Skip to main content

Towards a Multi-camera Generalization of Brightness Constancy

  • Conference paper
Complex Motion (IWCM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3417))

Included in the following conference series:

Abstract

Standard optical flow methods for motion or disparity estimation use a brightness constancy constraint equation (BCCE). This BCCE either handles a moving camera imaging a non-moving scene or a fixed camera imaging a moving scene. In this paper a BCCE is developed that can handle instantaneous motion of the camera on a 2D plane normal to the viewing direction and motion of the imaged scene. From the thus acquired up to 5 dimensional data set 3D object motion, 3D surface element position, and -normals can be estimated simultaneously. Experiments using 1d or 2d camera grids and a weighted total least squares (TLS) estimation scheme demonstrate performance in terms of systematic error and noise stability, and show technical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. IJCV 12(1), 43–77 (1994)

    Article  Google Scholar 

  2. Bergen, J.R., Burt, P.J., Hingorani, R., Peleg, S.: A three-frame algorithm for estimating two-component image motion. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(9), 886–895 (1992)

    Article  Google Scholar 

  3. Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: ICCV, pp. 433–438 (1987)

    Google Scholar 

  4. Black, M., Fleet, D., Yacoob, Y.: Robustly estimating changes in image appearence. CVIU 7(1), 8–31 (2000)

    Google Scholar 

  5. Bruhn, A., Weickert, J., Schnörr, C.: Combining the advantages of local and global optic flow methods. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 454–462. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Carceroni, R., Kutulakos, K.: Multi-view 3d shape and motion recovery on the spatio-temporal curve manifold. In: ICCV (1), pp. 520–527 (1999)

    Google Scholar 

  7. Jr. Denney, T.S., Prince, J.L.: Optimal brightness functions for optical flow estimation of deformable motion. IEEE Trans. Im. Proc. 3(2), 178–191 (1994)

    Article  Google Scholar 

  8. Farid, H., Simoncelli, E.P.: Optimally rotation-equivariant directional derivative kernels. In: 7th Int’l Conf. Computer Analysis of Images and Patterns, Kiel (1997)

    Google Scholar 

  9. Farnebäck, G.: Fast and accurate motion est. using orient. tensors and param. motion models. In: ICPR, pp. 135–139 (2000)

    Google Scholar 

  10. Fleet, D.: Measurement of Image Velocity. Kluwer Academic Publishers, Dordrecht (1992)

    MATH  Google Scholar 

  11. Fleet, D.J., Langley, K.: Recursive filters for optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(1), 61–67 (1995)

    Article  Google Scholar 

  12. Garbe, C.: Measuring Heat Exchange Processes at the Air-Water Interface from Thermographic Image Sequence Analysis. PhD thesis, Heidelberg University (2001)

    Google Scholar 

  13. Gupta, S., Prince, J.: On variable brightness optical flow for tagged mri. In: Information Processing in Medical Imaging, pp. 323–334 (1995)

    Google Scholar 

  14. Haerdle, W., Sperlich, S., Spokoiny, V.: Structural tests in additive regression. J. Amer. Stat. Acc. 96(456), 1333–1347 (2001)

    MATH  Google Scholar 

  15. Haußecker, H., Fleet, D.J.: Computing optical flow with physical models of brightness variation. PAMI 23(6), 661–673 (2001)

    Google Scholar 

  16. Haußecker, H., Spies, H.: Motion. In: Jähne, B., Haußecker, H., Geißler, P. (eds.) Handbook of Computer Vision and Applications, Academic Press, London (1999)

    Google Scholar 

  17. Haußecker, H., Spies, H., Jähne, B.: Tensor-based image sequence processing techniques for the study of dynamical processes. In: Proc. Int. Symp. On Real-Time Imaging and Dynamic Analysis, Japan 32(5), 704–711 (1998)

    Google Scholar 

  18. Horn, B.K., Schunk, B.G.: Determining optical flow. Art. Int. 17, 185–204 (1981)

    Article  Google Scholar 

  19. Irani, M.: Multi-frame optical flow estimation using subspace constraints. In: IEEE International Conference on Computer Vision (ICCV), Corfu (1999)

    Google Scholar 

  20. Jähne, B.: Spatio-Temporal Image Processing. LNCS, vol. 751. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  21. Jähne, B., Scharr, H., Körkel, S.: Principles of filter design. In: Handbook of Computer Vision and Applications, Academic Press, London (1999)

