Skip to main content

Isoperimetric Problem and Meta-fibonacci Sequences

  • Conference paper
Computing and Combinatorics (COCOON 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5092))

Included in the following conference series:

  • 960 Accesses

Abstract

Let G = (V,E) be a simple, finite, undirected graph. For S ⊆ V, let \(\delta(S,G) = \{ (u,v) \in E : u \in S \mbox { and } v \in V-S \}\) and \(\phi(S,G) = \{ v \in V -S: \exists u \in S\), such that (u,v) ∈ E} be the edge and vertex boundary of S, respectively. Given an integer i, 1 ≤ i ≤ ∣ V ∣, the edge and vertex isoperimetric value at i is defined as b e (i,G) =  min S ⊆ V; |S| = i |δ(S,G)| and b v (i,G) =  min S ⊆ V; |S| = i |φ(S,G)|, respectively. The edge (vertex) isoperimetric problem is to determine the value of b e (i, G) (b v (i, G)) for each i, 1 ≤ i ≤ |V|. If we have the further restriction that the set S should induce a connected subgraph of G, then the corresponding variation of the isoperimetric problem is known as the connected isoperimetric problem. The connected edge (vertex) isoperimetric values are defined in a corresponding way. It turns out that the connected edge isoperimetric and the connected vertex isoperimetric values are equal at each i, 1 ≤ i ≤ |V|, if G is a tree. Therefore we use the notation b c (i, T) to denote the connected edge (vertex) isoperimetric value of T at i.

Hofstadter had introduced the interesting concept of meta-fibonacci sequences in his famous book “Gödel, Escher, Bach. An Eternal Golden Braid”. The sequence he introduced is known as the Hofstadter sequences and most of the problems he raised regarding this sequence is still open. Since then mathematicians studied many other closely related meta-fibonacci sequences such as Tanny sequences, Conway sequences, Conolly sequences etc. Let T 2 be an infinite complete binary tree. In this paper we related the connected isoperimetric problem on T 2 with the Tanny sequences which is defined by the recurrence relation a(i) = a(i − 1 − a(i − 1)) + a(i − 2 − a(i − 2)), a(0) = a(1) = a(2) = 1. In particular, we show that b c (i, T 2) = i + 2 − 2a(i), for each i ≥ 1.

We also propose efficient polynomial time algorithms to find vertex isoperimetric values at i of bounded pathwidth and bounded treewidth graphs.

This research was funded by the DST grant SR/S3/EECE/62/2006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Millman, V.D.: λ 1, Isoperimetric Inequalities for Graphs and Super Concentrators. Journal of Combinatorial Theory Series B 38, 73–88 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bezrukov, S.L.: Edge Isoperimetric Problems of Graphs. In: Graph Theory and Combinatorial Biology, vol. 7, pp. 157–197. Bolyai Soc. Math. Stud., Budapest (1999)

    Google Scholar 

  3. Bezrukov, S.L., Chavez, J.D., Harper, L.H., Röttger, M., Schroeder, U.-P.: The Congestion of n–cube Layout on a Rectangular Grid. Discrete Mathematics 213, 13–19 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L.: A Tourist Guide Through Treewidth. Acta Cybernetica 11, 1–21 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Bollobás, B.: Combinatorics. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  6. Bollobás, B., Leader, I.: Edge-Isoperimetric Inequalities in the Grid. Combinatorica 11, 299–314 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chandran, L. S., Kavitha, T.: Treewidth and Pathwidth of Hypercubes. Special Issue of Discrete Mathematics on Minimal Separation and Chordal Completion (to appear, 2005)

    Google Scholar 

  8. Chandran, L.S., Kavitha, T.: The Carvingwidth of Hypercubes (2006)

    Google Scholar 

  9. Chandran, L.S., Subramanian, C.R.: Girth and Treewidth. Journal of Combinatorial Theory Series B 93, 23–32 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diestel, R.: Graph Theory, 2nd edn. vol. 173. Springer, New York (2000)

    Google Scholar 

  11. Guy, R.K.: Some Suspiciously Simple Sequences. Amer. Math. Monthly 93, 186–190 (1986)

    Article  MathSciNet  Google Scholar 

  12. Harper, L.: Optimal Assignments of Numbers to Vertices. Jour. Soc. Indust. Appl. Math. 12, 131–135 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harper, L.: Optimal Numberings and Isoperimetric Problems on Graphs. Journal of Combinatorial Theory 1, 385–393 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harper, L.: On an Isoperimetric Problem for Hamming Graphs. Discrete Applied Mathematics 95, 285–309 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harper, L.H.: Global Methods for Combinatorial Isoperimetric Problems. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  16. Hart, S.: A Note on the Edges of the n–cube. Discrete Mathematics 14, 157–163 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hofstadter, D., Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books, New york (1979)

    Google Scholar 

  18. Houdré, C., Tetali, P.: Isoperimetric Invariants for Product Markov Chains and Graph Products. Combinatorica 24, 359–388 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jackson, B., Ruskey, F.: Meta-Fibonacci Sequences, Binary Trees and Extremal Compact Codes. Electron. J. Combin. 13(1); Research Paper 26, p.13 (2006) (electronic)

    MathSciNet  Google Scholar 

  20. Leader, I.: Discrete Isoperimetric Inequalities. In: Proc. Symp. Appl. Math, vol. 44, pp. 57–80 (1991)

    Google Scholar 

  21. Otachi, Y., Yamazaki, K.: A Lower Bound for the Vertex Boundary-Width of Complete k-ary Trees. Discrete Mathematics (in Press)

    Google Scholar 

  22. Tanny, S.M.: A Well-Behaved Cousin of the Hofstadter Sequence. Discrete Mathematics 105, 227–239 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Xiaodong Hu Jie Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bharadwaj, B.V.S., Chandran, L.S., Das, A. (2008). Isoperimetric Problem and Meta-fibonacci Sequences. In: Hu, X., Wang, J. (eds) Computing and Combinatorics. COCOON 2008. Lecture Notes in Computer Science, vol 5092. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69733-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69733-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69732-9

  • Online ISBN: 978-3-540-69733-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics