
Z. Pan et al. (Eds.): Edutainment 2008, LNCS 5093, pp. 206–217, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Teaching Machine Learning to Design Students

Bram van der Vlist, Rick van de Westelaken, Christoph Bartneck, Jun Hu,
Rene Ahn, Emilia Barakova, Frank Delbressine, and Loe Feijs

Department of Industrial Design
Eindhoven University of Technology

Den Dolech 2, 5600MB Eindhoven, The Netherlands
{b.j.j.v.d.vlist, h.f.m.v.d.westelaken}@student.tue.nl,

{c.bartneck, j.hu, r.m.c.ahn, e.i.barakova, f.l.m.delbressine,
l.m.g.feijs}@tue.nl

Abstract. Machine learning is a key technology to design and create intelligent
systems, products, and related services. Like many other design departments,
we are faced with the challenge to teach machine learning to design students,
who often do not have an inherent affinity towards technology. We successfully
used the Embodied Intelligence method to teach machine learning to our stu-
dents. By embodying the learning system into the Lego Mindstorm NXT plat-
form we provide the student with a tangible tool to understand and interact with
a learning system. The resulting behavior of the tangible machines in combina-
tion with the positive associations with the Lego system motivated all the stu-
dents. The students with less technology affinity successfully completed the
course, while the students with more technology affinity excelled towards solv-
ing advanced problems. We believe that our experiences may inform and guide
other teachers that intend to teach machine learning, or other computer science
related topics, to design students.

Keywords: teaching, machine learning, design, lego.

1 Introduction

The Department of Industrial Design at the Eindhoven University of Technology
prepares students for a new type of engineering discipline: design and creation of
intelligent systems, products, and related services. These systems, products and ser-
vices require to be adapted to the user and thereby provide a new experience. In the
framework of our Masters program, we offer a course that familiarizes students with a
number of powerful conceptual and intellectual tools to understand and create adap-
tive behavior at a system level.

System level thinking has had and still has an enormous impact upon the develop-
ment of technology. When working at a system level one does not study individual
component behavior, such as Ohm's law for an electrical component; instead one
addresses bigger questions such as the stability of the feedback loops, information
throughput, or learning capacity. The learning objective includes classical control,
reinforcement learning and adaptive control and pattern recognition. The context of

Vlist, B. v. d., Westelaken, R., Bartneck, C., Jun, H., Ahn, R., Barakova, E., Delbressine F., Feijs, L.
(2008). Teaching Machine Learning to Design Students. In Z. Pan, X. Zhang, A. E. Rhalibi, W. Woo &
 Y. Li (Eds.), Technologies for E-Learning and Digital Entertainment, LNCS (Vol. 5093/2008, pp. 206-217).
 Berlin: Springer. | DOI: 10.1007/978-3-540-69736-7_23

 Teaching Machine Learning to Design Students 207

Lego is chosen because it is already an example of a system. The project’s creative
goal is to make a leap forward, extending the scope of the existing system such that
adaptive behavior becomes the central theme.

Like many other design departments, we are facing the challenge of teaching the
mathematical foundation of machine learning to students that are neither mathemati-
cians nor computer scientists. As a general framework we use a competency based
learning model [1-3] that focuses on complex behavior and gives equal weight to
knowledge, skills and attitudes. The knowledge, skills and attitudes are integrated
already during learning (not afterwards, when the student has become active as a
professional). The competencies that students acquire during the learning process are
made visible in an individual portfolio. Competency based learning requires a power-
ful and rich learning environment. This learning model applies particularly well for
the profession of industrial designer, where pure knowledge is not enough. The stu-
dent has to learn how to develop contexts of use, how to actively explore concepts,
how to evaluate alternative solutions, how to bring new artifacts into the world, in
other words, how to design. Although this appears to be well-accepted for traditional
industrial design, where the material form of things is the central theme, it was not a
priori obvious whether this learning model could be used for those aspects of indus-
trial design that overlap with computer science. Note that in the near future even the
most mundane everyday objects will have embedded electronics or computers and
hence the design profession is changing accordingly.