    Google Scholar 

  22. Koivunen, T., Nieminen, A.: Motion field restoration using vectormedian filtering on high definition television sequences. In: Proc. Vis. Comm. and Im. Proc.’90, vol. 1360, pp. 736–742 (1990)

    Google Scholar 

  23. Matthies, L.H., Szeliski, R., Kanade, T.: Kalman filter-based algorithms for estimating depth from image sequences. IJCV 3, 209–236 (1989)

    Article  Google Scholar 

  24. Longuet-Higgins, H.C., Prazdny, K.: The interpretation of a moving retinal image. In: Proceedings of The Royal Society of London B, 208, pp. 385–397 (1980)

    Google Scholar 

  25. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: DARPA Im. Underst. Workshop, pp. 121–130 (1981)

    Google Scholar 

  26. Nakamura, Y., Matsuura, T., Satoh, K., Ohta, Y.: Occlusion detectable stereo–occlusion patterns in camera matrix. In: CVPR, pp. 371–378 (1996)

    Google Scholar 

  27. Nestares, O., Fleet, D.J., Heeger, D.J.: Likelihood functions and confidence bounds for total-least-squares problems. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, Hilton Head, South Carolina, pp. 523–530. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  28. Scharr, H.: Optimal Operators in Digital Image Processing. PhD thesis, University of Heidelberg, Germany (2000)

    Google Scholar 

  29. Scharr, H., Küsters, R.: A linear model for simultaneous estimation of 3d motion and depth. In: IEEE Workshop on Motion and Video Computing, Orlando, Florida, USA, December 5-6 (2002)

    Google Scholar 

  30. Scharr, H., Küsters, R.: Simultaneous estimation of motion and disparity: Comparison of 2-, 3- and 5-camera setups. In: 2nd IASTED International Conference Visualization, Imaging and Image Processing (VIIP 2002), Malaga, Spain, September 9-12 (2002)

    Google Scholar 

  31. Schurr, U., Walter, A., Wilms, S., Spies, H., Kirchgessner, N., Scharr, H., Küsters, R.: Dynamics of leaf and root growth. 12th Int. Con. on Photosynthesis, PS 2001 (2001)

    Google Scholar 

  32. Spies, H., Jähne, B.: A general framework for image sequence processing. In: Fachtagung Informationstechnik, pp. 125–132. Universität Magdeburg (2001)

    Google Scholar 

  33. Spies, H., Kirchgeßner, N., Scharr, H., Jähne, B.: Dense structure estimation via regularised optical flow. In: VMV 2000, Saarbrücken, Germany, pp. 57–64 (2000)

    Google Scholar 

  34. Spies, H., Scharr, H.: Accurate optical flow in noisy image sequences. In: ICCV’01, Vancuver, Canada, pp. 587–592 (2001)

    Google Scholar 

  35. Szeliski, R.: A multi-view approach to motion and stereo. In: CVPR  (1999)

    Google Scholar 

  36. Vedula, S., Baker, S., Rander, P., Collins, R., Kanade, T.: Threedimensional scene flow. In: ICCV 1999, pp. 722–729 (1999)

    Google Scholar 

  37. Vedula, S., Baker, S., Seitz, S., Collins, R., Kanade, T.: Shape and motion carving in 6d. In: CVPR 2000, pp. 592–598 (2000)

    Google Scholar 

  38. Weickert, J.: Applications of nonlinear diffusion in image processing and computer vision. Acta Math.Univ.Comenianae, Proc. of Algo. 2000 70(1), 33–50 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Weickert, J., Schnörr, C.: Variational optic flow computation with a spatio-temporal smoothness constraint. Technical Report 15/2000, Comp. Vis., Graphics, and Patt. Recogn. Group, Dept. of Math. and Comp. Sci., Univ. Mannheim, Germany, July (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernd Jähne Rudolf Mester Erhardt Barth Hanno Scharr

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Scharr, H. (2007). Towards a Multi-camera Generalization of Brightness Constancy. In: Jähne, B., Mester, R., Barth, E., Scharr, H. (eds) Complex Motion. IWCM 2004. Lecture Notes in Computer Science, vol 3417. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69866-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69866-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69864-7

  • Online ISBN: 978-3-540-69866-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics