
ar
X

iv
:0

80
2.

27
55

v1
 [

cs
.D

M
]

 2
0

Fe
b

20
08

Covering Directed Graphs by In-trees

Naoyuki Kamiyama
∗ Naoki Katoh

†

October 25, 2018

Abstract

Given a directed graphD = (V,A) with a set of d specified vertices S = {s1, . . . , sd} ⊆ V and
a function f : S → Z+ where Z+ denotes the set of non-negative integers, we consider the

problem which asks whether there exist
∑d

i=1 f(si) in-trees denoted by Ti,1, Ti,2, . . . , Ti,f(si)

for every i = 1, . . . , d such that Ti,1, . . . , Ti,f(si) are rooted at si, each Ti,j spans vertices from
which si is reachable and the union of all arc sets of Ti,j for i = 1, . . . , d and j = 1, . . . , f(si)
covers A. In this paper, we prove that such set of in-trees covering A can be found by using
an algorithm for the weighted matroid intersection problem in time bounded by a polynomial
in

∑d

i=1 f(si) and the size of D. Furthermore, for the case where D is acyclic, we present
another characterization of the existence of in-trees covering A, and then we prove that in-
trees covering A can be computed more efficiently than the general case by finding maximum
matchings in a series of bipartite graphs.

1 Introduction

The problem for covering a graph by subgraphs with specified properties (for example, trees or
paths) is very important from practical and theoretical viewpoints and have been extensively
studied. For example, Nagamochi and Okada [10] studied the problem for covering a set of
vertices of a given undirected tree by subtrees, and Arkin et al. [1] studied the problem for
covering a set of vertices or edges of a given undirected graph by subtrees or paths. These
results were motivated by vehicle routing problems. Moreover, Even et al. [2] studied the
covering problem motivated by nurse station location problems.

This paper studies the problem for covering a directed graph by rooted trees which is mo-
tivated by the following evacuation planning problem. Given a directed graph which models
a city, vertices model intersections and buildings, and arcs model roads connecting these in-
tersections and buildings. People exist not only at vertices but also along arcs. Suppose we
have to give several evacuation instructions for evacuating all people to some safety place. In
order to avoid disorderly confusion, it is desirable that one evacuation instruction gives a single
evacuation path for each person and these paths do not cross each other. Thus, we want each
evacuation instruction to become an in-tree rooted at some safety place. Moreover, the number
of instructions for each safety place is bounded in proportion to a size of each safety place.

∗Department of Architecture and Architectural Engineering, Kyoto University, Kyotodaigaku-Katsura,

Nishikyo-ku, Kyoto, 615-8540, Japan. E-mail : is.kamiyama@archi.kyoto-u.ac.jp Supported by JSPS Research

Fellowships for Young Scientists.
†Supported by the project New Horizons in Computing, Grant-in-Aid for Scientific Research on Priority Areas,

MEXT Japan. Department of Architecture and Architectural Engineering, Kyoto University, Kyotodaigaku-

Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan. E-mail : naoki@archi.kyoto-u.ac.jp

1

http://arxiv.org/abs/0802.2755v1

The above evacuation planning problem is formulated as the following covering problem
defined on a directed graph. We are given a directed graph D = (V,A, S, f) which consists of
a vertex set V , an arc set A, a set of d specified vertices S = {s1, . . . , sd} ⊆ V and a function
f : S → Z+ where Z+ denotes the set of non-negative integers. In the above evacuation planning
problem, S corresponds to a set of safety places, and f(si) represents the upper bound of the
number of evacuation instructions for si ∈ S. For each i = 1, . . . , d, we define V i

D ⊆ V as the
set of vertices in V from which si is reachable in D, and we define an in-tree rooted at si which
spans V i

D as a (D, si)-in-tree. We define a set T of
∑d

i=1 f(si) subgraphs of D as a D-canonical
set of in-trees if T contains exactly f(si) (D, si)-in-trees for every i = 1, . . . , d. If every two
distinct in-trees of a D-canonical set T of in-trees are arc-disjoint, we call T a D-canonical set
of arc-disjoint in-trees. Furthermore, if the union of arc sets of all in-trees of a D-canonical set
T of in-trees is equal to A, we say that T covers A.

Four in-trees illustrated in Figure 2 compose a D-canonical set T of in-trees which covers
the arc set of a directed graph D = (V,A, S, f) illustrated in Figure 1(a) where S = {s1, s2, s3},
f(s1) = 2, f(s2) = 1 and f(s3) = 1. However, T is not a D-canonical set of arc-disjoint in-trees.

(a) (b)

Figure 1: (a) Directed graph D. (b) Transformed graph D∗.

(a) (b) (c) (d)

Figure 2: (a) (D, s1)-in-tree. (b) (D, s1)-in-tree. (c) (D, s2)-in-tree. (d) (D, s3)-in-tree.

We will study the problem for covering directed graphs by in-trees (in short CDGI), and
we will present characterizations for a directed graph D = (V,A, S, f) for which there exists a
feasible solution of CDGI(D), and a polynomial time algorithm for CDGI(D).

Problem : CDGI(D)

Input : a directed graph D;
Output : a D-canonical set of in-trees which covers the arc set of D, if one exists.

A special class of the problem CDGI(D) in which S consists of a single vertex was considered by
Vidyasankar [13]. He showed the necessary and sufficient condition in terms of linear inequalities

2

that there exists a feasible solution of this problem (a weaker version was shown by Frank [4]).
However, to the best of our knowledge, an algorithm for CDGI(D) was not presented.

We will summerize our results as follows.

1. We first show that CDGI(D) can be viewed as some type of the connectivity augmenta-
tion problem. After this, we will prove that this connectivity augmentation problem can
be solved by using an algorithm for the weighted matroid intersection problem in time
bounded by a polynomial in

∑d
i=1 f(si) and the size of D (this generalizes the result by

Frank [3]).