Most of the students in our department do not have an inherent affinity towards
technology. They do not build up in-depth knowledge of programming or math.

One of the difficulties in teaching machine-learning is that its theory is abstract.
The process and the results of the machine learning are only available inside a com-
puter program. Design students are used to create and work with artifacts in the real
world, not with mathematical formulas. This abstraction level inhibits their under-
standing and makes it difficult for them not only to reproduce relevant knowledge, but
also to apply and extend it.

We therefore created a new teaching method to better support students in their
learning of machine learning. Our new method involves the usage of embodied intel-
ligence; transferring the abstract theory into a more hands-on experience. We will
elaborate on the structure of the course, the materials used, and two concrete case
studies. Our method is not limited to machine learning, but can be used to teach many
other aspect of computer science to design students. We believe that our insights may
inspire and guide other teachers to create better courses for their design students.

2 Structure of the Course

The course’s first two weeks are theory oriented. A week during this phase typically
consists of two days of theory at the start, followed by three days of practice with an
intermediate moment of contact between students and teachers to discuss their pro-
gress and to answer specific questions. In these two weeks the students work on very
specific methods and principles. During the third and forth week the students are
invited to demonstrate their understanding of the theory through something that they
create. The teachers encourage depth, through additional theory, tools and methods.

Vlist, B. v. d., Westelaken, R., Bartneck, C., Jun, H., Ahn, R., Barakova, E., Delbressine F., Feijs, L.
(2008). Teaching Machine Learning to Design Students. In Z. Pan, X. Zhang, A. E. Rhalibi, W. Woo &
 Y. Li (Eds.), Technologies for E-Learning and Digital Entertainment, LNCS (Vol. 5093/2008, pp. 206-217).
 Berlin: Springer. | DOI: 10.1007/978-3-540-69736-7_23

208 B. van der Vlist et al.

We will now provide a more in depth view on the content of the course, but we
would like to emphasize that the method may also be applied to teach different as-
pects of computer science. In our specific course, the goal is to teach the principles of
reinforcement learning and supervised learning to design students.

2.1 Embodied Intelligence

We selected Q-learning and Neural Networks as basic examples of reinforcement
learning and supervised learning. We embedded this form of intelligence into a real
body: the Lego Mindstorms NXT. Lego Mindstorms is an excellent prototyping plat-
form [4] for creating embodied intelligence. The platform features an NXT brick that
includes a microprocessor capable of running a Java virtual machine. It comes pack-
aged with several plug-and-play sensors and actuators and is, by definition, compati-
ble with the Lego brick system. Prototypes can be built with click-and-connect ease,
which allows students to focus on the implementation of the software.

Traditionally, machine learning [5] is demonstrated through a computer program
that does not only have to perform the learning, but which also has to simulate the
environment on which the input for the learning model is based. By using an em-
bodiment, such as the NXT, the sensory input does not longer need to be simulated.
The learning program receives its input directly through the attached sensors that
react to the stimuli that are already available in the real world [6]. The learning sys-
tem could, for example, try to learn from the light sensor that is mounted on the bot-
tom of a robotic car. The goal of such a learning program would be to learn how to
follow a black line on the ground. The real world can offer a richness that would be
difficult to simulate. In addition, the embodiment allows the students to easily explore
the influence of the various variables. This simplifies and enriches the process of
understanding the meaning of variables in an algorithm, as one can observe the effects
of changing these variables in terms of behavioral changes of the embodiment.

2.2 Participants

The participants of our course are all industrial design master students, who can be
classified into two types. The first group consists of students who have a certain affin-
ity with technology. These students like to explore technological principles that are
new to them. They have a good understanding about a wide range of technologies and
their applications. They also have considerable programming skills, with JAVA as
solid basis. This group of students is usually the smaller of the two groups and teach-
ing them machine learning is easier. They might even be satisfied with the traditional
non-embodied method, but using the Lego NXT platform considerably increases their
motivation.

