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Abstract. Machine learning is a key technology to design and create intelligent 
systems, products, and related services. Like many other design departments, 
we are faced with the challenge to teach machine learning to design students, 
who often do not have an inherent affinity towards technology. We successfully 
used the Embodied Intelligence method to teach machine learning to our stu-
dents. By embodying the learning system into the Lego Mindstorm NXT plat-
form we provide the student with a tangible tool to understand and interact with 
a learning system. The resulting behavior of the tangible machines in combina-
tion with the positive associations with the Lego system motivated all the stu-
dents. The students with less technology affinity successfully completed the 
course, while the students with more technology affinity excelled towards solv-
ing advanced problems. We believe that our experiences may inform and guide 
other teachers that intend to teach machine learning, or other computer science 
related topics, to design students. 
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1   Introduction 

The Department of Industrial Design at the Eindhoven University of Technology 
prepares students for a new type of engineering discipline: design and creation of 
intelligent systems, products, and related services. These systems, products and ser-
vices require to be adapted to the user and thereby provide a new experience. In the 
framework of our Masters program, we offer a course that familiarizes students with a 
number of powerful conceptual and intellectual tools to understand and create adap-
tive behavior at a system level.  

System level thinking has had and still has an enormous impact upon the develop-
ment of technology. When working at a system level one does not study individual 
component behavior, such as Ohm's law for an electrical component; instead one 
addresses bigger questions such as the stability of the feedback loops, information 
throughput, or learning capacity. The learning objective includes classical control, 
reinforcement learning and adaptive control and pattern recognition. The context of 
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Lego is chosen because it is already an example of a system. The project’s creative 
goal is to make a leap forward, extending the scope of the existing system such that 
adaptive behavior becomes the central theme.  

Like many other design departments, we are facing the challenge of teaching the 
mathematical foundation of machine learning to students that are neither mathemati-
cians nor computer scientists. As a general framework we use a competency based 
learning model [1-3] that focuses on complex behavior and gives equal weight to 
knowledge, skills and attitudes. The knowledge, skills and attitudes are integrated 
already during learning (not afterwards, when the student has become active as a 
professional). The competencies that students acquire during the learning process are 
made visible in an individual portfolio. Competency based learning requires a power-
ful and rich learning environment. This learning model applies particularly well for 
the profession of industrial designer, where pure knowledge is not enough. The stu-
dent has to learn how to develop contexts of use, how to actively explore concepts, 
how to evaluate alternative solutions, how to bring new artifacts into the world, in 
other words, how to design. Although this appears to be well-accepted for traditional 
industrial design, where the material form of things is the central theme, it was not a 
priori obvious whether this learning model could be used for those aspects of indus-
trial design that overlap with computer science. Note that in the near future even the 
most mundane everyday objects will have embedded electronics or computers and 
hence the design profession is changing accordingly. 

Most of the students in our department do not have an inherent affinity towards 
technology. They do not build up in-depth knowledge of programming or math.  

One of the difficulties in teaching machine-learning is that its theory is abstract. 
The process and the results of the machine learning are only available inside a com-
puter program. Design students are used to create and work with artifacts in the real 
world, not with mathematical formulas. This abstraction level inhibits their under-
standing and makes it difficult for them not only to reproduce relevant knowledge, but 
also to apply and extend it.  

We therefore created a new teaching method to better support students in their 
learning of machine learning. Our new method involves the usage of embodied intel-
ligence; transferring the abstract theory into a more hands-on experience. We will 
elaborate on the structure of the course, the materials used, and two concrete case 
studies. Our method is not limited to machine learning, but can be used to teach many 
other aspect of computer science to design students. We believe that our insights may 
inspire and guide other teachers to create better courses for their design students. 

2   Structure of the Course 

The course’s first two weeks are theory oriented. A week during this phase typically 
consists of two days of theory at the start, followed by three days of practice with an 
intermediate moment of contact between students and teachers to discuss their pro-
gress and to answer specific questions. In these two weeks the students work on very 
specific methods and principles. During the third and forth week the students are 
invited to demonstrate their understanding of the theory through something that they 
create. The teachers encourage depth, through additional theory, tools and methods. 
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We will now provide a more in depth view on the content of the course, but we 
would like to emphasize that the method may also be applied to teach different as-
pects of computer science. In our specific course, the goal is to teach the principles of 
reinforcement learning and supervised learning to design students. 

