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Abstract. A strong hyperbox-respecting coloring of an n-dimensional
hyperbox partition is a coloring of the corners of its hyperboxes with 2n

colors such that any hyperbox has all the colors appearing on its corners.
A guillotine-partition is obtained by starting with a single axis-parallel
hyperbox and recursively cutting a hyperbox of the partition into two
hyperboxes by a hyperplane orthogonal to one of the n axes. We prove
that there is a strong hyperbox-respecting coloring of any n-dimensional
guillotine-partition. This theorem generalizes the result of Horev et al.
[8] who proved the 2-dimensional case. This problem is a special case of
the n-dimensional variant of polychromatic colorings. The proof gives an
efficient coloring algorithm as well.

1 Introduction

A k-coloring of the vertices of a plane graph is polychromatic (or face-respecting)
if on all its faces all k colors appear at least once (with the possible exception of
the outer face). The polychromatic number of a plane graph G is the maximum
number k such that G admits a polychromatic k-coloring, we denote this number
by χf (G). For an introduction about polychromatic colorings see for example
the introduction of [2] or [4]. We restrict ourselves to a brief introduction to this
topic and list some results. Alon et al. [2] showed that if g is the length of a short-
est face of a plane graph G, then χf (G) ≥ ⌊(3g − 5)/4⌋. (clearly χf (G) ≤ g), and
showed that this bound is sufficiently tight. Mohar and Škrekovski [10] proved
using the four-color theorem that every simple plane graph admits a polychro-
matic 2-coloring, later Bose et al. [3] proved that without using the four-color
theorem. Horev and Krakovski [9] proved that every plane graph of degree at
most 3, other than K4 admits a polychromatic 3-coloring. Horev et al. [7] proved
that every 2-connected cubic bipartite plane graph admits a polychromatic 4-
coloring. This result is tight, since any such graph must contain a face of size
four.
We define a rectangular partition as a partition of an axis-parallel rectangle into
an arbitrary number of non-overlapping axis-parallel rectangles, such that no
four rectangles meet at a common point. One may view a rectangular partition
as a plane graph whose vertices are the corners of the rectangles and edges are
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the line segments connecting these corners. Dinitz et al. [6] proved that every
rectangular partition admits a polychromatic 3-coloring. A guillotine-partition
is obtained by recursively cutting a rectangle into two subrectangles by either
a vertical or a horizontal line. For this subclass of rectangular partitions Horev
et al. [8] proved that they admit a polychromatic 4-coloring. Actually, they
prove a stronger statement. We define a strong rectangle-respecting coloring of
a rectangular partition R as a vertex coloring of R with four colors such that
every rectangle of R has all four colors among the four corners defining it. This
is clearly a polychromatic 4-coloring as well. For examples see Figure 1. They
proved that such coloring exists for any guillotine-partition. Recently, Dimitrov
et al. [4] proved that any rectangular partition admits a strong rectangle respect-
ing coloring, using a theorem about plane graphs.
Our main result is a generalization of the result for guillotine-partitions for n
dimensions. An n-dimensional hyperbox is an n-dimensional axis-parallel hyper-
box. For us a partition of an n-dimensional hypercube or hyperbox is a partition
to hyperboxes such that each corner vertex is a corner of 2 hyperboxes, except the
corners of the original hypercube. Note that this definition differs a bit from the
natural definition, where we would allow a vertex to be the corner of more than
2 hyperboxes. This is needed, as using the more natural definition even in the
plane there are simple counterexamples for our main theorem. The hyperboxes
of the partition are called the basic hyperboxes. A guillotine-partition is obtained
by starting with a partition containing only one basic hyperbox and recursively
cutting a basic hyperbox into two hyperboxes by a hyperplane orthogonal to
one of the n axes. The structure of such partitions is widely investigated, used
in the area of integrated circuit layouts and other areas. Guillotine-partitions
are also the underlying structure of orthogonal binary space partitions (BSPs)
which are widely used in computer graphics. In [1] Ackerman et al. determine
the asymptotic number of structurally different guillotine-partitions, we refer to
the introduction of the same paper for more on this topic.
A strong hyperbox-respecting coloring of a partition is a coloring of the corners
of its basic hyperboxes with 2n colors such that any basic hyperbox has all the
colors appearing on its corners. Note that a corner belongs to two basic hyper-
boxes except the 2n corners of the partitioned big hyperbox, which belong to
only one basic hyperbox. The natural extension to n dimensions of a polychro-
matic coloring would be a coloring of the corners of its basic hyperboxes with 2n