2. For the case where D is acyclic, we show another characterization for D that there exists
a feasible solution of CDGI(D). Moreover, we prove that in this case CDGI(D) can be
solved more efficiently than the general case by finding maximum matchings in a series
of bipartite graphs instead of using an algorithm for the weighted matroid intersection
problem.

1.1 Outline

The rest of this paper is organized as follows. Section 2 gives necessary definitions and funda-
mental results. In Section 3, we give an algorithm for the problem CDGI by using an algorithm
for the weighted matroid intersection problem. In Section 4, we consider the acyclic case.

2 Preliminaries

Let D = (V,A, S, f) be a connected directed graph which may have multiple arcs. Let S =
{s1, . . . , sd}. Since we can always cover by |A| (D, si)-in-trees the arc set of the subgraph of D
induced by V i

D, we consider the problem by using at most |A| (D, si)-in-trees. That is, without
loss of generality, we assume that f(si) ≤ |A|. For B ⊆ A, let ∂−(B) (resp. ∂+(B)) be a set
of tails (resp. heads) of arcs in B. For e ∈ A, we write ∂−(e) and ∂+(e) instead of ∂−({e})
and ∂+({e}), respectively. For W ⊆ V , we define δD(W) = {e ∈ A : ∂−(e) ∈ W,∂+(e) /∈ W}.
For v ∈ V , we write δD(v) instead of δD({v}). For two distinct vertices u, v ∈ D, we denote by
λ(u, v;D) the local arc connectivity from u to v in D, i.e., λ(u, v;D) = min{|δD(W)| : u ∈ W,v /∈
W,W ⊆ V }. We call a subgraph T of D forest if T has no cycle when we ignore the direction
of arcs in T . If a forest T is connected, we call T tree. If every arc of an arc set B is parallel to
some arc in A, we say that B is parallel to A. We denote a directed graph obtained by adding
an arc set B to A by D+B, i.e., D+B = (V,A∪B,S, f). For S′ ⊆ S, let f(S′) =

∑

si∈S′ f(si).
For v ∈ V , we denote by RD(v) a set of vertices in S which are reachable from v in D. For
W ⊆ V , let RD(W) =

⋃

v∈W RD(v).
For an arc set B which is parallel to A, we clearly have for every v ∈ V

RD(v) = RD+B(v). (1)

From (1), we have for every i = 1, . . . , d

V i
D = V i

D+B. (2)

We define D∗ as a directed graph obtained from D by adding a new vertex s∗ and connecting
si to s∗ with f(si) parallel arcs for every i = 1, . . . , d (see Figure 1). We denote by A∗ the arc
set of D∗. From the definition of D∗,

|A∗| =
∑

v∈V |δD∗(v)| = |A|+ f(S). (3)

3

We say that D is (S, f)-proper when |δD∗(v)| ≤ f(RD(v)) holds for every v ∈ V .

2.1 Rooted arc-connectivity augmentation by reinforcing arcs

Given a directed graph D = (V,A, S, f), we call an arc set B with A∩B = ∅ which is parallel to
A a D∗-rooted connector if λ(v, s∗;D∗+B) ≥ f(RD(v)) holds for every v ∈ V . Notice that since
a D∗-rooted connector B is parallel to A, B does not contain an arc which is parallel to an arc
entering into s∗ in D∗. Then, the problem rooted arc-connectivity augmentation by reinforcing
arcs (in short RAA-RA) is formally defined as follows.

Problem : RAA-RA(D∗)

Input : D∗ of a directed graph D;
Output : a D∗-rooted connector B whose size is minimum among all D∗-rooted

connectors.

Notice that the problem RAA-RA(D∗) is not equivalent to the local arc-connectivity aug-
mentation problem with minimum number of reinforcing arcs from v ∈ V to si ∈ RD(v). For
example, we consider D∗ illustrated in Figure 3(a) of a directed graph D = (V,A, S, f) where
S = {s1, s2}, f(s1) = 2 and f(s2) = 2. The broken lines in Figure 3(b) represent a minimum
D∗-rooted connector. For the problem that asks to increase the v-si local arc-connectivity for
every v ∈ V and si ∈ RD(v) to f(si) by adding minimum parallel arcs to A (this problem is
called the problem increasing arc-connectivity by reinforcing arcs in [7], in short IARA(D∗)), an
optimal solution is a set of broken lines in Figure 3(c). While it is known [7] that IARA(D∗)
is NP-hard, it is known [3] that RAA-RA(D∗) in which S consists of a single element can be
solved in time bounded by a polynomial in f(S) and the size of D by using an algorithm for the
weighted matroid intersection.

(a) (b)

(c)

Figure 3: (a) Input. (b) Optimal solution for RAA-RA. (c) Optimal solution for IARA.

2.2 Matroids on arc sets of directed graphs

In this subsection, we define two matroids M(D∗) and U(D∗) on A∗ for a directed graph
D = (V,A, S, f), which will be used in the subsequent discussion. We denote by M = (E,I) a
matroid on E whose collection of independent sets is I. Introductory treatment of a matroid is
given in [11].