2.1   Embodied Intelligence 

We selected Q-learning and Neural Networks as basic examples of reinforcement 
learning and supervised learning. We embedded this form of intelligence into a real 
body: the Lego Mindstorms NXT. Lego Mindstorms is an excellent prototyping plat-
form [4] for creating embodied intelligence. The platform features an NXT brick that 
includes a microprocessor capable of running a Java virtual machine. It comes pack-
aged with several plug-and-play sensors and actuators and is, by definition, compati-
ble with the Lego brick system. Prototypes can be built with click-and-connect ease, 
which allows students to focus on the implementation of the software. 

Traditionally, machine learning [5] is demonstrated through a computer program 
that does not only have to perform the learning, but which also has to simulate the 
environment on which the input for the learning model is based. By using an em-
bodiment, such as the NXT, the sensory input does not longer need to be simulated. 
The learning program receives its input directly through the attached sensors that 
react to the stimuli that are already available in the real world [6]. The learning sys-
tem could, for example, try to learn from the light sensor that is mounted on the bot-
tom of a robotic car. The goal of such a learning program would be to learn how to 
follow a black line on the ground. The real world can offer a richness that would be 
difficult to simulate. In addition, the embodiment allows the students to easily explore 
the influence of the various variables. This simplifies and enriches the process of 
understanding the meaning of variables in an algorithm, as one can observe the effects 
of changing these variables in terms of behavioral changes of the embodiment. 

2.2   Participants 

The participants of our course are all industrial design master students, who can be 
classified into two types. The first group consists of students who have a certain affin-
ity with technology. These students like to explore technological principles that are 
new to them. They have a good understanding about a wide range of technologies and 
their applications. They also have considerable programming skills, with JAVA as 
solid basis. This group of students is usually the smaller of the two groups and teach-
ing them machine learning is easier. They might even be satisfied with the traditional 
non-embodied method, but using the Lego NXT platform considerably increases their 
motivation. 

The second group of students can be described as students who do not have an in-
herent affinity with technology. They have a limited understanding of technological 
principles and master programming only up to a basic level. Teaching these students 
machine learning is the true challenge. It still needs to be acknowledged that students 
of either type are not mathematicians or computer scientists. These students are used 
to the creative creation of artifacts and not to formulas and algorithms. The teaching 
method needs to adapt to these characteristics.  
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3   Material 

For an embodied intelligence course, software and equipment is necessary. While the 
software is available for free, the hardware does require a certain budget. The basic 
Lego Mindstorms Education NXT set is currently available for 285 Euro. Our practi-
cal experience shows that one set can be shared by a maximum of two students. We 
will now discuss the required hardware and software in more detail. 

3.1   Hardware 

The NXT brick is part of the Lego Mindstorms set. The NXT is an embedded system 
with a plastic casing compatible with the Lego brick system. This way it can easily be 
integrated into a Lego construction that may also contain the sensors and actuators 
[7]. Using Lego saves a lot of time in constructing mechanical components compared 
to other methods. An educational version is available that includes the useful 
rechargeable battery, a power supply and a storage box. The NXT specifications are: 

• Atmel 32-bit ARM main processor (256 Kb flash, 64 Kb RAM, 48 MHz) 
• Atmel 8-bit AVR Co-processor (4 Kb flash, 512 Byte RAM, 8 MHz) 
• Bluetooth wireless communication (CSR BlueCoreTM 4 v2.0 +EDR System) 
• USB 2.0 communication (Full speed port 12 Mbit/s) 
• 4 input ports: 6-wire interface supporting both digital and analog interface 
• 1 high speed port, IEC 61158 Type 4/EN 50170 compliant 
• 3 output ports: 6-wire interface supporting input from encoders 
• Display: 100 x 64 pixel LCD black & white graphical display 
• Loudspeaker: Sound output channel with 8-bit resolution (Supporting a sam-

ple rate of 2-16 KHz) 
• 4 button user-interface 
• Power source: 6 AA batteries or rechargeable Lithium-Ion battery. 

Lego has developed a number of sensors and actuators as part of the Lego Mind-
storms set. All these sensors are compatible with the Lego brick system. The basic 
Lego NXT Education set contains the following sensors and actuators: 

• Touch sensor – detects when it is being pressed by something and when it is 
released again. 

• Sound sensor – detects both decibels [dB] and adjusted decibel [dBA]. 
• Light sensor – reads the light intensity in a room and measure the light inten-

sity of colored surfaces. 
• Ultrasonic sensor – measure distances from 0 to 255 centimeters with a preci-

sion of +/- 3 cm. 
• Servo motor with build-in rotation sensor. 

As result of the success of the Lego Mindstorms, other companies developed addi-
tional sensors and actuators. Some of these companies, such as HiTechnic Products 
and Mindsensors.com, provide sensors for the NXT platform such as IR Link Sensor,  
Gyro Sensor, IR Seeker Sensor, Compass Sensor, Color Sensor, Acceleration / Tilt 
Sensor, Magnetic Compass, and Pneumatic Pressure Sensor. In addition to the Lego 
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NXT set, a standard computer is needed to write the programs. The programs are then 
uploaded to the NXT using either USB or Bluetooth. 

3.2   Software 

Three software components are necessary for this course. All of them are available for 
free and they replace the original Lego software. Lego’s own software development 
tool is targeted at children and hence does not offer the flexibility and extendibility 
required for a university course. An extensive tutorial on how to install the  
components is available at: http://www.bartneck.de/work/education/masterClassLego/ 
javaInstallNXT/. We will now describe the components in detail. 

Java is a platform independent, object-oriented programming language 
(http://www.sun.com/java/). The language derives much of its syntax from C and C++ 
but has a simpler object model and fewer low-level facilities. Java applications are 
typically compiled to bytecode, which can run on any Java virtual machine (JVM) 
regardless of computer architecture. It is a popular language for embedded systems, 
such as micro controllers and mobile phones and also the Lego NXT is capable of 
execute Java programs. 

It is advisable to use an integrated development environment (IDE) to write Java 
programs. Eclipse is the powerful and widely used IDE that offers excellent support 
for Java and the Lego NXT. Eclipse itself is written in Java and its installation is par-
ticularly easy. 

To enable the Lego NXT to execute Java programs, its original firmware needs to 
be replaced with the open source leJOS firmware [8]. The old firmware can be rein-
stalled at any point. Conveniently, leJOS includes a Java Virtual Machine so that no 
further software installations on the NXT are necessary to execute Java programs. The 
leJOS Java library is an extension to the standard Java and enables Java programs to 
use the platform specific features of the NXT, such as sensors and actuators.  

The Java Object Oriented Neural Engine (Joone) is an application that allows users 
to build, test and train neural networks (http://www.joone.org). It features a conven-
ient graphical user interface. Neural networks trained with Joone can be exported and 
called from any external Java program. It can therefore easily be integrated into more 
general Java programs, such as Java programs for the Lego NXT. 

4   Case Study 1: Reinforcement Learning with the Crawler and 
Johnny Q 

During one week, the students mounted the NXT brick on wheels and gave it an arm 
with two Lego NXT electronic motors, creating the crawler (see Figure 1). This 
crawler has wheels (not driven) to allow free forward and backward movement. In 
order to move itself, the crawler can only use its arm, which has two joints under 
motor control. The Crawler has sensors to measure the angle of the joints of the arm 
and also one distance sensor that “sees” the distance from a wall or another reference 
object. The NXT brick was programmed in Java to execute the reinforcement learning  
algorithm (Q-learning). It is positively rewarded if it moves forward and negatively 
rewarded if it moves backwards. It explores its possibilities and learns how it should  
move to accumulate a maximal reward. The Crawler starts with seemingly random  
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Fig. 1. The Crawler 

movements, but after a few minutes it really finds a kind of rhythm allowing it to 
move the arm and thereby move itself efficiently forward.  

A second robot that was built by different students during this week was Johnny Q 
(see Figure 2). It has wheels and left-right motor drives to move forward, backward, 
rotate left and right. Johnny Q measures the brightness of the floor and “sees” the 
distance from a wall or reference object. Inside is an NXT control brick, an embedded 
processor programmed in Java to execute the reinforcement learning algorithm (Q-
learning). The reward is being tapped on the shoulder; a simple button serves to count 
touches. Johnny Q learns by being trained. Depending on what the human user does 
or does not reward, Johnny Q learns behaviors, such as turning away from a dark 
spot, or running backwards near an obstacle. But it can also learn the opposite behav-
ior, bumping against the wall. It explores its possibilities and learns how to accumu-
late maximal rewards. The observer engages in a training session, teaching tricks and 
little games, much like training a dog. Usually this algorithm is demonstrated through 
screen demos but here the potential of embodied learning is visible in a truly embod-
ied model. From a semantic point of view, it is interesting to sculpt the behavior 
which (of course) requires some patience. Johnny Q will gradually forget although 
desired behavior can be maintained through continued training. 