colors such that any basic hyperbox has all the colors appearing on its boundary.
Clearly, every strong hyperbox-respecting coloring has this property.

Theorem 1. There is a strong hyperbox-respecting coloring of any n-dimen-
sional guillotine-partition.
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Fig. 1. a (a) polychromatic 4-coloring and (b) strong rectangle-respecting coloring of
a guillotine partition

2 Proof of the main theorem

First we start with some definitions to be able to phrase the theorem we will
actually prove, implying Theorem 1. We can assume w.l.o.g. that every hyperbox
is a hypercube. Let us formulate this more precisely. We begin by introducing
some notations. From now on x = (x1, x2, . . . , xn), y, a, b, etc. always refer to
some n-long 0-1 vector. We define the sum of two such vectors (denoted simply
by +) as summing independently all coordinates mod 2. The (0, 0, . . . , 0) vector
is denoted by 0 and the vector (1, 0, 0, . . . , 0) by e1. A face is always an (n− 1)-
dimensional face of a hyperbox. Any axis-parallel n-dimensional hyperbox can be
uniquely scaled and translated to be the hypercube with the two opposite corners
being (0, 0, . . . , 0) and (1, 1, . . . , 1). We refer to the corner of the hyperbox which
maps into the point with coordinates x = (x1, x2, . . . , xn) by C(x). For some
fixed x 6= 0 we define the reflection Rx being the function on the set of corners
for which Rx(C(y)) = C(x + y) for all y. Observe that Rx(Rx(C(y))) = C(y)
for any y.
From now on when we speak about a coloring of some hyperbox then it is
always a hyperbox-respecting coloring. We say that a coloring of the corners of
a hyperbox is an Rx-coloring (x 6= 0) if two corners C(y) and C(z) have the
same colors if and only if Rx(C(y)) = C(z) (or equivalently Rx(C(z)) = C(y)).
Observe that such a coloring will have 2n−1 different colors appearing on the
corners of the hyperbox, each occuring twice. Further, we say that the coloring
of the corners is an R0-coloring if all corners are colored differently. Note that
permuting the colors of an Rx-coloring gives another Rx-coloring for any x. From
now on we will always restrict ourselves to these kinds of colorings. If any pair
of such colorings could be put together along any axes to form another such
coloring then it would already imply a recursive proof for the main theorem. As
this is not the case we have to be more precise about our freedom of how to
color a partition, making necessary to define sets of such colorings.
For any x 6= 0 Sx is defined as the union of all Ry for which x · y = 1 (the scalar
product of x and y mod 2). S0 is the one element set of R0. If for some x 6= 0
for all y ∈ Sx the hyperbox partition has a strong hyperbox-respecting coloring



which is an Ry-coloring on its corners, we say that the hyperbox partition can
be colored by the color-range Sx. If it has a strong hyperbox-respecting coloring
which is an R0-coloring on its corners, we say that the hyperbox partiton can
be colored by the (one element) color-range S0.

We will prove the following theorem, which implies Theorem 1.

Theorem 2. Any n-dimensional guillotine-partition can be colored by some
color-range.