The second group of students can be described as students who do not have an in-
herent affinity with technology. They have a limited understanding of technological
principles and master programming only up to a basic level. Teaching these students
machine learning is the true challenge. It still needs to be acknowledged that students
of either type are not mathematicians or computer scientists. These students are used
to the creative creation of artifacts and not to formulas and algorithms. The teaching
method needs to adapt to these characteristics.

Vlist, B. v. d., Westelaken, R., Bartneck, C., Jun, H., Ahn, R., Barakova, E., Delbressine F., Feijs, L.
(2008). Teaching Machine Learning to Design Students. In Z. Pan, X. Zhang, A. E. Rhalibi, W. Woo &
 Y. Li (Eds.), Technologies for E-Learning and Digital Entertainment, LNCS (Vol. 5093/2008, pp. 206-217).
 Berlin: Springer. | DOI: 10.1007/978-3-540-69736-7_23

 Teaching Machine Learning to Design Students 209

3 Material

For an embodied intelligence course, software and equipment is necessary. While the
software is available for free, the hardware does require a certain budget. The basic
Lego Mindstorms Education NXT set is currently available for 285 Euro. Our practi-
cal experience shows that one set can be shared by a maximum of two students. We
will now discuss the required hardware and software in more detail.

3.1 Hardware

The NXT brick is part of the Lego Mindstorms set. The NXT is an embedded system
with a plastic casing compatible with the Lego brick system. This way it can easily be
integrated into a Lego construction that may also contain the sensors and actuators
[7]. Using Lego saves a lot of time in constructing mechanical components compared
to other methods. An educational version is available that includes the useful
rechargeable battery, a power supply and a storage box. The NXT specifications are:

• Atmel 32-bit ARM main processor (256 Kb flash, 64 Kb RAM, 48 MHz)
• Atmel 8-bit AVR Co-processor (4 Kb flash, 512 Byte RAM, 8 MHz)
• Bluetooth wireless communication (CSR BlueCoreTM 4 v2.0 +EDR System)
• USB 2.0 communication (Full speed port 12 Mbit/s)
• 4 input ports: 6-wire interface supporting both digital and analog interface
• 1 high speed port, IEC 61158 Type 4/EN 50170 compliant
• 3 output ports: 6-wire interface supporting input from encoders
• Display: 100 x 64 pixel LCD black & white graphical display
• Loudspeaker: Sound output channel with 8-bit resolution (Supporting a sam-

ple rate of 2-16 KHz)
• 4 button user-interface
• Power source: 6 AA batteries or rechargeable Lithium-Ion battery.

Lego has developed a number of sensors and actuators as part of the Lego Mind-
storms set. All these sensors are compatible with the Lego brick system. The basic
Lego NXT Education set contains the following sensors and actuators:

• Touch sensor – detects when it is being pressed by something and when it is
released again.

• Sound sensor – detects both decibels [dB] and adjusted decibel [dBA].
• Light sensor – reads the light intensity in a room and measure the light inten-

sity of colored surfaces.
• Ultrasonic sensor – measure distances from 0 to 255 centimeters with a preci-

sion of +/- 3 cm.
• Servo motor with build-in rotation sensor.

As result of the success of the Lego Mindstorms, other companies developed addi-
tional sensors and actuators. Some of these companies, such as HiTechnic Products
and Mindsensors.com, provide sensors for the NXT platform such as IR Link Sensor,
Gyro Sensor, IR Seeker Sensor, Compass Sensor, Color Sensor, Acceleration / Tilt
Sensor, Magnetic Compass, and Pneumatic Pressure Sensor. In addition to the Lego

Vlist, B. v. d., Westelaken, R., Bartneck, C., Jun, H., Ahn, R., Barakova, E., Delbressine F., Feijs, L.
(2008). Teaching Machine Learning to Design Students. In Z. Pan, X. Zhang, A. E. Rhalibi, W. Woo &
 Y. Li (Eds.), Technologies for E-Learning and Digital Entertainment, LNCS (Vol. 5093/2008, pp. 206-217).
 Berlin: Springer. | DOI: 10.1007/978-3-540-69736-7_23

210 B. van der Vlist et al.

NXT set, a standard computer is needed to write the programs. The programs are then
uploaded to the NXT using either USB or Bluetooth.