4.1   Q-Learning Theory 

We will now discuss the Q-learning theory in more detail to enable the reader to form 
a better judgment of the difficulty that the students were able to overcome during one 
week by using our teaching method. Q-learning is a common and well known rein-
forcement learning algorithm [9]. Reinforcement learning is a method that allows a 
machine to learn behavior through receiving rewards and punishments. When a ma-
chine performs an action in a certain state it can get a positive reward, negative re-
ward (punishment) or no reward. These rewards reflect the design and goal of  
the machine. The Q-learning algorithm [10] works by constructing an action-value  
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Fig. 2. Johnny Q 

function that gives an estimate of the expected value Q(s,a) (the total award that may 
eventually be accumulated) when taking a given action “a” in a given state “s”. 
Through experience the machine achieves better and better estimates of the action 
values. The behavior of the machine is given in terms of a policy. The policy deter-
mines the probability that the machine will take a certain action in a certain state. An 
important dilemma in determining the policy is whether the machine should exploit 
its knowledge and choose the actions that lead to the biggest reward or that it should 
explore new actions in certain states to discover better ways to retrieve even more 
rewards later on.  

The strength of Q-learning is that it will adapt to its environment without knowing 
it and without being programmed. Q-learning, as well as other reinforcement learning 
principles, works because it tries to optimize a given reward. Q-learning requires a 
finite set of environment states, a fixed set of actions, and a reward function: 
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We write  ∫  for the exploration factor, γ for discounting factor, α for learning factor, 

π for policy ( ∫ -greedy), s for state, a for action, t for (discrete) time, Α (s) for action 

set, Q(s,a) for expected return in state s after action a, under current policy, Q*(s,a) for 
expected return in state s after action a, under optimal policy, and Ε for expectation.  

5   Case Study 2: Voice Command Using Supervised Learning 

The students applied their knowledge of neural networks, which is one flavour of 
supervised learning, to implement a simple speech recognition application. It took 
them one week to explore the operational principles of a basic neural network and to 
use this knowledge to design the application. For this application the Lego NXT 
Sound Sensor and the NXT brick were used to get the desired speech input. The Lego 
sound sensor is an envelope detector that measures the change in volume (amplitude 
of the sound signal) over time and not a real microphone. However, the envelope was 
sufficient input to build a recognition application that could distinguish between the 
words “Biertje” (beer) and “Champagne” (Champaign) by recognizing the difference 
in the word’s envelopes.  

The NXT with help of its microphone recorded the words into sound samples that 
were then transferred via a Bluetooth connection to the computer. To make sure that 
the recognition was based on the difference in volume over time and not on the dura-
tion of the word, the length of both sound samples was equalized during the pre-
processing. The sound samples were fed as input to the neural network that was cre-
ated using Joone. The resulting output was then communicated back to the NXT that 
printed the results on its screen. 

During the last two weeks of the course, the students were encouraged to create an 
extension pack for the Lego Mindstorms NXT set. These extension packs should 
empower other users in the Lego community to easily extend their Lego inventions 
far beyond what is possible with standard Lego. Two students decided to extend the 
neural network application that was build in the previous week.  

The goal was to implement the neural network inside the NXT, so that it would no 
longer rely on a PC for its operation. Several possibilities were available to implement 
the neural network inside of the NXT brick. One option would have been to try to fit 
Joone inside the NXT. Although this would have been the most versatile solution, it 
would have moved the focus away from an understanding of neural networks towards 
a more in depth knowledge of the Java language. Therefore the students decided to 
build their own neural network from scratch inside the NXT. This allowed them to 
gain a better understanding of the formulas that describe a neural network and an in-
depth understanding of how to transform these formulas into Java code. 

However, the NXT does not provide a user-friendly graphical user interface (GUI) 
that would enable users to easily manage the recorded audio samples and the training 
process. The students therefore decided to create the Neural Network Manager soft-
ware (see Figure 3) for the PC that performs the training of the neural network.  

