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1 Introduction

The binary symmetric channel, where each bit is independently received in er-
ror with probability p, and the binary erasure channel, where each bit is erased
with probability p, enjoy a long and rich history. Shannon developed the fun-
damental results on the capacity of such channels in the 1940’s [37], and in
recent years, through the development and analysis of low-density parity-check
(LDPC) codes and related families of codes, we understand how to achieve near-
capacity performance for such channels extremely efficiently [4, 25, 34].

Now consider the following channel: n bits are sent, but each bit is inde-
pendently deleted with fixed probability p. This is the binary independently and
identically distributed (i.i.d.) deletion channel, which we may refer to more suc-
cinctly as the binary deletion channel or just the deletion channel where the
meaning is clear. A deletion channel should not be confused with an erasure
channel. With an erasure channel, when n bits are sent, n symbols are received;
a third symbol, often denoted by ’?’, is obtained at the receiver to denote an era-
sure. In contrast, with a deletion channel, there is no sign of which bits have been
deleted. For example, if 10101010 was sent, the receiver would obtain 10011 if
the third, sixth, and eighth bits were deleted, and would obtain 10?01?1? if the
bits were erased.

What is the capacity of this channel? Surprisingly, we do not know. Cur-
rently, we have no closed-form expression for the capacity, nor do we have an
efficient algorithmic means to numerically compute this capacity. Not surpris-
ingly, this lack of understanding of channel capacity goes hand in hand with a
lack of good codes for the deletion channel.

More generally, channels with synchronization errors, including both inser-
tions and deletions as well as more general timing errors, are simply not ade-
quately understood by current theory. Given the near-complete knowledge we
have channels with erasures and errors, in terms of both the channel capacity and

� Supported in part by NSF grant CCF-0634923.



codes that can nearly achieve capacity, our lack of understanding about channels
with synchronization errors is truly remarkable.

On the other hand, substantial progress has been made in just the last few
years. A recent result that we will highlight is that the capacity for the binary
deletion channel is at least (1− p)/9 for every value of p [14, 32]. In other
words, the capacity of the deletion channel is always within a (relatively small)
constant factor of the corresponding erasure channel, even as the deletion prob-
ability p goes to 1! As the erasure channel gives a clear upper bound on the
capacity, this result represents a significant step forward; while in retrospect the
fact that these capacities are always within a constant factor seems obvious, the
fact that this factor is so small is somewhat surprising.

The purpose of this survey is to describe recent progress along with a clear
description of open problems in this area, with the hope of spurring further re-
search. The presentation is necessarily somewhat biased, focusing on my own
recent research in the area. Results to be presented will include capacity lower
bound arguments [12–14, 32], capacity upper bound arguments [8], codes and
capacity bounds for alternative channel models [23, 30, 31], and related prob-
lems such as trace reconstruction [15]. Background information can be found
in, for example, [2, 5, 7, 18, 22, 21, 36, 38]. The survey by Sloane on correct-
ing single deletions [38], in particular, gives useful insight and demonstrates the
complexity of even the simplest problem related to deletions. There are also sev-
eral older relevant works on the deletion channel or related problems, including
[9–11, 39, 40, 42, 43].

Before beginning, it is worth asking why this class of problems is impor-
tant. From a strictly practical perspective, such channels are arguably harder to
justify than channels with errors or erasures. While codes for synchronization
have been suggested for disk drives, watermarking, or general channels where
timing errors may occur, immediate applications are much less clear than for
advances in erasure-correcting and error-correcting codes. However, this may
be changing. In the past, symbol synchronization has been handled separately
from coding, using timing recovery techniques that were expensive but reason-
able given overall system performance. Indeed, even the model we suggest as-
sumes some high-level synchronization, as both sender and receiver know that
n bits are being sent in a transmission. Still, the model appears most natural and
appropriate, and a there is clear goal in handling transmission sizes n efficiently
and with a high coding rate. With recent improvements in coding theory, it may
become increasingly common that synchronization errors will prove a bottle-
neck for practical channels. Because we are currently so far away from having
good coding schemes for even the most basic synchronization channels, in prac-
tice coding is rarely if ever considered as a viable solution to synchronization.



If efficient codes for synchronization problems can be found, it is likely that
applications will follow. If such codes are even a fraction as useful as codes
for erasures or errors have been, they will have a significant impact. The work
we describe on capacity lower bounds demonstrates that there is more potential
here than has perhaps been realized.

Of course, coding theory often has applications outside of engineering, and
channels with deletions and insertions prove no exception, appearing naturally
in biology. Symbols from DNA and RNA are deleted and inserted (and trans-
posed, and otherwise changed) as errors in genetic processes. Understanding
deletion channels and related problems may eventually give us important in-
sight into genetic processes.

But regardless of possible applications, scientific interest alone provides
compelling reasons to tackle these channels. While the deletion channel ap-
pears almost as natural and simple as the binary erasure and error channels, it
has eluded similar understanding for decades, and appears to hide a great deal of
complexity. The fact that we know so little about something so apparently basic
is quite simply disturbing. Besides the standard questions of capacity and cod-
ing schemes for this and related channels, there appear to be many further easily
stated and natural related variations worthy of study. Finally, the combinatorial
structure of these channels brings together information theory and computer sci-
ence in ways that should lead to interesting cross-fertilization of techniques and
ideas between the two fields.

2 The Ultimate Goal: A Maximum Likelihood Argument

Rather than start with what has been done recently, we ambitiously begin with
what could, if it was well enough understood, be the final word on the subject
of capacity for the deletion channel: maximum likelihood decoding. Maximum
likelihood decoding simply means finding the most likely codeword given the
received sequence and the codebook. If one could suitably analyze maximum
likelihood decoding, and simultaneously determine near-optimal codebooks,
then it might be possible to obtain very tight bounds on the capacity of the dele-
tion channel. At the very least, progress in this direction would likely surpass
previous results. Moreover, there are many open questions on the combinatorics
of random sequences and subsequences related to this approach that seem inter-
esting in their own right, even if they do not lead directly to near-optimal coding
schemes.