For i = 1, . . . , d and j = 1, . . . , f(si), we define Mi,j(D
∗) = (A∗,Ii,j(D

∗)) where I ⊆ A∗

belongs to Ii,j(D
∗) if and only if both of a tail and a head of every arc in I are contained in

V i
D∪{s

∗} and a directed graph (V i
D∪{s

∗}, I) is a forest. Mi,j(D
∗) is clearly a matroid (i.e. graphic

matroid). Moreover, we denote the union of Mi,j(D
∗) for i = 1, . . . , d and j = 1, . . . , f(si) by

M(D∗) = (A∗,I(D∗)) in which I ⊆ A∗ belongs to I(D∗) if and only if I can be partitioned into
{Ii,1, . . . , Ii,f(si) : i = 1, . . . , d} such that each Ii,j belongs to Ii,j(D

∗). M(D∗) is also a matroid
(see Chapter 12.3 in [11]. This matroid is also called matroid sum). When I ∈ I(D∗) can be
partitioned into {Ii,1, . . . , Ii,f(si) : i = 1, . . . , d} such that a directed graph (V i

D ∪ {s∗}, Ii,j) is a
tree for every i = 1, . . . , d and j = 1, . . . , f(si), we call I a base of M(D∗).

4

Next we define another matroid. We define U(D∗) = (A∗,J (D∗)) where I ⊆ A∗ belongs to
J (D∗) if and only if I satisfies

|δD∗(v) ∩ I| ≤

{
f(RD(v)), if v ∈ V,
0, if v = s∗.

(4)

Since U(D∗) is a direct sum of uniform matroids, U(D∗) is also a matroid (see Exercise 7 of
pp.16 and Example 1.2.7 in [11]). We call I ∈ J (D∗) a base of U(D) when (4) holds with
equality.

For two matroids M(D∗) and U(D∗), we call an arc set I ⊆ A∗ D∗-intersection when
I ∈ I(D∗) ∩ J (D∗). If a D∗-intersection I is a base of both M(D∗) and U(D∗), we call I
complete.

When we are given a weight function w : A∗ → R+ where R+ denotes the set of non-negative
reals, we define the weight of I ⊆ A∗ (denoted by w(I)) by the sum of weights of all arcs I. The
weighted matroid intersection problem (in short WMI) is then defined as follows [5].

Problem : WMI(D∗)

Input : D∗ of a directed graph D and a weight function w : A∗ → R+;
Output : a complete D∗-intersection I whose weigh is minimum among all complete

D∗-intersections, if one exists.

Lemma 2.1 We can solve WMI(D∗) in O(M |A∗|6) time where M =
∑

v∈V f(RD(v)).

Proof. To prove the lemma, we use the following theorem concerning a matroid.

Theorem 2.2 ([9]) Given a matroid M = (E,I) which is a union of t (≤ |E|) matroids
M1 = (E,I1), . . . ,Mt = (E,It), we can test if a given set belongs to I in O(|E|3γ) time where
γ is the time required to test if a given set belongs to I1, . . . ,It.

Theorem 2.3 ([5]) Given two matroids M1 = (E,I1) and M2 = (E,I2) with a weight function
w : E → R+ and a non-negative integer k ∈ Z+, we can find I ∈ I1 ∩ I2 with |I| = k whose
weight is minimum among all I ′ ∈ I1 ∩ I2 with |I ′| = k in O(k|E|3 + k|E|2γ) time if one exists
where γ is the time required to test if a given set belongs to both I1 and I2.

We consider the time required to test if a given set belongs to both I(D∗) and J (D∗). Since
it is not difficult to see that we can test is a given set belongs to each Ii,j(D

∗) in O(|A∗|) time,
we can test if a given set belongs to I(D∗) in O(|A∗|4) time from Theorem 2.2. For J (D∗), the
time complexity is clearly O(|A∗|) time. The size of every complete D∗-intersection is equal to
M from (4). From this discussion, the total time required for solving WMI(D∗) is O(M |A∗|6)
from Theorem 2.3.

2.3 Results from [8]

In this section, we introduce results concerning packing of in-trees given by Kamiyama et al. [8]
which plays a crucial role in this paper.

Theorem 2.4 ([8]) Given a directed graph D = (V,A, S, f), the following three statements are
equivalent :

1. For every v ∈ V , λ(v, s∗;D∗) ≥ f(RD(v)) holds.

5

2. There exists a D-canonical set of arc-disjoint in-trees.

3. There exists a complete D∗-intersection.

Although the following theorem is not explicitly proved in [8], we can easily obtain it from
the proof of Theorem 2.4 in [8].

Theorem 2.5 ([8]) Given a directed graph D = (V,A, S, f) which satisfies the condition of
Theorem 2.4, we can find a D-canonical set of arc-disjoint in-trees in O(M2|A|2) time where
M =

∑

v∈V f(RD(v)).

From Theorem 2.4, we obtain the following corollary.

Corollary 2.6 Given a directed graph D = (V,A, S, f) and an arc set B with A∩B = ∅ which
is parallel to A, the following three statements are equivalent :

1. B is a D∗-rooted connector.

2. There exists a (D +B)-canonical set of arc-disjoint in-trees.

3. There exists a complete (D +B)∗-intersection.

Proof. The equivalence of the statements 2 and 3 follows from Theorem 2.4.
1→2 : Since B is parallel to A, we clearly have

(D +B)∗ = D∗ +B. (5)

Since B is a D∗-rooted connector, we have for every v ∈ V

λ(v, s∗; (D +B)∗)= λ(v, s∗;D∗ +B)
︸ ︷︷ ︸

by (5)

≥ f(RD(v))= f(RD+B(v))
︸ ︷︷ ︸

by (1)

.

From this inequality and Theorem 2.4, this part follows.
2→1 : Since there exists a (D+B)-canonical set of arc-disjoint in-trees, we have for every v ∈ V

λ(v, s∗;D∗ +B)= λ(v, s∗; (D +B)∗)
︸ ︷︷ ︸

by (5)

≥ f(RD+B(v))
︸ ︷︷ ︸

by Theorem 2.4

= f(RD(v))
︸ ︷︷ ︸

by (1)

.

This proves that B is a D∗-rooted connector.