3.2 Software

Three software components are necessary for this course. All of them are available for
free and they replace the original Lego software. Lego’s own software development
tool is targeted at children and hence does not offer the flexibility and extendibility
required for a university course. An extensive tutorial on how to install the
components is available at: http://www.bartneck.de/work/education/masterClassLego/
javaInstallNXT/. We will now describe the components in detail.

Java is a platform independent, object-oriented programming language
(http://www.sun.com/java/). The language derives much of its syntax from C and C++
but has a simpler object model and fewer low-level facilities. Java applications are
typically compiled to bytecode, which can run on any Java virtual machine (JVM)
regardless of computer architecture. It is a popular language for embedded systems,
such as micro controllers and mobile phones and also the Lego NXT is capable of
execute Java programs.

It is advisable to use an integrated development environment (IDE) to write Java
programs. Eclipse is the powerful and widely used IDE that offers excellent support
for Java and the Lego NXT. Eclipse itself is written in Java and its installation is par-
ticularly easy.

To enable the Lego NXT to execute Java programs, its original firmware needs to
be replaced with the open source leJOS firmware [8]. The old firmware can be rein-
stalled at any point. Conveniently, leJOS includes a Java Virtual Machine so that no
further software installations on the NXT are necessary to execute Java programs. The
leJOS Java library is an extension to the standard Java and enables Java programs to
use the platform specific features of the NXT, such as sensors and actuators.

The Java Object Oriented Neural Engine (Joone) is an application that allows users
to build, test and train neural networks (http://www.joone.org). It features a conven-
ient graphical user interface. Neural networks trained with Joone can be exported and
called from any external Java program. It can therefore easily be integrated into more
general Java programs, such as Java programs for the Lego NXT.

4 Case Study 1: Reinforcement Learning with the Crawler and
Johnny Q

During one week, the students mounted the NXT brick on wheels and gave it an arm
with two Lego NXT electronic motors, creating the crawler (see Figure 1). This
crawler has wheels (not driven) to allow free forward and backward movement. In
order to move itself, the crawler can only use its arm, which has two joints under
motor control. The Crawler has sensors to measure the angle of the joints of the arm
and also one distance sensor that “sees” the distance from a wall or another reference
object. The NXT brick was programmed in Java to execute the reinforcement learning
algorithm (Q-learning). It is positively rewarded if it moves forward and negatively
rewarded if it moves backwards. It explores its possibilities and learns how it should
move to accumulate a maximal reward. The Crawler starts with seemingly random

Vlist, B. v. d., Westelaken, R., Bartneck, C., Jun, H., Ahn, R., Barakova, E., Delbressine F., Feijs, L.
(2008). Teaching Machine Learning to Design Students. In Z. Pan, X. Zhang, A. E. Rhalibi, W. Woo &
 Y. Li (Eds.), Technologies for E-Learning and Digital Entertainment, LNCS (Vol. 5093/2008, pp. 206-217).
 Berlin: Springer. | DOI: 10.1007/978-3-540-69736-7_23

 Teaching Machine Learning to Design Students 211

Fig. 1. The Crawler

movements, but after a few minutes it really finds a kind of rhythm allowing it to
move the arm and thereby move itself efficiently forward.

A second robot that was built by different students during this week was Johnny Q
(see Figure 2). It has wheels and left-right motor drives to move forward, backward,
rotate left and right. Johnny Q measures the brightness of the floor and “sees” the
distance from a wall or reference object. Inside is an NXT control brick, an embedded
processor programmed in Java to execute the reinforcement learning algorithm (Q-
learning). The reward is being tapped on the shoulder; a simple button serves to count
touches. Johnny Q learns by being trained. Depending on what the human user does
or does not reward, Johnny Q learns behaviors, such as turning away from a dark
spot, or running backwards near an obstacle. But it can also learn the opposite behav-
ior, bumping against the wall. It explores its possibilities and learns how to accumu-
late maximal rewards. The observer engages in a training session, teaching tricks and
little games, much like training a dog. Usually this algorithm is demonstrated through
screen demos but here the potential of embodied learning is visible in a truly embod-
ied model. From a semantic point of view, it is interesting to sculpt the behavior
which (of course) requires some patience. Johnny Q will gradually forget although
desired behavior can be maintained through continued training.

