...

............
.................................. trace

...
............
.................................. ̂param ◦−

print ” . . . ” ⊗ (fact A B C
...

............
.................................. ? ̂trace)

!∀A∀B divisible A B
...

............
.................................. trace ◦− print ” . . . ” ⊗ divisible A B

!∀A∀B∀C. (fact A B C)
...

............
.................................. check A

...
............
.................................. ̂trace

...
............
.................................. ̂param ◦−

A > 0 ⊗ (fact A B C
...

............
.................................. check A−1).

!∀B∀C. (fact 0 B C)
...

............
.................................. check 0

...
............
.................................. ̂trace

...
............
.................................. ̂param ◦− fact 0 B C

!∀A∀B∀N. divisible A B
...

............
.................................. check N ◦− divisible A B

Fig. 4. Weaving of Aspects in Linear Logic

Note that tokens such as ? ̂param need not be re-asserted by the clauses
that depend on it, since the ?-formulas are reusable The last clause of Figure 4
specifies that divisible goals are independent of check. It is possible to generate
such independence clauses between known atoms and aspects automatically.

Given the above logic program, a goal such as

∃M(divisible 6 2 & fact 5 3 M) ...
............
.................................. param

...
............
.................................. ∃N.(check N) ...

............
.................................. trace

...
............
.................................. base

would be solved as follows by a uniform-proof interpreter. The aspect multiset
of the goal would be copied for both atomic subgoals upon &Right. The inde-
pendence clause for divisible eliminates the check obligation for the left subgoal.
Since no precedence relation was defined between the param and trace clauses
for divisible, either is applicable first. However, base is only applicable after
? ̂param is asserted. For the fact subgoal, the order of advice execution is nec-
essarily param, trace and check. Each advice rewrites the aspect multiset to a
new state. For example, after trace, the multiset becomes

∃N.(check N) ...
............
.................................. ? ̂param

...
............
.................................. ? ̂trace

...
............
.................................. base

The parameter of check can only be instantiated with 5. Every recursive call to
fact will invoke the check advice.

As a variation, suppose we desired that tracing is not to be included in the
computation. In that case trace should be replaced by ? ̂trace in the initial goal.

The above scheme is not the only means for specifying precedence among
advice. To enforce that tk has precedence over tm . . . tn, the advice clauses for
tk can also be of the form

Goal
...

............
.................................. tk

...
............
.................................. tm

...
............
.................................. . . .

...
............
.................................. tn ◦− Body

...
............
.................................. tm

...
............
.................................. . . .

...
............
.................................. tn

12

That is, the head of the tk advice clause should include the tokens for all aspects
that tk is to have precedence over. Backchaining over such a clause would be
necessary before the tokens tm . . . tn are consumed. In this scheme, the body of
advice clauses for aspect tk must reassert the tokens tm . . . tn. Suppose we wish
to add an advice that takes user input for divisible goals. This advice should
have precedence over param. Suppose further that we wish to add the advice
without modifying the existing clauses (a desirable, though not always possible
benefit of AOP). This io advice can be written as:

!∀A∀B. divisible A B
...

............
.................................. io

...
............
.................................. param ◦−

read A ⊗ read B ⊗ (divisible A B
...

............
.................................. param).

The new clause is consistent with those of Figure 4: no modification of the
existing program was necessary. However, here the io aspect must always be
used together with param. The scheme described above, using ?t̂k formulas, will
allow arbitrary aspects to be coupled with goals.

Additional control mechanisms for weaving can also be encoded. For example,
control flow information, which in the context of proof search amounts to the
subproof relation, can be captured using a pair of special tokens inq and outq for
each predicate q. An advice that is only applicable outside of the flow control of
q will include outq at the head and assert inq. An advice that is only applicable
under the flow control of q can then check for the presence of the inq token.

As a final example, we reformulate the password-protection aspect of Section 2
as a linear logic specification. Taking advantage of linear logic, we also add the
ability to change passwords. The formulation again critically relies on second-
order quantification:

∃ pw ∀ W ∀ W ′ [
(read W) −◦
(pw W ⊗ (pw W ′−◦ 1) ⊗

!∀X∀Y ∀G(changepasswd G ◦−
read X ⊗ pw X ⊗ read Y ⊗ (pw Y −◦ G)) ⊗

!∀X(checkpasswd ◦− read X ⊗ pw X ⊗ (pw X −◦ ⊥)))]

The specification can be used alongside any set of clauses as a password-protection
aspect. Since the specification is to be kept on the left side of sequents, the exis-
tential quantification of pw ensures its locality (see [8] for thorough discussion on
such uses of ∃-quantification). The read W clause sets the initial password. Since
each clause rewrites the pw clause, the inclusion of (pw W ′−◦ 1) prevents the
clause from becoming an unaccounted-for resource at the completion of proofs,
as can be seen from the following derivation:

A ` A
A, 1 ` A

1L
P ` P

A,P, (P−◦1) ` A
−◦L

Existing linear logic programs commonly use > to abort programs, even in the
presence of unclaimed resources. Such a usage could neutralize the obligations

13

imposed by the aspect tokens. In particular, an advice could even be activated
after the completion of the base program. Finer means are therefore preferable
for the maintenance of resources.