Maximum likelihood decoding has a natural formulation in the setting of
deletion channels. When the channel sends n bits, we aim for a codebook with
2Cn strings that allows successful decoding with high probability; this would



gives us a lower bound ofC for the capacity. When n bits are sent and m bits are
received over an i.i.d. deletion channel, every set of n−m bits is equally likely
to have been deleted. It follows that when considering a received sequence, the
probability that it arose from a given codeword is proportional to the number of
different ways it is contained as a subsequence in that codeword. Formally, let
X = x1x2 . . .xn represent the codeword and Y = y1x2 . . .ym represent the received
word. We use X to signify “X was sent” where the meaning is clear, so that we
write Pr(X | Y ) for Pr(X sent | Y received). Also, let #S(X ,Y ) be the number
of times the string Y appears as a subsequence of X . (Recall that a subsequence
of X need not consist of a contiguous set of characters of X ; that is called a
substring.) Then

Pr(X | Y ) = Pr(Y | X)
Pr(X)
Pr(Y )

= #S(X ,Y )dn−m(1−d)m
Pr(X)
Pr(Y )

.

Hence as long as codewords are a priori equally likely to be sent, then given the
recevied sequence, we have Pr(X | Y ) is proportional to #S(X ,Y ).

We therefore have a simple maximum likelihood decoding algorithm for the
deletion channel: take the received sequence, count how many times it appears
as a subsequence of each codeword, and output the codeword with the largest
count. This is not meant to be a practical algorithm, as with a codebook of size
exponential in n this counting process is not efficient, but as we are (at least for
now) interested just in capacity results, efficiency is not important. There are two
questions to answer. Given a codebook, can we analyze this decoding process
to bound the probability of failure? How large can we makeC so that maximum
likelihood decoding will give the correct answer with high probability?

These questions appear quite complicated, and much of the survey will sug-
gest weaker approaches that attempt to approximate this maximum likelihood
approach. To highlight some of the challenges, let us ignore the issue of the
choice of codebook and simply consider random codebooks where each string
in the codebook is initially chosen uniformly from all n bit strings. While we
will see in later sections that choosing codebooks in this way is generally not
a good idea in this setting, even this version of the problem yields interesting
open questions. For sucessful decoding, if X was the codeword sent, Y was the
string received, andW is any other codeword, we want that

Pr(#S(X ,Y ) > #S(W,Y ) | X) = o(2−Cn). (1)

We could then take a union bound over all codewordsW (excluding X ) to show
the overall failure probability was vanishing, or o(1).

We emphasize the subtle importance on the conditioning on X being sent;
the received string Y is not just a subsequence of X , but a subsequence of X



obtained via deletions. Hence the probability of Y being received given that X
is sent is itself proportional to #S(X ,Y ).

The natural approach to proving equation 1 would be as follows:

1. Find (or bound) the distribution of #S(X ,Y ) conditioned on X being sent,
where Y is the received string.

2. Find (or bound) the distribution of #S(W,Y ) where Y and W are random
strings of the appropriate length.

3. Use the distributions to show that #S(X ,Y ) > #S(W,Y ) with suitably high
probability.

Currently, there do not appear to be known bounds on either #S(X ,Y ) or
#S(W,Y ) that appear to lead significantly in the right direction. There is some
related work on pattern matching (see, e.g., [24][Chapter 7]), where the disti-
bution of the number of times a fixed-length string is a subsequence of another
string has been considered. But here the subsequence grows linearly with the
size of the string. The problems of determining these particular distributions ap-
pear open, and would seem to be interesting problems in the combinatorics of
random strings in their own right. One can imagine other similar related combi-
natorial questions. For example, if we thinking about changing the conditioning
above, we might ask about

Pr(#S(X ,Y ) > #S(W,Y ) | |Y | = m,Y is a uniformly chosen subsequence of X).

Or slightly further afield, we might ask the distribution of |{y : #S(X ,y) >
0}|; that is, what is the distribution of the number of distinct subsequences of a
random string. Interestingly, the answers to these questions also do not seem to
be known.

To gain insight into these distributions it seems natural to use the fact that
given strings A and B, we may set up the a dynamic-programming formulation
to count #S(A,B) efficiently. Let #S(Ak,Bj) be the number of times the prefix of
length j of B is a subsequence of the prefix of length k of A. We have

#S(Ak,Bj) = #S(Ak−1,Bj)+ I[ak = bj]#S(Ak−1,Bj−1), (2)

where I[ak = bj] = 1 if ak = bj and 0 otherwise. The challenge in this simple-
looking recurrence is that the I[ak = bj] are fiercely dependent. If instead they
were independent random bits, then rewriting equation 2 (including the indices,
and using Si, j for #S(Ak,Bj)) would give

Si, j = Si−1, j +Ri, jSi−1, j−1,



where the Ri, j are unbiased, independent random bits. In matrix form, letting Si
be the column vector associated with the ith row of Si, j, we would have

Si =MiSi−1

where each random matrixMi is 1 along the diagonal and has random 0-1 entries
just below the diagonal. Generally such random recurrences lead to lognormal or
power law distributions [19, 29], and we expect similar behavior here, although
the dependencies appear to make the resulting analysis much more challenging.

Open Questions:

– Determine the distribution of #S(X ,Y ) when X and Y are independent, uni-
form bit strings of length n and m, respectively.

– Determine the distribution of #S(X ,Y ) when X is a uniform bit string of
length n and Y is obtained from X by passing through a deletion channel.

– Determine the distribution of the number of distinct subsequences of a bit
string X chosen uniformly at random.

– Generalize the above questions, where appropriate, to more general distri-
butions for X .

– Determine techniques for analyzing recurrences with the form of equation (2).
– Find appropriate codebooks for maximum likelihood decoding for the dele-
tion channel, and analyze the performance of these codebooks.

3 Shannon-Style Arguments

Given our discussion of the maximum likelihood approach above, one might
wonder why the basic approach of Shannon [37] fails for the deletion channel.
After all, it works perfectly well for the binary symmetric channel and the binary
erasure channel.

