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Abstract. This paper presents a statistical method for deriving the
optimal prospective field sampling scheme on a remote sensing image
to represent different categories in the field. The iterated conditional
modes algorithm (ICM) is used for segmentation followed by simulated
annealing within each category. Derived field sampling points are more
intense in heterogenous segments. This method is applied to airborne
hyperspectral data from an agricultural field. The optimized sampling
scheme shows superiority to simple random sampling and rectangular
grid sampling in estimating common vegetation indices and is thus more
representative of the whole study area.

1 Introduction

Sampling entails the selection of a part of a population to draw inference about
the whole population. Random sampling is attractive as it implies unbiasedness,
resulting in independent observations, which are a basic requirement for statisti-
cal inference. In geological and vegetational studies, though, it may conflict with
the desire for representativeness. For example, points could be confined to only
one part of the area of interest and specific local features may be missed. Geo-
statistical data often show spatial autocorrelation, hence random sampling may
no longer be optimal and for some purposes equally spaced samples or clustered
samples are more useful. In addition, estimation of the population mean may
benefit from partitioning into homogeneous strata [33, 21, 31].
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Segmented images have various applications. In this study the design of the
optimal prospective sampling scheme is considered. Design of prospective sam-
pling schemes for classification using ground truth samples has been problematic
in geological and vegetational studies. In the past samples have been randomly
selected aided with some form of disciplinary judgement [20, 5]. High spatial and
spectral resolution hyperspectral imagery now makes it possible to select sam-
pling locations in advance of fieldwork. Such images provide a synoptic overview
of a large area and often provide topographic information that are more accurate
and detailed than ground truth maps [9].

In context of vegetational studies, biophysical parameters, such as leaf area
index (LAI), biomass, chlorophyll concentration, and photosynthetic activity,
are important for estimating foliage cover and forecasting vegetation growth
and yield (e.g., [16]). By selecting appropriate bands, a segmented image can
reflect spatial information of variability of certain biophysical parameters, and
one could potentially optimize field visits to better estimate these parameters of
interest.

This paper considers the design of the optimal prospective sampling scheme
for field visits in an agricultural study, using a segmented hyperspectral image.
The optimal prospective sampling scheme will be representative of the whole
study area for various parameters embedded by the segmentation and bands se-
lected for the segmentation. The paper is illustrated with airborne hyperspectral
data, DAIS-7915 acquired over the Tedej area in Hungary.

2 Study Site

2.1 Study Area

Tedej, Hajdu-Bihar area, Hungary (see Figure 1), approximately 1500 ha, is an
intensively cultivated agricultural land neighboring a natural protection park
area [17]. Soil categories characteristic to this area are Chernozems, Phaeozems,
Solonchaks and Solonetz [17] and major crops are barley, maize, sugar beet,
sunflower and alfalfa.

This study area also includes non-vegetation areas (cultivated areas and path-
ways between fields), and as such was ideal for constraining the sampling. An
appropriate sampling scheme, representative of the different crop categories, con-
sist of samples distributed evenly over the respective categories of interest, at
the same time avoiding the boundaries of crop categories because of the higher
levels of uncertainty at the boundaries.

2.2 Remote Sensing

In this study, a subset of the Digital Imaging Spectrometer (DAIS-7915), is used.
The resulting data is a 79 channel hyperspectral image that was acquired over
the Tedej area (see Figure 2). DAIS-7915 is a whisk broom sensor, covering
a spectral range from visible (0.4 um) to thermal infrared (12.3 ym) at variable
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Fig. 1. Study area in Tedej, Hajdu-Bihar area, Hungary.
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Fig. 2. Hyperspectral image of study area in Tedej, Hajdu-Bihar area, Hungary. Re-
flectance values for bands 29 (0.988 pum), 39 (1.727 pm) and 1 (0.496 pm).



spatial resolution from 3-20 m depending on the carrier aircraft altitude [19]. The
79 channels consist of varying bandwidths which are useful for a large variety of
applications.

Flights took place on the 17th and 18th August 2002. Absence of clouds
and wind on the second day were appropriate and hence this image was used
for the study. Atmospheric effects were minimized by applying an empirical line
calibration method [24] to match light and dark measured field spectra targets.
This was carried out by DLR German Aerospace Center and the processed data
was made available. Therefore the details of atmospheric and image correction
is not discussed in this paper. The study area is shown in Figure 1 and the hy-
perspectral image is shown in Figure 2 at 5 m nominal resolution on the ground.

Assuming that ground truth data are unavailable at the time of designing
a sampling scheme, the bands selected were in close proximity to the wave-
lengths used in [30] to identify discriminating crops. The 18 bands selected
were: 1 (0.496 ym), 4 (0.551 pm), 10 (0.657 um), 11 (0.675 pm), 12 (0.693 um),
13 (0.710 pm), 14 (0.727 pm), 15 (0.744 pm), 23 (0.886 pum), 25 (0.921 pm), 29
(0.988 pum), 32 (1.035 pm), 33 (1.539 pum), 37 (1.668 pm), 39 (1.727 pm), 49 (2.084
pm), 54 (2.158 um) and 59 (2.232 um). These include a series of visible, near-
infrared and short-wave-infrared bands. Bands 41-48 (1.958-2.068 um) and 62—
72 (2.275-2.412 pm) were noisy and were not considered for selection since they
could affect the results of the segmentation. Furthermore, the wavelengths of
these bands are usually not considered as being very effective for discriminating
between crops as opposed to other bands [30].

Even though we selected 18 bands for the image segmentation, the use of hy-
perspectral data has the advantage of producing better classification results over
multispectral broadband data because of the narrow bands for the hyperspectral
data [29, 3]. Selection of bands becomes necessary when performing image seg-
mentation on hyperspectral data because of the high correlations between the
bands, thus often carrying redundant information [30].

Choice of spectral bands to use and restriction of categories to sample de-
pends on the application and actual data. This is inevitable as relying solely on
segmentation can result in sampling categories of no interest. Although bands se-
lected in this study are not necessarily the optimal discriminating bands, they are
commonly used for calculating the red-edge, vegetational indices or the amount
of stress in vegetation. The segmented image thus inherit these qualities and re-
sulted in an optimal prospective sampling scheme that best estimates the various
vegetation indices.

The methodology is illustrated on a 600 x 400 pixel hyperspectral image,
displayed as a black box in Figure 1, using the 18 spectral bands. The number of
categories in the image is determined by executing an iterative procedure using
the Bayesian Information Criteria (BIC) [13]. To avoid slow convergence and
insufficient computer memory [13], a random sample of pixels was selected. The
number of categories was determined repeatedly on subsets of the image for more
stable results. The results indicate either seven or eight categories in the image.
In this paper we used [2] iterated conditional modes algorithm (ICM) for image



segmentation. Since ICM allows merging of categories by resulting in empty cat-
egories if they are similar, the algorithm was applied to eight categories. Other,
more complex methods of determining the number of categories can be found in
[28] and [12] using Pseudolikelihood Information Criteria (PLIC) instead of BIC.
It was not intended here, however, to compare performance of these methods or
the actual ICM algorithm.

3 Methods

3.1 The ICM Algorithm

Adequate image segmentation takes into account both spectral features and
spatial information. Applications of the Markov Random Fields (MRF) have
been useful in this respect [2]. The choice of ICM was rather subjective and
various other segmentation methods are possible. A comparison of ICM with
maximum likelihood classification and support vector machines can be found
in [18], demonstrating comparable results between these three methods. Details
concerning the ICM algorithm can be found in [2].

3.2 Sampling Per Category

The section describes the method for obtaining the optimal prospective sampling
scheme within each category, after segmentation. Suppose that the segmented
image at the ath iteration is denoted by C(®) = Ule C,(f‘), a=0,1,2,..., where
C,(Ca) denotes the set of pixels which belongs to the kth category. Let IV, ,ga) denote

the number of elements in C,(Ca), i.e. the number of pixels in the kth category at
the ath iteration. Also, let f;; denote the m-dimensional feature vector for pixel

(,7), so u,(ca) = Z fij/N,ga) is the m-dimensional mean vector of the kth
(i.j)ecy”
category at the ath iteration.