Unlike other examples, we have chosen not to synchronize the checkpasswd
advice with any specific predicate. This allows the advice to be weaved into any
goal of the form G

...
............
.................................. checkpasswd. Furthermore, the solution of G can potentially

proceed in parallel to the reading and checking of the password3.

In terms of usage, several existing linear logic programming languages, such as
LO and LinLog, allow for clauses whose heads are multisets of atomic formulas.
However, these languages lack the abstraction mechanisms described in Section
2. Forum can of course be used for these specifications, but is too general to be
interpreted efficiently. The simplified language Lolli also provides λProlog-style
abstraction, and can be implemented effectively. However, clauses and goals must
be rewritten with −◦ and ! in place of ...

............
.................................. and ?. All but the last of our examples

can be converted to Lolli. With Lolli, clauses and constructs pertaining to a
common aspect can again be encapsulated with intuitionistic implication and
quantification. The abstraction scheme for the separation of concerns can thus
be merged with the weaving mechanisms of linear logic.

4 Future Work

Another approach to weaving logic program fragments is through meta program-
ming. We can use a specification language that allows us to declare aspects and
weaving relations in a more natural manner, such as:

aspect trace, param o.
aspect check int → o.
precedence trace check.
precedence param trace. etc ...

A meta-program can be devised to check for circularity among the precedence
declarations, then transform a given logic program by adding the required t̂k and
?t̂k tokens. The meta-program can also automatically generate the independence
clauses for unrelated aspects and goals (such as between check and divisible
in Figure 4). The task of writing advice clauses would become more intuitive.
Such a device also improves the ability to incorporate new aspects and advice
while minimally altering existing code. Furthermore, as Miller has noted, linear
logic programs behave like ordinary Prolog programs most of the time. We can
envision extending ordinary Prolog in a minimal way, by adding the “@” operator
alluded to in the introduction. Together with a specification such as above, a

3 A subtle point here is the use of pwX−◦⊥ (equivalently pwX⊥...
............
.................................. ⊥) instead of simply

pwX⊥ or using checkpasswd
...

............
.................................. pwX at the head of the clause. By hiding the atom

pwX under a right-asynchronous connective, we cause proof search to “loose focus”
on the atom, delaying its use until needed. Without this device, the checkpasswd
clause cannot be applied before solving G.

14

meta program can then compile a Prolog program into a linear logic program.
Thus the mechanisms described here can also be used as a basis for adopting
AOP to Prolog.

Acknowledgments

The author wishes to acknowledge Dale Miller for valuable advice and discussion.

References

1. Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Jour-
nal of Logic and Computation, 2(3), 1992.

2. G. Bruns, R. Jagadeesan, A. Jeffrey, and J. Riely. muABC: A minimal aspect
calculus. In Fifteenth International Conference on Concurrency Theory (CONCUR
2004), LNCS vol. 3170, pages 209–224. Springer-Verlag, 2004.

3. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
4. James Harland, David J. Pym, and Michael Winikoff. Programming in lygon: An

overview. In AMAST, pages 391–405, 1996.
5. Joshua Hodas and Dale Miller. Logic programming in a fragment of intuitionistic

linear logic. Information and Computation, 110(2):327–365, 1994.
6. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersen, J. Palm, and W. G. Griswold. An

overview of AspectJ. In European Conference on Object-oriented Programming,
LNCS vol. 2072, pages 327–353. Springer-Verlag, 2001.

7. G. Kiczales, J. Lamping, A. Menhdekar, C. Maeda, C. Lopes, J. Loingties, and J. Ir-
win. Aspect-oriented programming. In European Conference on Object-oriented
Programming, LNCS vol. 1241, pages 220–242. Springer-Verlag, 1997.

8. D. Miller. Lexical scoping as universal quantification. In Sixth International Logic
Programming Conference, pages 268–283. MIT Press, June 1989.

9. D. Miller. Abstractions in logic programming. In Piergiorgio Odifreddi, editor,
Logic and Computer Science, pages 329–359. Academic Press, 1990.

10. D. Miller. Forum: A multiple-conclusion specification language. Theoretical Com-
puter Science, 165(1):201–232, 1996.

11. D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a founda-
tion for logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.

12. G. Nadathur and D. J. Mitchell. System description: Teyjus—a compiler and
abstract machine based implementation of λProlog. In Automated Deduction–
CADE-16, number 1632 in LNCS, pages 287–291. Springer-Verlag, 1999.

13. Hideaki Tatsuzawa, Hidehiko Masuhara, and Akinori Yonezawa. Aspectual Caml:
An aspect-oriented functional language. In 10th ACM SIGLAN International Con-
ference on Functional Programming, 2005.

14. K. De Volder and T. D’Hondt. Aspect-oriented logic meta programming. In 2nd
International Conference on Meta-Level Architectures and Reflection, LNCS vol.
1616, pages 250–272. Springer-Verlag, 1999.

15. D. Walker, S. Zdancewic, and J. Ligatti. A theory of aspects. In International
Conference on Functional Programming, pages 127–139, 2003.

16. M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice and dynamic
join points in aspect-oriented programming. ACM Transactions on Programming
Languages and Systems, 26(5):890–910, 2004.

15