For context, let us recall one form of the standard Shannon argument for the
binary symmetric channel. Codewords are chosen uniformly at random from all
n-bit strings, and decoding is done by finding the codeword whose Hamming
distance from the received string is closest to the expected number of errors.
Shannon’s argument shows that this approach provides a code, and hence a
lower bound for the capacity, that is essentially optimal. The key to proving
this lower bound is to show that with high probability, the Hamming distance
between the received string and the codeword sent is near its expectation, and
all other codewords besides the one actually sent are sufficiently far from the
expected distance from the received codeword.

At the heart of this argument are three important steps:



Fig. 1. Example of the greedy algorithm for checking subsequences.

1. a method for choosing a codebook,
2. a notion of what a typical input/output pair from the channel looks like,
3. and a method for decoding a received codeword.

3.1 How The Basic Argument Fails

Let us consider what happens when we try generalize the standard Shannon ar-
gument to the deletion channel. Codewords are again be chosen independently
and uniformly at random. A typical codeword has roughly pn deletions. The
natural decoding approach is to determine if the received sequence is a subse-
quence of exactly one codeword; if this is the case, then decoding is successful,
and otherwise it fails. This choice of codewords and decoding scheme leads to
a very weak lower bound on the capacity, which we henceforth denote byCp. In
particular, the bound is non-zero only when p< 0.5.

To see this, we first note that there is a simple greedy approach to deter-
mining if a string B is a subsequence of a string A. Reading from left to right,
simply take the first character of B, and match it with the leftmost appearance
of this character in A; then take the second letter of B, and match it with the
subsequent leftmost appearance of this character in A; and so on down the line
(see Figure 1).

Now consider what happens when the deletion probability p is larger than
0.5. The random codeword X is sent over the channel, yielding a stringY with on
average n(1− p) bits. For large enough n, Y will have fewer than n/2 bits with
high probability. Consider any other codewordW , which was chosen uniformly
at random independently from X and Y , and consider how the greedy algorithm
above behaves when checking if Y is a subsequence ofW . For each bit of Y to
be matched, on average we will need two bits ofW to match it; specifically, the
number of bits ofW needed to match a bit of Y is geometrically distributed with
mean two. It follows that with high probability only about 2n(1− p) < n bits
ofW are needed by the greedy algorithm to confirm that Y is a subsequence of
W . That is, each other codeword has Y as a subsequence with high probability



when p> 0.5, and this basic Shannon argument gives no useful lower bound on
the channel capacity.

Given our previous discussion of maximum likelihood, it would seem natu-
ral to consider improved decoding methods. However, work in the mid 1990’s
first focused on the step of finding a better codebook. While there was earlier
work on the deletion channel and related channels, we take this work as our
starting point for discussion of recent developments for deletion channels.

3.2 Codebooks from First Order Markov Chains

The work of Diggavi and Grossglauser [6, 7] improves on the naı̈ve Shannon
argument, using the insight that choosing codewords uniformly at random does
not seem to be the right approach for the deletion channel. Indeed, this insight
pervades much of the subsequent work after their paper. Instead, they consider
codewords generated randomly by a first order Markov process, which yields
codewords consisting of blocks (or, equivalently, runs) of alternating 0’s and
1’s, with the lengths geometrically distributed. More concretely, a codeword
starts with a bit chosen uniformly at random. Subsequently, we construct the
codeword by having each new bit be the same as the previous bit with prob-
ability γ (independently for each bit). We will generally have γ > 1/2, giving
longer contiguous blocks of 0’s and 1’s, although this is not a requirement of
the analysis. Intuitively, using such codewords make a great deal of sense: if
bits are going to be deleted, sending multiple copies of a bit, as in a repetition
code, should be helpful. In the context of decoding using the greedy algorithm
to determine if the received sequence is a subsequence of a codeword, longer
blocks intuitively can be better because it makes it harder for the received string
to be a subsequence of another codeword, as now long blocks of 0’s and 1’s in
the received string would have to align with the corresponding blocks of another
codeword. We summarize the more formal argument of [6] here.

The idea is to again analyze the behavior of the greedy algorithm on a pair
W and Y , where Y is the received string and W is a codeword independent of
the transmitted string X . The analysis is based on a few key lemmas. The first
lemma says that the received string Y can be thought of as having arisen itself
from a first order Markov chain, with a different parameter.

Lemma 1. The received string Y behaves as a random string given from a first
order Markov chain with parameter

q=
1− γ

1+ p(1−2γ) .



Proof. We think of the received string Y as being generated as follows: as bits of
X are being generated, undeleted bits pass through to the received sequence. By
symmetry the first bit of Y will be either 0 or 1 each with probability 1/2. The
process generating the received sequence is clearly Markovian. To determine the
probability that a bit of Y is the same as the previous bit, note that the number
of bits X that are deleted after the jth undeleted bit is k with probability pk(1−
p). The corresponding probability that the ( j+ 1)st undeleted bit (assuming it
exists) is the same as the jth if k bits are deleted after the jth bit is easily found
to be (1+ (2γ − 1)k+1)/2 using standard methods. We therefore have that Y
behaves like a first order Markov chain with parameter q where

q=
∞

∑
k=0

pk(1− p)
1+(2γ −1)k+1

2
=
1
2

+
1
2

(1− p)(2γ −1)
1− p(2γ−1) = 1− 1− γ

1+ p(1−2γ) .

The second lemma is merely a generalization of the argument for the be-
havior of the greedy algorithm in this setting. We ignore the first bit ofW and Y
(which match with probability 1/2; ignoring it does not affect the asymptotics),
and consider how many bits the greedy algorithm takes in matching subsequent
bits. Here, there are two cases.

Lemma 2. Consider a codeword W and a received string Y . Then (except for
the first bit), the number of bits required to match each bit using the greedy
algorithm has the following distribution: if a bit of Y is the same as the previous
bit, a match takes 1 bit with probability γ , and i bits for i ≥ 2 with probability
(1− γ)2γ i−2; otherwise, a match takes i bits for i ≥ 1 with probability (1−
γ)γ i−i.