4.1 Q-Learning Theory

We will now discuss the Q-learning theory in more detail to enable the reader to form
a better judgment of the difficulty that the students were able to overcome during one
week by using our teaching method. Q-learning is a common and well known rein-
forcement learning algorithm [9]. Reinforcement learning is a method that allows a
machine to learn behavior through receiving rewards and punishments. When a ma-
chine performs an action in a certain state it can get a positive reward, negative re-
ward (punishment) or no reward. These rewards reflect the design and goal of
the machine. The Q-learning algorithm [10] works by constructing an action-value

Vlist, B. v. d., Westelaken, R., Bartneck, C., Jun, H., Ahn, R., Barakova, E., Delbressine F., Feijs, L.
(2008). Teaching Machine Learning to Design Students. In Z. Pan, X. Zhang, A. E. Rhalibi, W. Woo &
 Y. Li (Eds.), Technologies for E-Learning and Digital Entertainment, LNCS (Vol. 5093/2008, pp. 206-217).
 Berlin: Springer. | DOI: 10.1007/978-3-540-69736-7_23

212 B. van der Vlist et al.

Fig. 2. Johnny Q

function that gives an estimate of the expected value Q(s,a) (the total award that may
eventually be accumulated) when taking a given action “a” in a given state “s”.
Through experience the machine achieves better and better estimates of the action
values. The behavior of the machine is given in terms of a policy. The policy deter-
mines the probability that the machine will take a certain action in a certain state. An
important dilemma in determining the policy is whether the machine should exploit
its knowledge and choose the actions that lead to the biggest reward or that it should
explore new actions in certain states to discover better ways to retrieve even more
rewards later on.

The strength of Q-learning is that it will adapt to its environment without knowing
it and without being programmed. Q-learning, as well as other reinforcement learning
principles, works because it tries to optimize a given reward. Q-learning requires a
finite set of environment states, a fixed set of actions, and a reward function:

π (s) : Α (s) → [0,1]

∀
s

π (s,a) = 1
a∈Α (s)∑

Qπ (s,a) = Επ γ kτ
t + k +1

| s
t

= s,a
t

= a
k =0

∞

∑
⎧
⎨
⎩

⎫
⎬
⎭

Q*(s,a) = max
π

Qπ (s,a)

Q(s
t
,a

t
) ← Q(s

t
,a

t
) + α r

t +1
+ γ max

a
Q(s

t +1
,a) − Q(s

t
,a

t
)⎡

⎣
⎤
⎦

π (s,a) =

∫
Α (s)

if a ≠ argmax
a '

Q(s,a ')

1− ∫ +
∫

Α (s)
if a = argmax

a '
Q(s,a ')

⎧

⎨

⎪
⎪

⎩

⎪
⎪

Vlist, B. v. d., Westelaken, R., Bartneck, C., Jun, H., Ahn, R., Barakova, E., Delbressine F., Feijs, L.
(2008). Teaching Machine Learning to Design Students. In Z. Pan, X. Zhang, A. E. Rhalibi, W. Woo &
 Y. Li (Eds.), Technologies for E-Learning and Digital Entertainment, LNCS (Vol. 5093/2008, pp. 206-217).
 Berlin: Springer. | DOI: 10.1007/978-3-540-69736-7_23

 Teaching Machine Learning to Design Students 213

We write ∫ for the exploration factor, γ for discounting factor, α for learning factor,

π for policy (∫ -greedy), s for state, a for action, t for (discrete) time, Α (s) for action

set, Q(s,a) for expected return in state s after action a, under current policy, Q*(s,a) for
expected return in state s after action a, under optimal policy, and Ε for expectation.

5 Case Study 2: Voice Command Using Supervised Learning

The students applied their knowledge of neural networks, which is one flavour of
supervised learning, to implement a simple speech recognition application. It took
them one week to explore the operational principles of a basic neural network and to
use this knowledge to design the application. For this application the Lego NXT
Sound Sensor and the NXT brick were used to get the desired speech input. The Lego
sound sensor is an envelope detector that measures the change in volume (amplitude
of the sound signal) over time and not a real microphone. However, the envelope was
sufficient input to build a recognition application that could distinguish between the
words “Biertje” (beer) and “Champagne” (Champaign) by recognizing the difference
in the word’s envelopes.

The NXT with help of its microphone recorded the words into sound samples that
were then transferred via a Bluetooth connection to the computer. To make sure that
the recognition was based on the difference in volume over time and not on the dura-
tion of the word, the length of both sound samples was equalized during the pre-
processing. The sound samples were fed as input to the neural network that was cre-
ated using Joone. The resulting output was then communicated back to the NXT that
printed the results on its screen.

During the last two weeks of the course, the students were encouraged to create an
extension pack for the Lego Mindstorms NXT set. These extension packs should
empower other users in the Lego community to easily extend their Lego inventions
far beyond what is possible with standard Lego. Two students decided to extend the
neural network application that was build in the previous week.

The goal was to implement the neural network inside the NXT, so that it would no
longer rely on a PC for its operation. Several possibilities were available to implement
the neural network inside of the NXT brick. One option would have been to try to fit
Joone inside the NXT. Although this would have been the most versatile solution, it
would have moved the focus away from an understanding of neural networks towards
a more in depth knowledge of the Java language. Therefore the students decided to
build their own neural network from scratch inside the NXT. This allowed them to
gain a better understanding of the formulas that describe a neural network and an in-
depth understanding of how to transform these formulas into Java code.

However, the NXT does not provide a user-friendly graphical user interface (GUI)
that would enable users to easily manage the recorded audio samples and the training
process. The students therefore decided to create the Neural Network Manager soft-
ware (see Figure 3) for the PC that performs the training of the neural network.

Training the neural network on the NXT would in principle be possible as well, but
of course at a much lower speed and only with an unfriendly user interface due to
limitations of the NXT. It only has a small screen and four buttons to communicate
with the user. A second reason for the preference of conducting the neural network

Vlist, B. v. d., Westelaken, R., Bartneck, C., Jun, H., Ahn, R., Barakova, E., Delbressine F., Feijs, L.
(2008). Teaching Machine Learning to Design Students. In Z. Pan, X. Zhang, A. E. Rhalibi, W. Woo &
 Y. Li (Eds.), Technologies for E-Learning and Digital Entertainment, LNCS (Vol. 5093/2008, pp. 206-217).
 Berlin: Springer. | DOI: 10.1007/978-3-540-69736-7_23

214 B. van der Vlist et al.

Fig. 3. Screenshot of the Neural Network Manager

training remotely on a PC, is that the network itself is unlikely to stand by itself. Most
likely, it would be integrated into other software. This software needs to be created on
the computer anyway and hence there was little reason to renounce the use of a com-
puter. Once the neural network is trained, it can be transferred back to the NXT. It can
then be used as a standalone application or as part in another program. The students
were able to take advantage of their previous design education to create a highly us-
able GUI for the software. Hopefully, this will encourage other Lego users to take
advantage of their software.

5.1 Neural Network Theory

We would like to conclude this case study by providing a short introduction to neural
networks. This may allow readers that are not yet familiar with it to evaluate how
much progress the students were able to make within three weeks.

Pattern recognition in general aims to classify data patterns extracted from raw data
[1]. This is a very powerful tool to recognize classes of patterns where the raw data
shows small variation or when the exact features are not known. In many cases using
statistical information about the patterns or linear mathematical functions can do this.
When both the data and the segmentation of the different patterns become more com-
plex, neural networks are very suitable to perform pattern recognition tasks [11].

Neural networks in for example human brains consist of neurons connected
through synapses forming a complex network. Artificial neural networks feature lay-
ers of neurons. A simple neural network at least has an input layer with neurons, an
output layer with neurons and at least one hidden layer. All the neurons in a layer are
interconnected through synapses to the next layer of neurons. Every neuron is con-
nected to every neuron in the next layer (full synapses).