3 An Algorithm for Covering by In-trees

Given a directed graph D = (V,A, S, f), we present in this section an algorithm for CDGI(D).
The time complexity of the proposed algorithm is bounded by a polynomial in f(S) and the
size of D. We first prove that CDGI(D) can be reduced to RAA-RA(D∗). After this, we show
that RAA-RA(D∗) can be solved by using an algorithm for the weighted matroid intersection
problem.

6

3.1 Reduction from CDGI to RAA-RA

If D = (V,A, S, f) is not (S, f)-proper, i.e., |δD∗(v)| > f(RD(v)) for some v ∈ V , there exists
no feasible solution of CDGI(D) since there can not be a D-canonical set of in-trees that covers
δD∗(v) from the definition of a D-canonical set of in-trees. Thus, we assume in the subsequent
discussion that D is (S, f)-proper.

Proposition 3.1 Given an (S, f)-proper directed graph D = (V,A, S, f), the size of a D∗-rooted
connector is at least

∑

v∈V f(RD(v)) − (|A|+ f(S)).

Proof. Let B be a D∗-rooted connector. For every v ∈ V , |δD∗+B(v)| ≥ f(RD(v)) holds
from the definition of a D∗-rooted connector. Thus, the number of arcs of D∗ + B is at least
∑

v∈V f(RD(v)). Since the number of arcs of D∗ is equal to |A|+ f(S) from (3), the proposition
holds.

For an (S, f)-proper directed graph D = (V,A, S, f), we define optD by

optD =
∑

v∈V f(RD(v))− (|A|+ f(S)). (6)

From Proposition 3.1, the size of a D∗-rooted connector is at least optD.

Lemma 3.2 Given an (S, f)-proper directed graph D = (V,A, S, f), there exists a feasible so-
lution of CDGI(D) if and only if there exists a D∗-rooted connector whose size is equal to optD.

Proof. Only if-part : Suppose there exists a feasible solution of CDGI(D), i.e., there exists a
D-canonical set T of in-trees which covers A. For each i = 1, . . . , d, we denote f(si) (D, si)-in-
trees of T by Ti,1, . . . , Ti,f(si). For each e ∈ A, let Pe = {(i, j) : e is contained in Ti,j}. Since T
covers A, each e ∈ A is contained in at least one in-tree of T . Thus, |Pe| ≥ 1 holds for every
e ∈ A. We define an arc set B by B =

⋃

e∈A{|Pe| − 1 copies of e}. We will prove that B is a
D∗-rooted connector whose size is equal to optD.

We first prove |B| = optD. For this, we show that for every v ∈ V

∑

e∈δD(v)(|Pe| − 1) = f(RD(v)) − |δD∗(v)|. (7)

Let us first consider v /∈ S. For si ∈ RD(v), Ti,j contains v since Ti,j spans V
i
D and si is reachable

from v. Hence, since Ti,j is an in-tree and v is not a root of Ti,j from v /∈ S, Ti,j contains
exactly one arc e ∈ δD(v), i.e., (i, j) is contained in Pe for exactly one arc e ∈ δD(v). Thus,
∑

e∈δD(v)|Pe| =
∑

si∈RD(v) f(si) = f(RD(v)). From this equation and since |δD(v)| = |δD∗(v)|
follows from v /∈ S, (7) holds. In the case of v ∈ S, for si ∈ RD(v) \ {v}, (i, j) is contained in Pe

for exactly one arc e ∈ δD(v) as in the case of v /∈ S. Thus,
∑

e∈δD(v)|Pe| = f(RD(v)) − f(v).
From this equation and |δD∗(v)| = |δD(v)|+ f(v),

∑

e∈δD(v)(|Pe| − 1) = f(RD(v))− f(v)− |δD(v)| = f(RD(v)) − |δD∗(v)|.

This completes the proof of (7). Since B contains |Pe| − 1 copies of e ∈ A,

|B| =
∑

v∈V

∑

e∈δD(v)(|Pe| − 1)

=
∑

v∈V (f(RD(v)) − |δD∗(v)|) (from (7))

= optD (from (3) and (6)).

What remains is to prove that B is a D∗-rooted connector. From Corollary 2.6, it is sufficient
to prove that there exists a (D + B)-canonical set of arc-disjoint in-trees. For this, we will

7

construct from T a set T ′ of arc-disjoint in-trees which consists of T ′
i,1, . . . , T

′
i,f(si)

for i = 1, . . . , d,

and we prove that T ′ is a (D+B)-canonical set of in-trees. Each T ′
i,j is constructed from Ti,j as

follows. When e ∈ A is contained in more than one in-tree of T , in order to construct T ′ from
T , we need to replace e of Ti,j by an arc in B which is parallel to e for every (i, j) ∈ Pe except
one in-tree. For (imin, jmin) ∈ Pe which is lexicographically smallest in Pe, we allow T ′

imin,jmin
to

use e, while for (i, j) ∈ Pe \ (imin, jmin), we replace e of Ti,j by an arc in B which is parallel to
e so that for distinct (i, j), (i′ , j′) ∈ Pe \ (imin, jmin), the resulting T ′

i,j and T ′
i′,j′ contain distinct

arcs which are parallel to e, respectively (see Figure 4).

Figure 4: Illustration of the replacing operation. Let e be an arc in A, and let e′, e′′ be arcs in B.
Assume that Pe = {(1, 1), (1, 2), (2, 1)}. In this case, T1,1, T1,2 and T2,1 contain e. Then, T ′

1,1 contains e,
T ′

1,2 contains e′, and T ′

2,1 contains e′′.