Proof. We proceed by induction on the number of guillotine-cuts of the partiton.
The corners of a hyperbox containing only one basic hyperbox (i.e. the partition
has 0 cuts) can be colored trivially with all different colors, thus colorable by
color-range S0. In the general step we take a cut of the hyperbox B splitting it
into two hyperboxes B1 and B2 with smaller number of cuts in them. Thus, by
induction they can be colored by some color-ranges Sx and Sy for some x and
y. We need to prove that there exists a z for which our hyperbox partition can
be colored by Sz. First we prove this for the case when the cut is orthogonal
to the first axis. Finally, we will prove that as the definition of R’s and S’s is
symmetrical on every pair of axes, the claim follows for any kind of cut.
We regard the first axis (the one which corresponds to the first coordinate of
points) as the usual x-axis, and so we can say that an object (corner, face,
hyperbox etc.) is left from another if its first coordinates are smaller or equal
than the other’s (B1 is left from B2 for example). Similarly we can say right
when its coordinates are bigger or equal than the other’s.
We always do the following. Take an Ra ∈ Sx and Rb ∈ Sy and take a coloring
of B1 which is an Ra-coloring on its corners and a coloring of B2 which is an
Rb-coloring on its corners by induction such that the colors of the corners which
should fit together (the right face of B1 and the left face of B2) have the same
colors at the corners which will be identified. This is not always possible but
when it is, it gives a coloring of B (the corners on the left face of B1 and on
the right face of B2 are the corners of B). Note that we can permute the colors
on the two hyperboxes in order to achieve such a fit of the colors. Clearly, the
resulting coloring of B is a hyperbox-respecting coloring by induction. If the
resulting coloring can be an Rc-coloring on the corners for some c then we write
Ra · Rb→Rc. See Figure 2 and 3 for examples for 3 dimensions. The definition
of → is good as the existence of such a fit depends only on the color of the
corners. Observe that this operation is not commutative by definition and can
hold for more than one c and has the hidden parameter that we put them
together along the first axis (i.e. the two partitions are put together by the face
which is orthogonal to the first axis). As we remarked earlier, if for any a and b
there would be a c with Ra ·Rb→Rc then it would be enough to prove the main
theorem by induction without defining color-ranges. As this is not the case we
need to deal with color-ranges and define the function → on them as well.
We write Sx ·Sy→Sz if ∀Rc ∈ Sz ∃Ra ∈ Sx and Rb ∈ Sy such that Ra ·Rb→Rc.
Clearly, we need to prove that there exists such a z for any choice of x and y
that Sx · Sy→Sz. Lemma 2 states this. For the proof of this lemma we will first
need to prove Lemma 1 about the behaviour of → for R’s.



Finally, we need to prove that we can put together color-ranges along any axis.
One can argue that we can obviously do that as the definition of color-ranges is
symmetrical on any pair of coordinates and because of that analogs of Lemma
1 and Lemma 2 are true for an arbitrary axis. For a more rigorous argument see
Lemma 3 and its proof in the Appendix.
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Fig. 2. Example to Lemma 1(c): R010 · R010→R010
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Fig. 3. Example to Lemma 1(d): R110 · R101→R111

Lemma 1 (fitting together colorings). For a, b, c 6= 0 we have
(a) R0 · R0→Rc, if the first coordinate of c is 1,
(b) Ra · R0→R0 and R0 · Ra→R0, if the first coordinate of a is 1,
(c) Ra · Ra→Ra, if the first coordinate of a is 0,
(d) Ra · Rb→Rc, if the first coordinate of a and b is 1 and c = a + b + e1.

Proof. (a) Take an arbitrary c with its first coordinate being 1. For an Rc-
coloring each color appearing on the corners of the hyperbox appears once on its
left and once on its right face. We want to fit together two R0-colorings to have
an Rc-coloring. Take an arbitrary R0-coloring of B1. Take an R0-coloring of B2

and permute its colors such that the corners on its left face fit together with the
corners on the right face of B1. Now the set of colors on the right face of B2 is
the same set of colors as on the left face of B1. After a possible permutation of
these colors on B2 we can get an Rc-coloring on B.
(b) Take an Ra-coloring of B1 and an R0-coloring of B2, permute the colors on
B2 such that the needed faces fit together. This can be done as Ra does not have
a color appearing twice on its right face. As on B1’s left face the same set of
colors appear as on its right face, B has all the colors of B2’s coloring appearing
on its corners, thus it is an R0-coloring of B. The proof for the other claim is