Proof. Suppose we are matching the kth bit of Y after having matched the (k−
1)st bit. When these bits are the same, the next bit inW examined by the greedy
algorithm is also the same with probabiity γ ; otherwise, we must wait for the
next “switch” in the Markov chain for W , giving the next match after i bits
with probability (1− γ)2γ i−2. If the kth and (k− 1)st bits of Y differ, and the
next “switch” in the Markov chain for W occurs after i bits with probability
(1− γ)γ i−i.

The resulting analysis is reasonably straightforward, although the expres-
sions that arise are somewhat unwieldy. Given p and γ , one can obtain high
probability bounds on the length of a received sequence Y (around its expecta-
tion (1− p)n) and derive an expression on the distribution of the number of times
successive bits differ using Lemma 1. Then, using Lemma 2, we can bound the
probability that Y is a subsequence of a codewordW , using standard the Cher-
noff bound methodology. By applying the union bound, we find that the inverse



of this probability essentially tells us the number of codewords we can have
while still decoding successfully with high probability, providing a bound on
the rate. We thereby obtain an expression to find the best parameter γ given the
deletion probability p. This expression can be evaluated numerically to find a
non-trivial lower bound on the capacity for every p< 1.

Specifically, we have the following bound from [7][Corollary 4.2]

Theorem 1. The capacity Cp for the deletion channel with deletion probability
p satisfies

Cp ≥ sup
0<γ<1,δ>0

[
−(1− p) log2((1−q)A+qB)− δ

ln2

]
,

where A= (1−γ)e−δ

1−γe−δ , B= (1−γ)e−2δ
1−γe−δ + γe−δ , and q= 1− 1−γ

1+p(1−2γ) .

We wrap up with some final considerations. The analysis of the greedy al-
gorithm used here can be extended to other block length distributions; this ex-
tension (along with other small improvements) was studied in [13], where other
distributions were used to obtain better bounds for high deletion rates. Specifi-
cally, the authors show that a “Morse-coding” approach, where blocks take on
one of two lengths, either short or long, yields improved capacity bounds for
p ≥ 0.35. This raises again the question of what is the right block distribution,
both specifically for arguments based on the greedy algorithm and for other ap-
proaches for obtaining capacity bounds.

We now detail another possible improvement to the greedy approach that,
although not apparently effective, raises some further interesting questions. Sup-
pose we try to improve our decoding algorithm by considering not just whether
a received string Y is a subsequence of another codewordW , but how many bits
of W are needed for Y to be covered according to the greedy algorithm. If Y
is a subsequence of the first αn bits of the actual codeword X for some α < 1
with high probability, then we could immediately improve our analysis, requir-
ing that a failure occur only whenY is a subsequence of the first αn bits of some
other codewordW .

We prove that this approach in fact fails in the case where the codewords
are chosen uniformly at random. Unfortunatley, our argument does not appear
to generalize naturally to the case where codewords are generated by first order
Markov chains, although experiments strongly suggest the result should. This
remains an open question.

We establish some notation. Consider the greedy algorithm working on
strings X and Y , where Y was obtained from X via deletions. If xi = y j was
not deleted, let G(i) be the difference between i and the number of bits needed



to cover up to y j by the greedy algorithm. If xi was deleted, let G(i) be the dif-
ference between i and the number of bits needed to cover up to yk, where k < i
is the largest index for which yk was not deleted. For convenience, we intro-
duce an initial gap G(0) = 0; implicitly, we assume a 0th character that was not
deleted. For example, for the sequences X = 0110101 and Y = 111, if the sec-
ond, third, and seventh bits were not deleted, the sequence of gaps G(i) would
be 0,1,0,0,1,2,3,2. The final gap, 2, gives the number of bits from the end of
X where the greedy subsequence algorithm matches the last bit of Y .

Our goal will be to show that the gap G behaves like a simple Markov chain,
according to the following lemma:

Lemma 3. When X is chosen uniformly at random from all n-bit sequences,
and Y is obtained by deleting bits independently with probability p, then G(i)
behaves as follows:

G(i+1) =

⎧⎨
⎩
G(i)+1 with probability p
G(i)− c with probability (1− p)/2c+1,0≤ c≤ G(i)−1
0 with probability (1− p)/2G(i).

We prove this lemma below. The Markov chain that models the gap behavior
is very similar to the one-dimensional Markov chain on the number line with a
boundary at 0 that moves right with probability p and left with probability 1− p.
While the gap can move down by more than one on any step, when the gap is
large the expected increase in the gap is approximately 2p−1, and the variance
in the change of the gap at each step is bounded. This similarity suggests the
following theorem, which can be proven using standard techniques.

Theorem 2. The gap G(n) is (2p−1)n+o(n) with high probability when p>
1/2; is O(logn) with high probability when p < 1/2; and is O(

√
n logn) with

high probability when p= 1/2.

Proof (Lemma 3). We first claim that, conditioned on the state G(i) = j (with
j ≤ i), bits xi− j+1, . . . ,xi remain uniform over all possible bit sequences. This
can be proven by induction on i. It is true when i = 0. Suppose that it is true
for i≤ k. If xk+1 is deleted, then G(k+1) =G(k)+1, regardless of the value of
xk+1, and the induction holds. If xk+1 is not deleted, then since inductively bits
xk−G(k)+1, . . . ,xk are uniform, regardless of the value of xk+1, the number of bits
needed to cover xk+1 is a geometrically distributed random variable, truncated
at G(k)+1. The probability that G(k+1) = j conditioned on the value of G(k)
is thus independent of the value of xk+1, completing the induction.

The lemma now follows. If G(i) = j, with probability p bit xi+1 is deleted,
and in this case G(i+ 1) = j+ 1. Otherwise, regardless of the value of xi+1,



the number of bits of X starting from xi− j+1 to cover xi+1 is a geometrically
distributed random variable, truncated at j+1. This gives the distribution for
G(i+1) stated in the lemma.