We will do this operation for every e ∈ A. Let T ′ be the set of in-trees obtained by performing
the above operation for every e ∈ A. Here we show that T ′ is a (D + B)-canonical set of
arc-disjoint in-trees. Since T ′

i,j and T ′
i′,j′ are arc-disjoint for (i, j) 6= (i′, j′) from the way of

constructing T ′, it is sufficient to prove that T ′
i,j is a (D+B, si)-in-tree. Since T

′
i,j is constructed

by replacing arcs of Ti,j by the corresponding parallel arc in B and Ti,j is an in-tree rooted at
si, T

′
i,j is also an in-tree rooted at si. Since Ti,j spans V

i
D and from (2), T ′

i,j spans V
i
D+B. Hence,

T ′
i,j is a (D +B, si)-in-tree. This completes the proof.

If-part : Let B be a D∗-rooted connector with |B| = optD. From Corollary 2.6, there exists
a (D + B)-canonical set T ′ of arc-disjoint in-trees. For each i = 1, . . . , d, we denote f(si)
(D + B, si)-in-trees of T ′ by T ′

i,1, . . . , T
′
i,f(si)

. We will prove that we can construct from T ′ a

D-canonical set of in-trees covering A. We first construct from T ′ a set T of in-trees which
consists of Ti,j for i = 1, . . . , d and j = 1, . . . , f(si) by the following procedure Replace.

Procedure Replace : For each i = 1, . . . , d and j = 1, . . . , f(si), set Ti,j to be a directed
graph obtained from T ′

i,j by replacing every arc e ∈ B which is contained in T ′
i,j by an arc

in A which is parallel to e.

From now on, we prove that T is a D-canonical set of in-trees which covers A. It is not
difficult to prove that T is a D-canonical set of in-trees from the definition of the procedure
Replace in the same manner as the last part of the proof of the “only if-part”. Thus, it is
sufficient to prove that T covers A. For this, we first show that T ′ covers A ∪ B. From
A ∩B = ∅, |B| = optD and (6),

|A ∪B| = |A|+ optD =
∑

v∈V f(RD(v)) − f(S). (8)

Recall that each v ∈ V is contained in f(RD+B(v)) in-trees of T ′ from the definition of a
(D + B)-canonical set of in-trees. Thus, since in-trees of T ′ are arc-disjoint, it holds for each
v ∈ V that the number of arcs in δD+B(v) which are contained in in-trees of T ′ is equal to

{
f(RD+B(v)), if v ∈ V \ S,
f(RD+B(v))− f(v), if v ∈ S.

(9)

8

Hence, the number of arcs in A ∪B contained in in-trees of T ′ is equal to

∑

v∈V \Sf(RD+B(v)) +
∑

v∈S(f(RD+B(v)) − f(v))

=
∑

v∈V f(RD+B(v)) − f(S) =
∑

v∈V f(RD(v)) − f(S) (from (1)). (10)

Since any arc of T ′ is in A ∪ B and the number of arcs in A ∪ B is equal to that of T ′ from
(8) and (10), T ′ contains all arcs in A. Thus, T covers A from the definition of the procedure
Replace.

As seen in the proof of the “if-part” of Lemma 3.2, if we can find a D∗-rooted connector
B with |B| = optD, we can compute a D-canonical set of in-trees which covers A by using the
procedure Replace from a (D + B)-canonical set of arc-disjoint in-trees. Furthermore, we can
construct a (D+B)-canonical set of arc-disjoint in-trees by using the algorithm of Theorem 2.5.
Since the optimal value of RAA-RA(D∗) is at least optD from Proposition 3.1, we can test if there
exists a D∗-rooted connector whose size is equal to optD by solving RAA-RA(D∗). Assuming
that we can solve RAA-RA(D∗), our algorithm for finding a D-canonical set of in-trees which
covers A called Algorithm CR can be illustrated as Algorithm 1 below.

Algorithm 1 Algorithm CR

Input: a directed graph D = (V,A, S, f)
Output: a D-canonical set of in-trees covering A, if one exists
1: if D is not (S, f)-proper then
2: Halt (there exists no D-canonical set of in-trees covering A)
3: end if
4: Find an optimal solution B of RAA-RA(D∗)
5: if |B| > optD then
6: Halt (there exists no D-canonical set of in-trees covering A)
7: else
8: Construct a (D +B)-canonical set T ′ of arc-disjoint in-trees
9: Construct a set T of in-trees from T ′ by using the procedure Replace

10: return T
11: end if

Lemma 3.3 Given a directed graph D = (V,A, f, S), Algorithm CR correctly finds a D-canonical
set of in-trees which covers A in O(γ1 + |V ||A| + M4) time if one exists where γ1 is the time
required to solve RAA-RA(D∗) and M =

∑

v∈V f(R(v)).

Proof. The correctness of the algorithm follows from Lemma 3.2. Thus, we consider the time
complexity. In Step 1, we have to compute RD(v) for every v ∈ V . This can be done in
O(|V ||A|) time by applying depth-first search from every si ∈ S. After this, the time required
to test whether |δD∗(v)| ≤ f(RD(v)) for all v ∈ V is O(|A|). Thus, the time required for Step 1
is O(|V ||A|). Since the number of arcs of D + B is at most M for a D∗-rooted connector B
with |B| = optD from (6), the time required for Step 8 is O(M4) from Theorem 2.5. Moreover,
since the number of arcs of D + B is at most M , the time required for Step 9 is O(M) from
the definition of Procedure Replace. Hence, since the time required for Step 4 is γ1, the lemma
follows.