similar.
(c) Take an Ra-coloring of B1. Take an Ra-coloring of B2 and permute the colors
on it such that the corners on its left face fit together with the corners on the
right face of B1 and on its right face all colors are different from the ones we
used to color the corners of B1. This can be done as both are Ra-colorings where
the first coordinate of a is 0, so on the common face the same pair of corners
need to have the same color. Similarly, we see that these fit together to form an
Ra-coloring of B. For an illustration for 3 dimensions see Figure 2.
(d) Take an Ra-coloring of B1. Take an Rb-coloring of B2 and permute again
the colors such that the corners on its left face fit together with the corners on
the right face of B1. This can be done as the corners on the right face of B1 all
have different colors and this is what we need on the left face of B2 to make an
Rb coloring (as the first coordinate of a and b is 1). Now it is enough to see that
the resulting coloring of B is an Rc coloring with c = a+ b+ e1 (recall that e1 is
the vector with all-0 coordinates except the first coordinate one being 1). Take
an arbitrary corner on its left face, C(d) (thus d has first coordinate 0). In the
coloring of B1 its pair (the corner with the same color) is C(d + a). This is on
the right face of B1, and so it is fitted together with the corner C(d + a + e1)
of B2 on B2’s left face. By the Rb-coloring of B2 the corner C(d + a + e1 + b)
has the same color. This is also the C(d + a + e1 + b) corner of B. This holds
for any corner of B on its left side and symmetrically on its right side as well,
and so this is indeed an Rc-coloring of B. For an illustration for 3 dimensions
see Figure 3. ¤

Lemma 2 (fitting together color-ranges). For x, x′, y 6= 0 we have
(a) S0 · S0→Se1

,
(b) Sx · S0→S0 and S0 · Sx→S0,
(c) Sx · Sy→Se1

, if x and y differ somewhere which is not the first coordinate,
(d) Sx · Sx→Sx′ , if x′ is the same as x with the possible exception at the first
coordinate, which is 1 in x′.

(e) Sx · Sx′→Sx and Sx′ · Sx→Sx, if x′ is the same as x except at the first coor-
dinate, which is 0 in x and 1 in x′.

Proof. Let us recall first that S0 is the one element set of R0 and for any x 6= 0
Sx is defined as the union of all Ry for which x · y = 1.
(a) by Lemma 1(a) R0 · R0→Rc for any c · e1 = 1.
(b) In Sx (x 6= 0) there is always an Ra where the first coordinate of a is 1. By
Lemma 1(b) Ra · R0→R0. The proof for the other claim is similar.
(c) We need to prove that for any Rc ∈ Se1

(c · e1 = 1) there is an Ra ∈ Sx and
Rb ∈ Sy such that Ra · Rb→Rc.
Suppose x and y differ in the kth coordinate (k 6= 1). Define X as the set of
coordinates l where xl = 1, and Y the set of coordinates l where yl = 1. We want
to apply Lemma 1(d) which is symmetrical on a and b and so we can suppose
that k /∈ X and k ∈ Y . The first coordinate of c is 1, so we choose a and b
having the first coordinate 1 as well. We need that a + b + e1 = c to be able to
apply Lemma 1(d). First define the coordinates of a being in X all zero except



one (this is the first if 1 ∈ X, some other otherwise), thus by any choice of the
other coordinates we will have Ra ∈ Sx. Now define the coordinates of b being
in X \ {1} such that al + bl = cl for all l ∈ X. Define the rest of the coordinates
of b such that b · y = 1, this can be done as we can choose the kth coordinate as
we want. Thus, Rb ∈ Sy as well. Finally, choose the coordinates of a not in X
such that al + bl = cl for all l /∈ X. This way a + b + e1 = c as needed.
(d) We need to prove that for any Rc ∈ Sx′ there is an Ra ∈ Sx and Rb ∈ Sx