This argument highlights an intriguing threshold behavior. When p > 1/2,
a received string Y will require on approximately 2(1− p)n bits of X when the
greedy algorithm is run on X and Y . Of course, the same is true the greedy
algorithm is run with Y and another codewordW , or on X and another random
string Z of length (1− p)n; there is, in this regard, no distinction. This contrasts
with the case where p > 1/2, where the greedy algorithm will detect that Y is
a subsequence of X using nearly all n bits of X , but will with high probability
fail on pairs of strings Y andW , or on pairs X and Z, where againW is another
codeword and Z is a random string. Experimentally, there appears to be a similar
threshold behavior when codewords are generated by a first order Markov chain;
above some deletion threshold, the greedy algorithm behaves essentially the
same on random subsequences and purely random strings, but it seems harder
to prove this more general result.

While the following related open questions on the behavior of the greedy
algorithm are perhaps now of less immediate interest to the analysis of the dele-
tion channel given the improved decoding methods to be considered in the next
section, they remain interesting combinatorial questions.

Open Questions:

– Find optimal block distributions for generating codewords for the analysis
of the capacity of the deletion channel based on the greeedy algorithm.

– Find optimal codebooks for the deletion channel based on the greeedy algo-
rithm.

– Generalize Lemma 3 to determine the behavior of the gap when the string
X is generated by a first-order Markov chain.

4 Better Decoding via Jigsaw Puzzles

We have seen that the choice of codebook makes a significant difference in
the power of decoding using the greedy algorithm. Even so, there are clear
limitations of this approach that suggest that it could never reach the capacity
promised by the maximum likelihood approach. Moreover, it is not clear how
to extend the greedy approach when there are both insertions and deletions. In
such cases, the received string need not be a subsequence of the codeword (nor
vice versa).

We now consider a different decoding approach that allows for much stronger
capacity lower bounds for the deletion channel, as presented in [14]. Further,



Fig. 2. Examples of types, and how they relate to received blocks and the sequence of deletions.

the approach also naturally handles a certain class of insertions, specifically
duplications: a bit that passes through the channel might be deleted, or might
be duplicated a number of times. While more general insertion channels could
conceivably also be tackled utilizing this approach, the analysis becomes much
more tractable when considering only duplications.

To begin, consider a maximal block at the receiver. The bits of that block
came from, or correspond to, one or more blocks from the sender. For example,
the block 000 at the receiver could come from a single block 00000 from the
sender. Alternativley, it could have come from the sequence of blocks 001100
from the sender, if the two 1 bits and one of the 0 bits were deleted. (For con-
creteness, we say that the first block from the sender corresponding to the block
at the receiver is the block from which the first bit in the received block came.
So here, we assume that the first received zero in the block was indeed one of the
first two zeroes, and that in the subsequent block of ones after these six bits, at
least one bit is not deleted.) We will call the sequence of blocks in the codeword
from which a block at the receiver corresponds to the type of the received block.
Now, given the original codeword and the deletions that occurred, we can think
of the codeword and the received sequence of being described by an ordered
collection of ordered pairs (ti,ki), where ki is the length of the ith block in the
received sequence and ti is its corresponding type. (Naturally, one also needs to
consider whether the blocks are of 0 bits or 1 bits, but once one knows whether
the first received block consists of zeroes or ones, the parity of all further blocks
is known, so we can ignore this issue in the analysis.) Examples of (type,block)
pairs, with both the type and block expressed as bit strings, is given in Figure 2.



Fig. 3. Examples of different ways that the jigsaw puzzle tiles might cover a substring of the
received string. Each tile configuration gives a different possible codeword, and the codewords
are then scanned for a match.

Given this framework, we can consider the requirements for decoding. Re-
call that in the standard Shannon argument for the symmetric binary error chan-
nel, we can require that the number of errors is close to its expectation, as this
will be true with high probability. In this setting, loosely speaking, we can in-
stead require that the number of pairs (t,k) in the description of the codeword
and received string be close to its expectation, as this will be true with high
probability.

Let us temporarily assume that the number of pairs (t,k) in the description
of the codeword and received string is exactly equal to its expectation (rounded
appropriately), so that we exactly know the number of (t,k) pairs for every (t,k).
Then to decode, it suffices to match the types to the block lengths of the received
string in such a way that we obtain a codeword. If only one codeword results
from this type of matching, then we have a successful decoding.

In [14] the analogy is made between decoding this way and a jigsaw puzzle.
Pictorially, we can represent this as in Figure 3. A pair (t,k) can be represented
by a tile that corresponds to a block in the received sequence (at the bottom)
and the corresponding type for the pair (at the top). To decode, the tiles must be
arranged in such a way that the string of concatenated blocks at the bottom cor-
responds to the received sequence, and the string of concatenated corresponding
types forms a codeword. It is worth emphasizing that, with the jigsaw-puzzle
approach, it is no longer the case that the received string be a subsequence of
only a single codeword, as in the greedy approach. Instead, it has to be a subse-
quence of a single codeword in, essentially, “the right way,” although there may
be several arrangements of the tiles that lead to that codeword.

Although the above argument was expressed as though we knew the num-
ber of appearances of each possible pair (t,k) in the description, all we really



know is that these numbers are concentrated around their expectation. This is
handled by simply utilizing the jigsaw-puzzle approach over multiple sets of
pieces, where each set of pieces corresponds to an enumeration of the number
of pairs (t,k) in a description of the codeword and received string consistent
with this concentration. In the asympotics, the effect of all of these cases does
not change the overall capacity.