The synapses function as a weight factor and the neurons function as a mathematical
function. Input can be fed into the neural network and is multiplied by the weight fac-
tors of the synapses. Neurons in the next layer apply a mathematical function, for ex-
ample a sigmoid function to the sum of all the input values multiplied by their weight
factor. This process repeats until the output neurons get a value. The output will return
values that represent a specific pattern, at least when the weight factors are correct:

Vlist, B. v. d., Westelaken, R., Bartneck, C., Jun, H., Ahn, R., Barakova, E., Delbressine F., Feijs, L.
(2008). Teaching Machine Learning to Design Students. In Z. Pan, X. Zhang, A. E. Rhalibi, W. Woo &
 Y. Li (Eds.), Technologies for E-Learning and Digital Entertainment, LNCS (Vol. 5093/2008, pp. 206-217).
 Berlin: Springer. | DOI: 10.1007/978-3-540-69736-7_23

 Teaching Machine Learning to Design Students 215

O
j

=
1

1+ e
− xi ∗wij

i=1

m

∑

where,

O
j

= output value of neuron j

m = neurons in previous layer

x
i

= value of neuron i

w
ij

= weight factor of the synapse between neuron i and neuron j

A common way to train a neural network is by means of backward propagation. Back
propagation is a supervised learning method, which means that a set of input values
coupled to desired output are used to train the network. The back propagation algo-
rithm calculates the error signal by comparing the actual output with the desired out-
put. It then uses the error signal to update the weights. The network is trained by
repeating this iterative process until the actual output approximates the desired output:

δ

j
= t

j
− O

j()⋅ O
j
⋅ 1 − O

j(), where,

δ
j

= error signal for neuron j (in output layer)

t
j

= desired output

O
j

= actual output

δ

j
= O

j
1 − O

j() δ
k

⋅ w
kj

k

∑ , where,

δ
j

= error signal for neuron j (in intermediate layer)

O
j

= actual output

δ
k

= error of (output) neuron k

w
kj

= weight factor of synapse between neuron j and k

w

ij
(t + 1) = w

ij
(t) + η ⋅ δ

j
⋅ O

i
, where,

w
ij
(t + 1) = new weight for synapse between neuron i and j (in all layers)

w
ij
(t) = current weight for synapse between neuron i and j

η = learning rate

δ
j

= error signal on output

Oi = input signal of synapse

Vlist, B. v. d., Westelaken, R., Bartneck, C., Jun, H., Ahn, R., Barakova, E., Delbressine F., Feijs, L.
(2008). Teaching Machine Learning to Design Students. In Z. Pan, X. Zhang, A. E. Rhalibi, W. Woo &
 Y. Li (Eds.), Technologies for E-Learning and Digital Entertainment, LNCS (Vol. 5093/2008, pp. 206-217).
 Berlin: Springer. | DOI: 10.1007/978-3-540-69736-7_23

216 B. van der Vlist et al.

6 Conclusions

We described the embodied intelligence method to teach machine learning to design
students. By using a tangible embodiment as a platform for machine learning, the
environment of the machine-learning program does not need to be simulated. But
more importantly, the embodiment provides the student with a tangible tool to under-
stand and interact with a learning system. Lego Mindstorms NXT is a good platform
for this embodiment. The Lego system allows the students to quickly build a machine
and thereby enables students to focus on the machine learning. In addition Lego NXT
provides a Java Virtual machine on which students can execute Java programs. Java is
a widely used object-oriented programming language. The combination of the Lego
construction system and Java is a very low hurdle that even students who do not have
an affinity toward technology can overcome.

Many of the students played with Lego during their childhood. This positive mem-
ory might have lowered inner barriers that technophobic students might have built up.
It might have allowed them to approach the course with a more open attitude and
thereby increased the opportunity for learning. A second factor that might have had
positive influence on the students is the behavior of the robots. The Crawler robot
demonstrates that even simple learning behavior embodied in Lego has the power to
create affection and empathy with human observers. This might have further moti-
vated the students to experiment with the machine-learning program.