such that Ra · Rb→Rc.
First we prove the case when the first coordinate of x is 1 and so x′ = x. For a c
with first coordinate 0 by Lemma 1(c) we have Rc ·Rc→Rc, all in Sx as needed.
For a c with first coordinate 1 take an arbitrary a with first coordinate 1 and
Ra ∈ Sx. Choose b such that a + b + e1 = c and so by Lemma 1(d) Ra · Rb→Rc

holds. We need that Rb is in Sx, which is true as b·x = (a+c+e1)·x = 1+1+1 = 1.
Now we prove the case when the first coordinate of x is 0 and so x′ = x+e1. For a
c with first coordinate 0 by Lemma 1(c) we have Rc ·Rc→Rc, all in Sx and in S′

x

too (as for such a c we have c·x = c·x′ = 1). For a c with first coordinate 1 take an
arbitrary a with first coordinate 1 and Ra ∈ Sx. Choose b such that a+b+e1 = c
and so by Lemma 1(d) Ra · Rb→Rc holds. We need that Rb is in Sx, which is
true as c ·x′ = 1, c · e1 = 1 and so b ·x = (a+ c+ e1) ·x = 1+ c · (x′ + e1)+0 = 1.
(e) For Sx · Sx′→Sx we need to prove that for any Rc ∈ Sx there is an Ra ∈ Sx

and Rb ∈ Sx′ such that Ra · Rb→Rc.
For a c with first coordinate 0 by Lemma 1(c) we have Rc ·Rc→Rc, all in Sx and
in S′

x too (as for such a c we have c ·x = c ·x′ = 1). For a c with first coordinate
1 take an arbitrary a with first coordinate 1 and Ra ∈ Sx. Again, choose b such
that a + b + e1 = c and so by Lemma 1(d) Ra · Rb→Rc holds. We need that Rb

is in S′

x, which is true as b · x′ = (a + c + e1) · x′ = (a + c + e1) · (x + e1) =
a · x + c · x + e1 · x + a · e1 + c · e1 + e1 · e1 = 1 + 1 + 0 + 1 + 1 + 1 = 1.
As Lemma 1(d) is symmetrical on a and b, Sx′ ·Sx→Sx follows the same way. ¤

The Lemmas above conclude the proof of Theorem 2. ¤

3 Algorithm and remarks

Assuming we know the cut-structure of the partition, the proof yields a simple
linear time algorithm (in the number of cuts, regarding the dimension n as a
fixed constant) to give a strong hyperbox-respecting coloring. First we determine
the color-ranges and then the colorings of the hyperboxes using the lemmas. We
will sketch how to do that.
First we construct the rooted binary tree with its root on the top representing
our guillotine-cuts (each node corresponds to a hyperbox, the leaves are the basic
boxes, the root is the original hyperbox). From bottom to top we can determine
for each node v the unique s(v) for which the corresponding hyperbox will have
color-range Ss(v) (leaves have color-range S0, then it is easy to determine the rest
going upwards using Lemma 2). Now from top to bottom we can give appropri-
ate Ry-colorings to the hyperboxes. For the root w give arbitrary Rr(w)-coloring



with r(w) ∈ Ss(w). Then by induction if we gave an Rr(w)-coloring (rw ∈ Ss(w))
to some hyperbox corresponding to the node w with children u and v then by
Lemma 2 there exists r(u) ∈ Ss(u) and r(v) ∈ Ss(v) such that an Rr(u) and an
Rr(v) can be put together (at the appropriate face) to form an Rr(w)-coloring.
Such colorings can be found in the same way as in the proof of Lemma 2. Thus,
we can give such colorings to the hyperboxes corresponding to u and v. Finishing
the coloring this way the basic boxes will have R0-colorings, i.e. the coloring will
be a strong hyperbox-respecting coloring.
It is easy to see that using this algorithm any Sx color-range can appear with
appropriate cuts.
It was observed by D. Dimitrov and R. Skrekovski [5] using a double-counting ar-
gument that when a (not necessary guillotine) partition contains an odd number
of basic hyperboxes then a coloring of it must have all the corners colored dif-
ferently. From Lemma 1 one can easily deduce that when the partition contains
an odd number of basic hyperboxes then our algorithm will give an R0-coloring
thus having all corners colored differently indeed. Further it was also observed
that when a partition contains an even number of basic hyperboxes then all the
colors appear pair times on the corners of the hyperbox. In the even case our
algorithm will give an Ra-coloring with a 6= 0 thus having all colors appearing
zero times or twice on the corners.
As mentioned in the Introduction, the general case is solved in 2-dimensions,
but it is still unknown for which other dimensions can it hold.