Sample Size Per Category For a pre-specified number of n samples, suppose
a proportional allocation is assigned to each category K [31]. An elementary
adjustment to the formula presented in [31] was made to allow the minimum
number of samples per category n to be n( (see Equation 1) so that all cat-
egories are represented. The sample size per category is then obtained by dis-
tributing the remainder of the samples (n - K- n(o)) proportionally according

to the variability (u,i”) and size (N ,ir)) of the category at the rth iteration.

The sample size for category k equals
N]gr) /V](cr)
1)
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where Vl(cr) = Nl(r) Z (fij - H/(:))T (fij - /M(;))-

k (i,j)EC(T)

Sampling is optimizecf over each category since segmentation is governed by
categories, and sampling is carried out to characterize these categories. Choice of
an appropriate optimization technique and a relevant criterion is of importance
as the samples are to be spread over the category, consisting of several disjoint
segments.

Simulated Annealing Per Category Simulated annealing is a general appli-
cable optimization method to find the global optimum of an objective function
in the presence of local optima. In simulated annealing, a fitness function ¢(S),
depending on the sampling configuration S, has to be minimized. Details on
simulated annealing as applied to sampling can be found in [32].

Fitness Function Per Category Various choices of fitness functions ¢(S) can
be made. For example, minimization of the Mean Shortest Distances (MMSD)-
criterion aims at even spreading of all sampling points over the sampling re-
gion by minimizing the expectation of the distance between an arbitrary chosen
point and its nearest observation [32]. Each category is considered separately as
a sampling region. The MMSD-criterion was chosen since it is able to spread
the sampling points over each category, each category consisting of possibly sev-
eral segments. In effect most segments in the image will also be sampled since
the objective of this criterion will force sampling points to move to different
segments, belonging to a common category, depending on the distance between
nearby segments.

The initial sampling scheme for the kth category Séo) is a random selection
of ny, [see Equation 1] points from category k. For Sy, the fitness function equals

—_
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where c(i5) € Cg) is a location vector denoting the (4, j)th pixel belonging to
category k and W, (ci(;;)) denotes the location vector of the nearest sampling
point in Sg.

Minimizing Equation 2 results in an even spreading of sampling points within
category k, i.e. points will arrange at an equilateral triangular configuration.
The final sampling scheme S consists of all sampling points in the k categories,

S =Ur, Sk.

4 Results

ICM was applied to the subset hyperspectral data with the 18 selected bands
described in section 2.2. The resulting segmented image with eight categories
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Fig. 3. Methodology applied to DAIS-7915 hyperspectral image

is shown in Figure 3(b), which are the mean reflectance values for bands 29
(0.988 um), 39 (1.727 pm) and 1 (0.496 pm). The sampling scheme was opti-
mized by using the segmented image with eight categories. The image was first
analyzed and adjustments were made to prevent sampling in areas of no interest.
First, pixels belonging to pathways, between fields and non-vegetation categories
(cultivated areas) were removed after segmentation but prior to sampling. Sec-
ond, disjoint segments smaller than 10 pixels were removed from further analysis
in the sampling stage. This decreased the chance of sampling in segments that
were too heterogeneous or small in the image as it seemed impractical to sample
in such areas. However, if these are meaningful segments, the above procedure
can be performed without removal of these pixels. Four of the eight categories
were cultivated crops and hence combined with pixels belonging to pathways
between the fields to form a category that constrained sampling. The resulting
image is shown in Figure 3(c) where sampling was optimized over categories 1-4.