We briefly sketch a high-level argument showing how this leads to an ex-
pression for a capacity lower bound. Let P be the distribution of block lengths
at the sender, so that Pj is the probability a block at the sender has length j, and
similarly let Q be the corresponding distribution of block lengths at the receiver.
(The argument requires P and Q to satisfy some basic requirements; distribu-
tions with exponentially decreasing tails suffices.) Hence the number of blocks
at the sender is (up to lower order terms) n

∑ j jPj
, and the number of blocks at the

receiver is (up to lower order terms) n(1−p)∑ j jQ j
. Let K represent a random block (or,

more precisely, its length) in the received string, and T the type corresponding
to this block. The number of codewords considered by the jigsaw-puzzle decod-
ing process can be upper bounded as follows: over all of the Qkn(1−p)

∑ j jQ j
blocks of

length k, there are (again, up to lower order terms)

2
Qkn(1−p)
∑ j jQ j

H(T | K=k)

ways of assigning the appropriate types to these blocks. Taking the product over
all values of k gives an upper bound of

2
n(1−p)
∑ j jQ j

∑QkH(T | K=k)
= 2

n(1−p)
∑ j jQ j

H(T | K)

possible codewords; this is an upper bound, as many of these possible code-
words will be repeated, arising from multiple different combinations. For ex-
ample, consider a substring 001100110011 of a codeword sent over a deletion
channel that leads to blocks 0011 at the receiver. There can be many different
ways of assigning types to the blocks 00 and 11 at the receiver that can lead
to the matching substring 001100110011 from the sender, which causes us to
overcount the possible codewords that can arise. Avoiding or reducing this over-
counting of possible codewords could improve the resulting capacity bound.

Standard techniques give that (with high probability) each possible code-
word has probability

2
− n

∑ j jPj
H(P)

of being generated. Hence, by a union bound, if we start with 2Cn codewords, the
probability of another codeword other than the original codeword sent arising



from jigsaw-puzzle decoding is
(
2
C+ (1−p)

∑ j jQ j
H(T | K)− 1

∑ j jPj
H(P)

)n

,

which vanishes as long as the exponent is negative.
All of this can be formalized, leading to the following lower bound for the

capacity:

Cdel ≥ 1

∑ j jPj
H(P)− (1− p)

∑ j jQ j
H(T | K),

for any suitable distribution P.
The authors test both geometric distributions P and the “Morse-code” based

distributions of [13] in this framework. Here, geometric distributions appear to
do slightly better across the board. As an example, the calculted lower bound for
the capacity of the deletion channel when p= 0.9 is 0.012378. This result over
two orders of magnitude better than that given the argument using the greedy
algorithm of [6], and is rather striking given that the obvious upper bound on
the capacity based on the erasure channel is 0.1.

Like Shannons’s original arguments, this approach shows the existence of
a code with a given capacity, but does not give an explicit codebook nor an
algorithmically efficient decoding algorithm. As we discuss further below, de-
signing efficient algorithms for deletion channels remains quite open for further
research.

Open Questions:

– Improve the analysis of jigsaw puzzle decoding by reducing or avoiding
the overcounting of possible codewords generated by taking all consistent
combinations of types.

– Find better distributions, or a method for finding near-optimal distributions,
for codebooks for the jigsaw-puzzle analysis.

– Extend the jigsaw-puzzle approach to find lower bounds for capacity under
more general models of insertions.

– Find a variant of jigsaw-puzzle decoding that is efficiently implementable.

5 A Useful Reduction for Deletion Channels

The arguments thus far provide lower bounds that, in the end, rely on a non-
trivial calculation for each specific deletion probability p. An interesting alter-
native path was suggested in [32] by building a correspondence between dele-
tion channels and a novel insertion-deletion channel dubbed a Poisson-repeat
channel. This correspondence is given in the form of a reduction, whereby any



decoding algorithm for any Poisson-repeat channel can be turned into a de-
coding algorithm for any deletion channel. Using this reduction, we can obtain
lower bounds on the capacity of all deletion channels simply by finding a lower
bound on the capacity of any Poisson-repeat channel. Specific Poisson-repeat
channels can then be analyzed using the previously established machinery of
Section 4.

While the bounds obtained in this fashion are not particularly good for
smaller values of p, they appear quite good for large values of p. Indeed, one
benefit of this approach is that it allows us to consider the behavior of deletion
channels as the deletion probability p goes to 1.

A Poisson-repeat channel with parameter λ on binary inputs of length n can
be defined as follows: as each bit passes through the channel, it is replaced by
a discrete Poisson number of copies of that bit, where the number of copies has
mean λ and is independent for each bit. Notice that such a channel may incur
deletions when the number of copies is zero, and that the channel fits into the
class of deletion-duplication channels of Section 4 for which numerical capacity
lower bounds can be found.

What is the relationship between a deletion channel with parameter p and
a Poisson-repeat channel with parameter λ? Suppose that we have a deletion
channel. Before sending a message, independently replace each bit sent with a
random number of copies, according to an Poisson random variable with mean
λ/(1− p). Because of the properties of the discrete Poisson distribution, the
number of copies of a bit that arrive at the receiver has exactly a Poisson dis-
tribution with mean λ , and the number of copies is independent for each bit.
Therefore our deletion channel will now behave exactly as a Poisson-repeat
channel with mean λ on the original input. A code for any Poisson-repeat chan-
nel thereby gives us a code for any deletion channel. (More precisely, we have a
procedure that includes a random replacement step; using standard arguments,
this shows the existence of a fixed code with the desired rate.) Because each bit
of the input must be blown up by a expected factor of λ/(1− p), we find that if
the capacity of the Poisson-repeat channel with parameter λ is Lλ , then

Cp ≥ Lλ (1− p)/λ .

A pictorial representation of this reduction is given in Figure 4.
Using calculations from the arguments of Section 4, we find that L1 >

0.1171, and in fact we can do slightly better with L1.79/1.79 > 0.1185. The
result can be more pleasantly if somewhat less accurately expressed by Cp ≥
(1− p)/9.

In retrospect, it seems clear that there should be a lower bound for Cp that
scales with 1− p, since one could deterministically replace each bit to be sent by



Fig. 4. How to turn a codebook and decoding algorithm for a Poisson-repeat channel into a code
for the deletion channel.

1/(1− p) bits, and “on average” each bit would pass through once. In effect, the
reduction involving the Poisson-repeat channel codifies this intuition; however,
the scaling does not appear to have been proven previously to [32].