Problem 1. For which n > 2 do exist a strong hyperbox-respecting coloring of
any n-dimensional partition.
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Appendix

Define ◦i as the function on the 0-1 vectors which exchanges the first and the ith
coordinates, i.e. for a vector x the vector xi has the same coordinates except that
xi

1 = xi and xi
i = x1 (thus xii is the identity and xi is a bijection). For vectors

corresponding to corners of a hyperbox this is a reflection on a hyper-plane going
through the corners having the same first and ith coordinate. Clearly, applying
◦i on an Rx-coloring of the corners we get an Rxi-coloring of the corners. Lemma
3 states that the color-ranges Sx and Sy can be put together along the ith axis
to give the color-range Sz if the color-ranges Sxi and Syi can be put together
along the first axis to give the color range Szi . We have seen this can be done
for any xi and yi with some zi, thus fitting along any other axis is also possible.

Lemma 3 (fitting together along a general axis). If the color-ranges Sxi

and Syi can be put together along the first axis to give the color range Szi then
the color-ranges Sx and Sy can be put together along the ith axis to give the
color-range Sx.

Proof. First we prove that if Rai · Rbi→Rci for some c then an appropriate
Ra-coloring and Rb-coloring can be put together by the ith axis to form an Rc-
coloring. For that take an Rai-coloring and an Rbi-coloring which fit together
along the first axis to form an Rci-coloring. Apply ◦i on these colorings. The
original ones had the same colors on the pair of corners C(v) on the first one
and C(v + e1) on the second one for arbitrary v having first coordinate 1. Thus
after applying ◦i their images, the pair of corners C(w) and C(w + ei) (ei is the
vector with all-0 coordinates except the ith coordinate being 1), will have the
same colors for arbitrary w with ith coordinate 1 and so we can put together
the two colorings along the ith axis.
By assumption when putting together along the first axis, the result was an
Rci-coloring. If c = ci = 0 then it had all different colors on its corners, thus
the same is true after applying ◦i and putting together along the ith axis, so the
result is indeed an Rc-coloring.
Otherwise if ci has first coordinate 0 then on the Rai-coloring the corners C(v)
and C(v + ci) had the same colors for any v with first coordinate 0 and on the
Rbi-coloring the corners C(w) and C(w+ ci) had the same colors for any w with



first coordinate 1. Thus after applying ◦i, the corners C(v) and C(v + c) of the
Ra-coloring have the same colors for any v with ith coordinate 0 and the corners
C(w) and C(w + c) of the Rb-coloring have the same colors for any w with ith
coordinate 1. As in this case the ith coordinate of c is 0, the resulting coloring
after fitting these two together along the ith axis is indeed an Rc-coloring.
If ci has first coordinate 1 then the corner C(v) of the R(ai)-coloring and the
corner C(v + ci) of the R(bi)-coloring had the same color for any v with first
coordinate 0. Thus after applying ◦i, the corners C(v) of the R(a)-coloring and
the corner C(v + c) of the R(b)-coloring have the same colors for any v with
ith coordinate 0. Putting these together along the ith axis gives indeed an Rc-
coloring.

Finally, back to the hyperboxes colorable with color-ranges Sx and Sy which
need to be put together along the ith axis, applying xi on all the colorings of
Sx we get Sxi and similarly from Sy we get the color-range Syi and we can put
these together by the first axis to get the color-range Szi for some z and so Sx

and Sy can be put together by the ith axis to get the color-range Sz. ¤