However, the embodied intelligence method does not only offer advantages for less
technophile students, but it also offers enough room for advanced development.
Within only three days certain students were able to build and use neural networks.
They then continued to build their own neural network program from scratch, utiliz-
ing on the theory they learned in the preceding week. In the end, they were able to
create neural network software that is user friendly enough for the general Lego en-
thusiast. As an example application, they built a voice command system, which en-
ables the Lego NXT to operate as a stand-alone voice controlled device. Again, we
have to emphasize that these were neither computer science students nor mathemati-
cians. These were design students that normally create artifacts.

Only by enabling design students to understand, use and develop machine-learning
systems, we can ensure that they will be able to create truly intelligent systems, prod-
ucts, and related services. The embodied intelligence teaching method can help
achieving this goal and our experiences suggest that this has the potential to signifi-
cantly help students who do not have an inhering affinity towards technology.

References

1. Voorhees, R.A.: Measuring what matters: competency-based learning models in higher
education. Jossey-Bass, San Francisco (2001)

2. Weert, v.T.J.: ICT-rich and Competency Based Learning in Higher Education. In: Kallen-
berg, A.J., Ven, M.J.J.M. (eds.) The New Educational Benefits of ICT in Higher Educa-
tion. Erasmus University Rotterdam, Rotterdam (2002)

Vlist, B. v. d., Westelaken, R., Bartneck, C., Jun, H., Ahn, R., Barakova, E., Delbressine F., Feijs, L.
(2008). Teaching Machine Learning to Design Students. In Z. Pan, X. Zhang, A. E. Rhalibi, W. Woo &
 Y. Li (Eds.), Technologies for E-Learning and Digital Entertainment, LNCS (Vol. 5093/2008, pp. 206-217).
 Berlin: Springer. | DOI: 10.1007/978-3-540-69736-7_23

 Teaching Machine Learning to Design Students 217

3. Kyffin, S., Feijs, L.: The New Industrial Design Program and Faculty in Eindhoven. De-
signing Designers - International Convention of University Courses in Design, Milan
(2003)

4. Bartneck, C., Jun, H.: Rapid Prototyping for Interactive Robots. In: Groen, F., Amato, N.,
Bonarini, A., Yoshida, E., Krose, B. (eds.) 8th Conference on Intelligent Autonomous Sys-
tems (IAS-8), pp. 136–145. IOS Press, Amsterdam (2004)

5. Bishop, C.M.: Pattern recognition and machine learning. Springer, New York (2006)
6. Nehmzow, U.: Mobile robotics: a practical introduction. Springer, London (2003)
7. Gasperi, M., Hurbain, P., Hurbain, I.: Extreme NXT: Extending the LEGO Mindstorms

NXT to the Next Level. Apress, Berkeley (2007)
8. Solorzano, J.: LeJos (2002), http://lejos.sourceforge.net/
9. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. MIT Press, Cambridge

(1998)
10. Watkins, C.: Learning from Delayed Rewards. King’s College, vol. PhD. Cambridge Uni-

versity, Cambridge (1989)
11. Haykin, S.S.: Neural networks: a comprehensive foundation. Prentice Hall, Upper Saddle

River (1999)

Vlist, B. v. d., Westelaken, R., Bartneck, C., Jun, H., Ahn, R., Barakova, E., Delbressine F., Feijs, L.
(2008). Teaching Machine Learning to Design Students. In Z. Pan, X. Zhang, A. E. Rhalibi, W. Woo &
 Y. Li (Eds.), Technologies for E-Learning and Digital Entertainment, LNCS (Vol. 5093/2008, pp. 206-217).
 Berlin: Springer. | DOI: 10.1007/978-3-540-69736-7_23

	Teaching Machine Learning to Design Students
	Introduction
	Structure of the Course
	Embodied Intelligence
	Participants

	Material
	Hardware
	Software

	Case Study 1: Reinforcement Learning with the Crawler and Johnny Q
	Q-Learning Theory

	Case Study 2: Voice Command Using Supervised Learning
	Neural Network Theory

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