9

3.2 Reduction from RAA-RA to WMI

From the algorithm CR in Section 3.1, in order to present an algorithm for CDGI(D), what
remains is to show how we solve RAA-RA(D∗). In this section, we will prove that we can test
whether there exists a D∗-rooted connector whose size is equal to optD (i.e., Steps 4 and 5 in the
algorithm CR) by reducing it to the problem WMI. Our proof is based on the algorithm of [3]
for RAA-RA(D∗) in which S consists of a single vertex. We extend the idea of [3] to the case of
|S| > 1 by using Theorem 2.4. We define a directed graph D+ obtained from D by adding optD
parallel arcs to every e ∈ A. Then, we will compute a D∗-rooted connector whose size is equal
to optD by using an algorithm for WMI(D∗

+) as described below. Since the number of arcs in a
D∗-rooted connector whose size is equal to optD which are parallel to one arc in A is at most
optD, it is enough to add optD parallel arcs to each arc of A in D+ in order to find a D∗-rooted
connector whose size is equal to optD.

We denote by A+ and A∗
+ the arc sets of D+ and D∗

+, respectively. If I ⊆ A∗
+ is a complete

D∗
+-intersection, since I is a base of U(D∗

+) and from (4) and (1),

|I| =
∑

v∈V f(RD+
(v)) =

∑

v∈V f(RD(v)). (11)

We define a weight function w : A∗
+ → R+ by

w(e) =

{
0, if e ∈ A∗,
1, otherwise.

(12)

The following lemma shows the relation between RAA-RA(D∗) and WMI(D∗
+).

Lemma 3.4 Given an (S, f)-proper directed graph D = (V,A, S, f), there exists a D∗-rooted
connector whose size is equal to optD if and only if there exists a complete D∗

+-intersection
whose weight is equal to optD.

To prove Lemma 3.4, we need to show the following two lemmas.

Lemma 3.5 Given a directed graph D = (V,A, S, f) and an arc set B which is parallel to A,

1. if there is a complete D∗-intersection I, I is also a complete (D +B)∗-intersection, and

2. if there is a complete (D + B)∗-intersection I such that I ⊆ A∗, I is also a complete
D∗-intersection.

Proof. 1 : We first prove that I is a base of M((D + B)∗). Since I is a base of M(D∗), I can
be partitioned into {Ii,1, . . . , Ii,f(si) : i = 1, . . . , d} such that a directed graph (V i

D ∪ {s∗}, Ii,j) is
a tree for every i = 1, . . . , d and j = 1, . . . , f(si). Thus, since each (V i

D+B ∪ {s∗}, Ii,j) is a tree
from (2), I is a base of M((D +B)∗).

Next we prove that I is a base of U((D + B)∗). Since I is a base of U(D∗), |δD∗(v) ∩ I| is
equal to

{
f(RD(v)), if v ∈ V,
0, if v = s∗.

Furthermore, since I ∩ B = ∅ follows from I ⊆ A∗, |δD∗(v) ∩ I| is equal to |δ(D+B)∗(v) ∩ I| for
every v ∈ V . Thus, for each v ∈ V , |δ(D+B)∗(v) ∩ I| is equal to

{
f(RD(v)) = f(RD+B(v)), if v ∈ V,
0, if v = s∗.

(13)

10

This proves that I is a base of U((D +B)∗).
2 : This part can be proved in the same manner as in the proof of the part 1.

Lemma 3.6 Given D∗
+ of an (S, f)-proper directed graph D = (V,A, S, f) and a weight function

w : A∗
+ → R+ defined by (12), if there exists a complete D∗

+-intersection I ⊆ A∗
+, w(I) ≥ optD.

Moreover, w(I) = optD if and only if A∗ ⊆ I.

Proof. From (12), we have w(I) = |I| − |I ∩A∗|. Furthermore,

|I| − |I ∩A∗| ≥ |I| − |A∗|=
∑

v∈V f(RD(v))− (|A| + f(S))
︸ ︷︷ ︸

from (3) and (11)

.

Thus, w(I) ≥ optD follows from (6). From the above equation, w(I) = optD if and only if
|I ∩A∗| = |A∗|. This proves the rest of the lemma.

Proof of Lemma 3.4. Only if-part : Assume that there exists a D∗-rooted connector whose
size is equal to optD. Since D+ has optD parallel arcs to every e ∈ A, there exists a D∗-rooted
connector B ⊆ A+ \ A with |B| = optD. Let us fix a D∗-rooted connector B ⊆ A+ \ A with
|B| = optD. From (i) of Lemma 3.5, in order to prove the “only if-part”, it is sufficient to prove
that there exists a complete (D + B)∗-intersection I with w(I) = optD. Since there exists a
complete (D + B)∗-intersection I from Corollary 2.6, we will prove that w(I) = optD. Since
the arc set of (D + B)∗ is equal to A∗ ∪B and I is a (D +B)∗-intersection, I ⊆ A∗ ∪B holds.
Thus, since w(A∗ ∪B) = |B| = optD follows from (12), w(I) ≤ w(A∗ ∪B) = optD holds. Hence,
w(I) = optD follows from Lemma 3.6. This completes the proof.
If-part : Assume that there exists a complete D∗

+-intersection I with w(I) = optD. Let B be
I \ A∗, and we will prove that B is a D∗-rooted connector with |B| = optD. We first prove B
is a D∗-rooted connector by using (ii) of Lemma 3.5 and Corollary 2.6. We set B and D in
Lemma 3.5 to be A+\(A∪B) and D+B, respectively. Notice that (D+B)+(A+\(A∪B)) = D+

follows from B ⊆ A+ and A+\(A∪B) is parallel to A∪B. From B = I \A∗, we have I ⊆ A∗∪B.
Thus, I is a complete (D +B)∗-intersection since I is a complete D∗

+-intersection and from (ii)
of Lemma 3.5. Hence, from Corollary 2.6, B is a D∗-rooted connector.

What remains is to prove that |B| = optD. From Lemma 3.6 and w(I) = optD, A
∗ ⊆ I

holds. Thus, from B = I \A∗ and (11),

|B| = |I \ A∗| = |I| − |A∗| =
∑

v∈V f(RD(v)) − (|A|+ f(S)).