While this reduction has been used to obtain a capacity lower bound, it is
worth noting that it could also be used to derive efficient encoding and decoding
algorithms for the deletion channel: an algorithm for encoding and decoding on
any Poisson-repeat channel would immediately give a corresponding algorithm
for the deletion channel for all values of p. While it is likely that such a code
would only offer reasonable rates for large values of p, the prospect remains
interesting. Indeed, perhaps, asymptotically as p goes to 1, essentially the best
we can do is to turn the deletion channel into a Poisson-repeat channel by du-
plicating each bit a suitably large number of times.

Open Questions:

– Improve the lower bounds for the capacity of Poisson-repeat channels.
– Find an efficient encoding and decoding algorithm for a Poisson-repeat chan-
nel with parameter 1 (or some other fixed parameter).

– Prove or disprove the following conjecture: There exists a λ such that

lim
p→1

Cp/(1− p) = Lλ/λ .

– Find a similar reduction that provides stronger results in the regime where
p approaches 0.

6 A Related Information Theoretic Formulation

The lower bound results presented thus far have been derived via an algorith-
mic approach, based on designing a decoding scheme and using combinatorial
analysis to determine its performance. Can we re-frame these results in a more



purely information-theoretic context? Such a framework could allow the pow-
erful tools of information theory to be more easily applied to these problems.

Recently, Drinea and Kirsch [12] have provided an alternative, information-
theoretic analysis to obtain lower bounds on the capacity of the deletion channel
that may prove a promising path further work. The starting point for their analy-
sis is the work by Dobrushin, who generalized Shannon’s theorem to show that
for a broad class of channels with synchronization errors, including deletion
channels, the information and transmission capacities are equal [9]. As before,
they assume that codewords are generated according to a distribution on the
block lengths. Their insight begins with the recognition that the channel can
be viewed as a joint renewal process; each time a block at the receiver ends, a
corresponding block at the sender must also have ended, and therefore it is as
though the whole process restarts. While this idea is essentially implicit in to
the type-based arguments of Section 4, it is utilized here differently, in order
to directly derive bounds on the information capacity. By directly working with
the information capacity, they avoid some of the technical issues that arise in
analyzing a specific decoding algorithm.

The main result of this approach is an alternative and seemingly simpler
proof of the lower bounds described in Section 4. The proof is certainly likely
to be much more intuitive and natural to those who prefer information-theoretic
formulations to algorithmic ones. But a further advantage is that the proof sheds
light on how the lower bound can be improved, providing a clear direction for
future progress. Specifically, in the terms used previously in the discussion of
types, where P is the distribution of block lengths at the sender and Q is the
corresponding distribution of block lengths at the receiver, they prove that the
mutual information in fact equals

1

∑ j jPj
H(P)− (1− p)

∑ j jQ j
H(T | K)+EP,Q,

The first two terms correspond exactly to the lower bound of [14]. The
last term EP,Q is an expression that corresponds to the uncertainty in where
the blocks from the sender from which a block at the receiver was derived.
In algorithmic terms, EP,Q corresponds to the loss from jigsaw-puzzle decoding
that stems from using pieces that correspond to a single block at the receiver.
Instead of considering the type of a single block at a receiver in the jigsaw-
puzzle decoding, suppose each tile represented a pair of consecutive blocks at
the receiver, along with the possible bit sequence that pair of blocks could have
arisen from at the sender. By considering pairs (or larger groups) of blocks under
jigsaw-puzzle decoding, one could naturally reduce the overcounting of possi-



ble codewords, and obtain a better bound. This proves quite complex in terms
of the calculations required and was not pursued in [14].

While this additional expression EP,Q does not at this point have a formal
lower bound, in [12] the authors study it by simulation, and show that non-trivial
improvements in the capacity lower bounds remain possible. Because they find
an exact expression for the information capacity (albeit in terms that are not
yet directly calculable), in a strong sense this work shows the limits of what
is possible using independent and identically distributed (i.i.d.) block lengths
to generate codewords. It is not clear, however, that one could not obtain even
better lower bounds by allowing more general methods to generate a codebook.

Open Questions:

– Using the information-theoretic formulation of [12], bound EP,Q to derive
improved lower bounds for the deletion channel.

– Find ways to more formally connect the information-theoretic analysis and
the algorithmic analysis for the lower bound.

– Consider random codebooks for the deletion channel that are not constructed
by using i.i.d. block lengths. Can one show that more general methods can
lead to higher transmission capacity?

7 Upper Bounds on the Capacity of Deletion Channels

Given the advances that have occurred in finding lower bounds for the capac-
ity of deletion channels, it seems natural to consider upper bounds. Our lower
bounds might, after all, be approaching their natural limit. Unfortunately, very
little is known about upper bounds for the deletion channel; past upper bounds
have focused on other error models. Until recently, the only formal upper bound
for the deletion channel that we are aware of is the trivial upper bound from the
erasure channel of 1− p.

The question of upper bounds was recently tackled in [8]. The authors first
provide an upper bound approach based on a transformation that allows one
to instead bound a memoryless channel’s capacity per unit cost. (See similarly
the results for sticky channels below in Section 8.1.) Binary input strings are
transformed into a sequence of run lengths, so the string 0010111 would be
represented as 2,1,1,3. The output can also be viewed as a sequence of run
lengths. In order to turn the deletion channel into a memoryless channel, the
output is enhanced with side information: if an entire run of the input is deleted,
a run length of 0 is given at the output. For example, if the input 0010111 led to
an output of 001111, the corresponding output run lengths with side information
would be 2,1,0,3, instead of the actual block lengths 2,4.



In this setting, it makes sense to define the cost of a symbol for the new
channel to simply be the corresponding number; i.e. the symbol 2 has a cost of
two, as it corresponds to two bits of the input. Then the capacity per unit cost of
the new channel with side information gives an upper bound on the capacity of
the deletion channel. Standard techniques [1] then give that the capacity can be
bounded by

C ≤ sup
x

I(x)
x

,

where I(x) = D(P(x),Q) is the information divergence between the output dis-
tribution on input x and Q is any distribution over the positive integers. It re-
mains a technical challenge to choose a near-optimal distribution Q over the
infinite domain and numerically determine bounds; this is discussed further in
[8].