As an illustration, a total sample size of 50 points was used. The number of
samples for each category was then determined using Equation 1 by stipulating
the minimum number of samples per category as 3. This resulted in 7, 11, 22 and
10 samples for each of the four categories. Samples for each category were then
optimized by using simulated annealing and the MMSD-criterion as the fitness
function. The distribution of the 50 sampling points is shown in Figure 3(d). In
this image, the optimized prospective sample points tend to arrange in a trian-



gular formation, while being governed by the actual complexity of the segments.
Most samples are also arranged away from the borders of the segments.

5 Validation

This section demonstrates that the optimal prospective sampling scheme is suit-
able to estimate various vegetation parameters. It is known that the Leaf Area
Index (LAI) is often used as a key variable in estimating foliage cover and fore-
casting vegetation growth and yield [16]. Several researchers have shown that
there is a relationship between ground-measured LAI and vegetation indices [27,
1,7,8,11,4].

The reason for the varying vegetation indices is that different indices are used
to capture different vegetation parameters of interest. Some indices are used to
capture the photochemical processes associated with photosynthesis [6, 14, 10, 3,
16], while others for retrieval of LAT estimates [8, 4, 23], or to quantify vegetation
fraction [15]. In all, vegetation indices are well correlated with various vegetation
parameters such as LAI, biomass, chlorophyll concentration, and photosynthetic
activity.

The Normalized Difference Vegetation Index (NDVI) developed by [26] is the
most widely used vegetation index. In terms of the hyperspectral bands, NDVI
is defined as

Ro.836 — Ro.e75
NDV[]= —MM—— 3
Ry .s86 + Ro.67s ®)

where R, is the reflectance of the wavelength at x um. The NDVI is based on
the contrast between the maximum absorption in the red due to chlorophyll
pigments to the maximum reflection in the infrared caused by leaf cellular struc-
ture. Figure 4(a) shows the NDVI image, where brighter pixels are indicative of
healthy vegetation.

The Renormalized Difference Vegetation Index (RDVTI) was developed by [25]
to improve estimates of LAI. RDVI for the hyperspectral image is defined as

Ro.886 — Ro.675 @)
V' Ro.s36 + Ro.675

Figure 4(b) shows the RDVI image, where brighter pixels are indicative of
healthy vegetation.

The Modified Simple Ratio (MSR) developed by [7] was also designed to
improve estimates of LAI. MSR for the hyperspectral image is defined as

Ry 586 >/ | Ro 886
MSR= | =— -1 — +1. 5
<R0.675 Ro 675 (5)
Figure 4(c) shows the MSR image, where brighter pixels are indicative of healthy
vegetation.

In attempting to improve the vegetation indices with regard to background
soil, [22] modified the Soil-Adjusted Vegetation Index (MSAVTI), which is defined

RDVI =



as
1
MSAVT = 5 [(2Ro.s86 +1)* = 8(Ro.sss — Ro.e75)] - (6)

Figure 4(d) shows the MSAVI image, where brighter pixels are indicative of
healthy vegetation. Also noticeable is the region with high salinity, running di-
agonally across the center of the image, that has high values for MSAVI since
the effect of the background soil is diminished.
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Fig. 4. Vegetation indices maps.

The above four indices are used to show that the optimal prospective sam-
pling scheme gives most precise estimates for each vegetation index compared to
simple random sampling and grid sampling. For simple random sampling, three
sampling schemes are designed, by randomly selecting 50 samples from the re-
gion of interest, to show inconsistency in the estimates. For the rectangular grid
scheme, three sampling schemes were designed to again show inconsistency in
the estimates. Initially, for each grid, 54 samples were selected, with a grid spac-
ing of 300 m. The first sample was randomly selected from a 300 x 300 m grid.
Nine samples were arranged in a row and six in a column, thus totalling to



the 54 samples. For each grid sampling scheme, the samples falling in the non-
interest area were removed. This resulted in either three or four samples removed
from each grid sampling scheme. The average vegetation index for each sampling
scheme is then calculated and compared to the respective average vegetation in-
dex for all pixels in the area of interest. The results are shown in Table 1. The
optimized sampling scheme gives most accurate estimates for each vegetation
index compared to the simple random and rectangular grid sampling schemes.
Inconsistencies are apparent for each of the latter two sampling designs.

Table 1. Comparison of sampling schemes.

Mean
NDVI RDVI MSR MSAVI
Image 0.59 88 1.34 1.24

Optimized sampling scheme 0.58 8.6 1.32 1.22

Random sampling scheme 1 0.49 7.9 1.18 1.09
2 038 6.1 094 0.89
3 045 7.0 1.11 1.06

Grid sampling scheme 1 049 78 1.14 1.13
2 0.53 8.2 1.25 1.13
3 0.53 8.3 1.26 1.15

Values in the table represent the average vegetation indices for each sampling scheme.

6 Discussion

The sampling methodology presented in this paper was tested on a subset of a
DAIS-7915 hyperspectral image by initially applying the ICM algorithm. The
samples per category were obtained in proportion to the size and variability of
the category as fewer samples are required to estimate smaller, more homoge-
nous categories. The assumption that categories, comprising of possibly several
segments, are homogeneous, logically makes it possible to spread sampling points
over each category by using the MMSD-criterion as the fitness function in simu-
lated annealing. Although simulated annealing is a slow process, it arrives at the
global optimum. Disjoint segments for each category results in many local min-
ima for the fitness function and hence necessitates such an algorithm. Most of
the samples are away from the boundaries of these categories where uncertainty
is high. This highlights the appropriateness of the implemented fitness function.
This is further supported by samples spread over the categories, forming an
equilateral triangular structure. It depended though on the spatial complexity



of the category. Since these sampling points are geo-referenced, the location can
be determined for field visits at these sampling points on the ground.

Field spectral measurements of agricultural crops could be used, for exam-
ple, to study health of crops and thus are important for estimating foliage cover
and forecasting vegetation growth and yield. This necessitates regular field vis-
its. Because fields of agricultural crops may be homogeneous (planted with only
one particular type of crop) or heterogeneous (planted with a group of differ-
ent types of crops), the lack of this prior information can make field sampling
non-optimal. Classification of agricultural fields is therefore useful in the opti-
mization of prospective sampling schemes to support provisions that will sustain
economic crop productivity. This hypothesis converges with [31] suggestion that
estimation of the population mean may benefit from partitioning a study area
into homogeneous strata.

Using appropriate band ratios, commonly used vegetation index maps were
used to compare the optimal prospective sampling scheme to simple random sam-
pling and rectangular grid sampling schemes. The optimal prospective sampling
scheme results in estimates for each of the four vegetation indices considered
that are closest to the actual averages for all pixels in the image. The rectangu-
lar grid sampling schemes also have reasonably accurate estimates but depends
highly on the initial random sample. Inconsistencies between each rectangular
grid sampling scheme can be observed. The estimates are poor using simple
random sampling and inconsistencies for these sampling schemes are high. The
optimized sample points therefore represent the whole study area more accu-
rately than either of the other two sampling schemes for each of the different
parameters of interest.

The ICM algorithm has regularly been applied for various purposes as it is
quick and produces reasonably accurate categories. The drawback is that it may
arrive at a local optimum, hence emphasizing the choice of initial means. For this
reason, the K-means multivariate clustering algorithm was used as opposed to
randomly selecting points in the image to represent the means for each category.

Sampling of categories is not restrictive to the use of the ICM algorithm and
in this sense any other segmentation method may be used. This methodology uses
remote sensing in designing optimal prospective sampling schemes on the ground
for field visits as opposed to the traditional way of selecting samples randomly or
on the basis of disciplinary judgement. The selected samples will in effect have
image characteristics, such as, gray tone, texture or pattern, depending on the
type of segmentation performed.

7 Conclusions

This study resulted into two main conclusions.

— The combination of the ICM algorithm for image segmentation and simu-
lated annealing for optimized sampling provides an elegant and powerful tool
in designing prospective sampling schemes using hyperspectral data.



— The optimized prospective sampling scheme shows superiority, in this case
study, to simple random sampling and rectangular grid sampling in estimat-
ing common vegetation indices and is thus more representative of the whole
study area.
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