This equation and (6) complete the proof.

As seen in the proof of the “if-part” of Lemma 3.4, if we can find a complete D∗
+-intersection

I with w(I) = optD, we can find a D∗-rooted connector B with |B| = optD by setting B = I \A∗.
Furthermore, we can obtain a complete D∗

+-intersection whose weight is equal to optD if one
exists by using the algorithm for WMI(D∗

+) since the optimal value of WMI(D∗
+) is at least optD

from Lemma 3.6. The formal description of the algorithm called Algorithm RW for finding a
D∗-rooted connector whose size is equal to optD is illustrated in Algorithm 2.

Lemma 3.7 Given D∗ of an (S, f)-proper directed graph D = (V,A, f, S), Algorithm RW cor-
rectly finds a D∗-rooted connector whose size is equal to optD in O(γ2+M |A|) time if one exists
where γ2 is the time required to solve WMI(D∗

+) and M =
∑

v∈V f(RD(v)).

11

Algorithm 2 Algorithm RW

Input: D∗ of an (S, f)-proper directed graph D = (V,A, S, f)
Output: a D∗-rooted connector whose size is equal to optD, if one exits
1: Find an optimal solution I for WMI(D∗

+) with a weight function w defined by (12)
2: if there exists no solution of WMI(D∗

+) or w(I) > optD then
3: Halt (There exists no D∗-rooted connector whose size is equal to optD)
4: end if
5: return I \ A∗

Proof. The correctness of the algorithm follows from Lemma 3.4. We consider the time com-
plexity. In Step 1, we can construct D∗

+ in O(M |A|) time since D∗
+ has optD arcs parallel to

each arc in A and from (6). Hence, since the time required for Step 2 is equal to γ2, the lemma
holds.

3.3 Algorithm for CDGI

We are ready to explain the formal description of our algorithm called Algorithm Covering for
CDGI(D). Algorithm Covering is the same as Algorithm CR such that Steps 4, 5 and 6 are
replaced by Algorithm RW.

Theorem 3.8 Given a directed graph D = (V,A, S, f), Algorithm Covering correctly finds
a D-canonical set of in-trees which covers A in O(M7|A|6) time if one exits where M =
∑

v∈V f(RD(v)).

Proof. The correctness of the algorithm follows from Lemmas 3.3 and 3.7. We then consider the
time complexity of this algorithm. From Lemmas 3.3 and 3.7, what remains is to analyze the time
required to solve WMI(D∗

+). IfD is (S, f)-proper, |A∗| =
∑

v∈V |δD∗(v)| ≤
∑

v∈V f(RD(v)) = M .
Thus, since D∗

+ has optD parallel arcs of every e ∈ A, |A∗
+| = |A∗| +

∑

e∈AoptD ≤ M +M |A|.
Hence we have |A∗

+| = O(M |A|). Thus, from Lemma 2.1, we can solve WMI(D∗) in O(M7|A|6)
time. From this discussion and Lemmas 3.3 and 3.7, we obtain the theorem.

4 Acyclic Case

In this section, we show that in the case where D = (V,A, S, f) is acyclic, a D-canonical set of
in-trees covering A can be computed more efficiently than the general case. For this, we prove
the following theorem.

Theorem 4.1 Given an acyclic directed graph D = (V,A, S, f), there exists a D-canonical set
of in-trees which covers A if and only if

|B| ≤ f(RD(∂
+(B))) for every v ∈ V and B ⊆ δD(v). (14)

Proof. For each v ∈ V , we define an undirected bipartite graph Gv = (Xv ∪ Yv, Ev) which is
necessary to prove the theorem. Let Xv = {xe : e ∈ δD(v)} and Yv = {yi,j : si ∈ RD(v), j =
1, . . . , f(si)}. xe ∈ Xv and yi,j ∈ Yv are connected by an edge in Ev if and only if si is reachable
from ∂+(e) (see Figure 5).

12

(a)
(b)

Figure 5: (a) Input acyclic directed graph D. (b) Bipartite graph Gu for u in (a).

It is well-known that (14) is equivalent to the necessary and sufficient condition that for
any v ∈ V , there exists a matching in Gv which saturates vertices in Xv (e.g., Theorem 16.7 in
Chapter 16 of [12]). Thus it is sufficient to prove that there exists a D-canonical set of in-trees
which covers A if and only if for any v ∈ V , there exists a matching in Gv which saturates
vertices in Xv.
If-part : Since D has no cycle, we can label vertices in V as follows, based on topological
ordering: (i) A label of each vertex is an integer between 1 and |V |. (ii) For any e ∈ A, a
label of ∂+(e) is smaller than that of ∂−(e). For W ⊆ V , we denote by D[W] a subgraph of
D = (V,A, S, f) induced by W with a set of specified vertices S ∩W and a restriction of f on
S ∩W . Let Vt be the set of all vertices whose label is at most t. We prove by induction on t.
For t = 1, it is clear that there exists a D[V1]-canonical set of in-trees covering the arc set of
D[V1]. Assume that in the case of t ≥ 1, there exists a D[Vt]-canonical set T of in-trees covering
the arc set of D[Vt]. For si ∈ S ∩ Vt and j = 1, . . . , f(si), let Ti,j be an in-tree of T which is
rooted at si and spans vertices in Vt from which si is reachable.