Training the neural network on the NXT would in principle be possible as well, but 
of course at a much lower speed and only with an unfriendly user interface due to  
limitations of the NXT. It only has a small screen and four buttons to communicate 
with the user. A second reason for the preference of conducting the neural network  
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Fig. 3. Screenshot of the Neural Network Manager 

training remotely on a PC, is that the network itself is unlikely to stand by itself. Most 
likely, it would be integrated into other software. This software needs to be created on 
the computer anyway and hence there was little reason to renounce the use of a com-
puter. Once the neural network is trained, it can be transferred back to the NXT. It can 
then be used as a standalone application or as part in another program. The students 
were able to take advantage of their previous design education to create a highly us-
able GUI for the software. Hopefully, this will encourage other Lego users to take 
advantage of their software. 

5.1   Neural Network Theory 

We would like to conclude this case study by providing a short introduction to neural 
networks. This may allow readers that are not yet familiar with it to evaluate how 
much progress the students were able to make within three weeks. 

Pattern recognition in general aims to classify data patterns extracted from raw data 
[1]. This is a very powerful tool to recognize classes of patterns where the raw data 
shows small variation or when the exact features are not known. In many cases using 
statistical information about the patterns or linear mathematical functions can do this. 
When both the data and the segmentation of the different patterns become more com-
plex, neural networks are very suitable to perform pattern recognition tasks [11].  

Neural networks in for example human brains consist of neurons connected 
through synapses forming a complex network. Artificial neural networks feature lay-
ers of neurons. A simple neural network at least has an input layer with neurons, an 
output layer with neurons and at least one hidden layer. All the neurons in a layer are 
interconnected through synapses to the next layer of neurons. Every neuron is con-
nected to every neuron in the next layer (full synapses).  

The synapses function as a weight factor and the neurons function as a mathematical 
function. Input can be fed into the neural network and is multiplied by the weight fac-
tors of the synapses. Neurons in the next layer apply a mathematical function, for ex-
ample a sigmoid function to the sum of all the input values multiplied by their weight 
factor. This process repeats until the output neurons get a value. The output will return 
values that represent a specific pattern, at least when the weight factors are correct: 
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A common way to train a neural network is by means of backward propagation. Back 
propagation is a supervised learning method, which means that a set of input values 
coupled to desired output are used to train the network. The back propagation algo-
rithm calculates the error signal by comparing the actual output with the desired out-
put. It then uses the error signal to update the weights. The network is trained by  
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6   Conclusions 

We described the embodied intelligence method to teach machine learning to design 
students. By using a tangible embodiment as a platform for machine learning, the 
environment of the machine-learning program does not need to be simulated. But 
more importantly, the embodiment provides the student with a tangible tool to under-
stand and interact with a learning system. Lego Mindstorms NXT is a good platform 
for this embodiment. The Lego system allows the students to quickly build a machine 
and thereby enables students to focus on the machine learning. In addition Lego NXT 
provides a Java Virtual machine on which students can execute Java programs. Java is 
a widely used object-oriented programming language.  The combination of the Lego 
construction system and Java is a very low hurdle that even students who do not have 
an affinity toward technology can overcome. 

Many of the students played with Lego during their childhood. This positive mem-
ory might have lowered inner barriers that technophobic students might have built up. 
It might have allowed them to approach the course with a more open attitude and 
thereby increased the opportunity for learning. A second factor that might have had 
positive influence on the students is the behavior of the robots. The Crawler robot 
demonstrates that even simple learning behavior embodied in Lego has the power to 
create affection and empathy with human observers. This might have further moti-
vated the students to experiment with the machine-learning program. 

However, the embodied intelligence method does not only offer advantages for less 
technophile students, but it also offers enough room for advanced development. 
Within only three days certain students were able to build and use neural networks. 
They then continued to build their own neural network program from scratch, utiliz-
ing on the theory they learned in the preceding week. In the end, they were able to 
create neural network software that is user friendly enough for the general Lego en-
thusiast. As an example application, they built a voice command system, which en-
ables the Lego NXT to operate as a stand-alone voice controlled device. Again, we 
have to emphasize that these were neither computer science students nor mathemati-
cians. These were design students that normally create artifacts.  

Only by enabling design students to understand, use and develop machine-learning 
systems, we can ensure that they will be able to create truly intelligent systems, prod-
ucts, and related services. The embodied intelligence teaching method can help 
achieving this goal and our experiences suggest that this has the potential to signifi-
cantly help students who do not have an inhering affinity towards technology. 
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