Let v be a vertex whose label is equal to t+ 1.
Case1 : We first consider the case of v /∈ S. In this case, from S ∩ Vt = S ∩ Vt+1, we will
construct a set T ′ of in-trees which consists of T ′

i,1, . . . , T
′
i,f(si)

for si ∈ S ∩ Vt (= S ∩ Vt+1)

such that each T ′
i,j is obtained from Ti,j . We first consider T ′

i,j for si ∈ (S ∩ Vt) \ RD(v). For

si ∈ (S∩Vt)\RD(v), from V i
D[Vt]

= V i
D[Vt+1]

holds, Ti,j is also a (D[Vt+1], si)-in-tree. Thus, we set

T ′
i,j = Ti,j . Next we consider T ′

i,j for si ∈ RD(v). For si ∈ RD(v), since V i
D[Vt+1]

= V i
D[Vt]

∪ {v}

holds, we need to add an arc in δD(v) to Ti,j. Here we use a matching M in Gv which saturates
vertices in Xv . For each edge xeyi,j ∈ M, we set T ′

i,j be an in-tree obtained by adding an arc e
to Ti,j. If there exists yi′,j′ ∈ Yv which is not contained in any edge in M, we arbitrarily choose
an arc e′ ∈ δD(v) such that xe′ is a neighbour of yi′,j′ in Gv and we set T ′

i′,j′ to be an in-tree
obtained by adding e′ to T ′

i′,j′. From the way of construction, T ′ is clearly a D[Vt+1]-canonical
set of in-trees. Since M saturates vertices in Xv, T

′
i,1, . . . , T

′
i,f(si)

with si ∈ RD(v) contain all

arcs in δD(v). Thus, since T covers the arc set of D[Vt] from the induction hypothesis, T ′ covers
the arc set of D[Vt+1].
Case2 : Next we consider the case of v ∈ S. In this case, since (S ∩Vt)\ (S∩Vt+1) = {v} holds,
letting v = si, we need to add new in-trees T ′

i,j = ({si}, ∅) for every j = 1, . . . , f(si) to T ′ which
is constructed as above. This completes the proof of the “if-part”.
Only if-part : Assume that there exists a D-canonical set T of in-trees covering A. For
i = 1, . . . , d, we denote f(si) (D, si)-in-trees of T by Ti,1, . . . , Ti,f(si). Let us fix v ∈ V , and for
Xv and Yv we define a set E′ in which an edge xeyi,j is contained in E′ if and only if e ∈ δD(v)
is contained in Ti,j. If e ∈ δD(v) is contained in Ti,j , si is reachable from ∂+(e). Thus, E′ is a
subset of Ev. Since T covers A, each e ∈ δD(v) is contained in at least one in-tree in T . That is,
E′ saturates Xv. Since Ti,j is an in-tree, each yi,j is contained in exactly one edge in E′. Thus,
it is not difficult to see that a matching in Gv which saturates vertices in Xv can be obtained

13

from E′. This completes the proof.

From Theorem 4.1, instead of the algorithm presented in Section 3, we can more efficiently find
a D-canonical set of in-trees covering A by finding a maximum matching in a bipartite graph
O(|V |) times. In regard to algorithms for finding a maximum matching in a bipartite graph, see
e.g. [6].

Corollary 4.2 Given an acyclic directed graph D = (V,A, S, f), we can find a D-canonical set
of in-trees which covers A in O(match(M + |A|,M |A|)) time if one exists where match(n,m)
represents the time required to find maximum matching in a bipartite graph with n vertices and
m arcs and M =

∑

v∈V f(RD(v)).

Proof. From the proof of Theorem 4.1, for each v ∈ V , |Xv| = |δD(v)| and |Yv| = f(RD(v)) hold.
Then, |Ev | = O(|δD(v)|·f(RD(v))) follows. Thus, the corollary follows from

∑

v∈V (|Xv |+|Yv|) =
M + |A| and

∑

v∈V |Ev| = M |A|.

Acknowledgement : We thank Prof. Tibor Jordán who informed us of the paper [3] and we
are grateful to Shin-ichi Tanigawa for helpful comments.

References

[1] E. M. Arkin, R. Hassin, and A. Levin. Approximations for minimum and min-max vehicle
routing problems. J. Algorithms, 59(1):1–18, 2006.

[2] G. Even, N. Garg, J. Könemann, R. Ravi, and A. Sinha. Min-max tree covers of graphs.
Oper. Res. Lett., 32(4):309–315, 2004.

[3] A. Frank. Rooted k-connections in digraphs. Discrete Applied Mathematics. (to appear).

[4] A. Frank. Covering branchings. Acta Scientiarum Mathematicarum [Szeged], 41:77–81,
1979.

[5] A. Frank. A weighted matroid intersection algorithm. J. Algorithms, 2(4):328–336, 1981.

[6] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput., 2(4):225–231, 1973.

[7] T. Jordan. Two NP-complete augmentation problems. Technical Report 8, Department of
Mathematics and Computer Science, Odense University, 1997.

[8] N. Kamiyama, N. Katoh, and A. Takizawa. Arc-disjoint in-trees in directed graphs. In
Proc. the nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA2008),
pages 518–526, 2008.

[9] D.E. Knuth. Matroid partitioning. Technical Report STAN-CS-73-342, Computer Science
Department, Stanford University, 1974.

[10] H. Nagamochi and K. Okada. Approximating the minmax rooted-tree cover in a tree. Inf.
Process. Lett., 104(5):173–178, 2007.

[11] J. G. Oxley. Matroid theory. Oxford University Press, 1992.

14

[12] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency (Algorithms and Com-
binatorics). Springer-Verlag, 2003.

[13] K. Vidyasankar. Covering the edge set of a directed graph with trees. Discrete Mathematics,
24:79–85, 1978.

15

	Introduction
	Outline

	Preliminaries
	Rooted arc-connectivity augmentation by reinforcing arcs
	Matroids on arc sets of directed graphs
	Results from KKT08

	An Algorithm for Covering by In-trees
	Reduction from CDGI to RAA-RA
	Reduction from RAA-RA to WMI
	Algorithm for CDGI

	Acyclic Case