The resulting upper bounds remain reasonably far from the known lower
bounds, as shown in Table 7, taken from [8]. Given the power of the additional
side information, it would suggest that the upper bound could be further im-
proved. In particular, for large deletion probabilities, the bounds become worse
than the trivial 1− p bounds; the problem is that the additional value of the side
information of having a 0 output symbol becomes more significant for large p,
as entire blocks are deleted more often.

Another question considered in [8] is the value of the asymptotic bound as
p goes to 1. Recall that a capacity lower bound of c1(1− p) with c1 = 0.1185
was obtained, as described in Section 5. An asymptotic upper bound of the form
c2(1− p) as p goes to 1 provides corresponding limits on how far such results
can be taken.

The upper bound utilizes some of the insights of the lower bound argument.
Specifically, we can again introduce side information in this setting, by having
a marker every a/(1− p) bits for some constant a. Then, asymptotically, one
expects to receive on average a bits between markers, and the number of bits
between markers has, approximately, a Poisson distribution. The markers again
make this a discrete memoryless channel, with input symbols consisting of se-
quences of 2a/(1−p) bits and output symbols consisting of a sequence of bits, the
number of which has an approximately Poisson distribution.

This channel appears difficult to analyze, especially given the space of input
symbols, which again correspond to 2a/(1−p) possible sequences. A technical
argument reduces the problem to a more manageable state space. One can con-
sider outputs of up to only k bits for a finite and not too large k at the cost of only
a small overestimate of the constant c in the upper bound. Under the assumption
that the output is only k bits, it can be shown that one need only consider input
sequences consisting of at most k alternating blocks of zeroes and ones. That



p LB UB

0.05 0.7283 0.816
0.10 0.5620 0.704
0.15 0.4392 0.6188
0.20 0.3467 0.5507
0.25 0.2759 0.4943
0.30 0.2224 0.4466
0.35 0.1810 0.4063
0.40 0.1484 0.3711
0.45 0.1229 0.33987
0.50 0.1019 0.31082
0.55 0.08432 0.28382
0.60 0.06956 0.25815
0.65 0.05686 0.2331
0.70 0.04532 0.2083
0.75 0.03598 0.183
0.80 0.02727 0.157
0.85 0.01938 0.1298
0.90 0.01238 0.0999∗
0.95 0.00574 0.064∗

Table 1. Comparison of lower bounds from [14] (LB) with upper bounds from [8] (UB). Entries
denoted ∗ are worse than the 1−d bound.

is, any input symbol can be effectively represented by its starting bit and a j-
dimensional vector (q1,q2, . . . ,qj), with 1≤ j≤ k, and qi > 0 being the fraction
of the 2a/(1−p) bits in the ith alternating block. Since we are considering asymp-
totic upper bounds, we can allow the qi to take on any positive real values. With
this framework, we now again have a setting where we can upper bound the ca-
pacity by the information divergence by a suitable numerical optimization. The
current best result gives an asymptotic upper bound of 0.7918(1− p) as p goes
to 1, so there is still a significant gap between the asymptotic upper and lower
bounds.

Open Questions:

– Design new capacity upper bound approaches specifically designed for in-
sertion/deletion channels. Specifically, consider approaches for general p
and for p approaching 1.

– Consider the asymptotic behavior for the deletion channel as p goes to 0;
how does it compare to 1− p, the capacity of the erasure channel?



8 Variations on the Deletion Channel

Given that the i.i.d. binary deletion channel has proven so hard to analyze, it
seems worthwhile to ask if there are reasonable ways to modify the problem
that would allow meaningful progress. We describe here some variations of the
deletion channel, why they may be interesting, and some recent results for them.

8.1 Sticky channels

As we have seen, the block structure of the codewords and the received se-
quences appear quite useful in analyzing channels with synchronization errors.
If we no longer allow deletions, but only allow duplications of symbols sent
over the channel, then the block structure at the sender and receiver will be the
same. We use the term sticky channels to refer to the class of channels that in-
dependently duplicates each transmitted symbol a random number of times at
the receiver, according to some fixed distribution on the positive integers. As an
example of a sticky channel, when typing at an electronic keyboard, if the key
is held too long, multiple copies of the pressed symbol can appear even though
only one copy of the symbol was intended. Sticky channels were studied in [31].
In part, the motivation for sticky channels is the difficulty of handling general
insertion/deletion channels; in some sense, this should be the easiest class of
insertion/desertion channels to study. Another reason to consider sticky chan-
nels is that they can serve as a testing ground for ideas for capacity bounds or
practical codes. Techniques that perform well generally should handle the easy
case of sticky channels wells.

As with the upper bound argument of [8], a key step in [31] is to think of
the block lengths themselves as being the symbols. For example, suppose that
the input to the sticky channel was:

0011000101101111001011.

We could instead think of the message as a sequence of block lengths:

2 2 3 1 1 2 1 4 2 1 1 2.

With a sticky channel, the receiver will not only obtain a bit string that can be
interpreted as a sequence of block lengths, but the receiver will also have the
same number of symbols as the sender.

In terms of capacity, we can relate the capacity of the original sticky channel
to the capacity per unit cost of the derived channel. Thinking of our symbols as
integers, we again assign the symbol (integer) i a cost of i in this derived channel,
since it corresponds to i bits in the sticky channel. It is then intuitively clear that



the capacity of the sticky channel is equal to the capacity per unit cost of the
derived channel. A more formal argument proving this correspondence is given
in [31].

This correspondence allows us to find a lower bound on the capacity of the
sticky channel by finding a lower bound on the capacity per unit cost of the de-
rived channel. If the transition probability matrix matrix Pi j of the derived chan-
nel is finite, then because the symbol costs are all positive, there are numerical
methods for computing the capacity using a variation of the Blahut-Arimoto
algorithm [16]. This approach does not provide an actual coding scheme, but
yields a distribution of block lengths from which the capacity per unit cost can
be derived.

Since this numerical approach requires the transition probability matrix Pi j
to be finite, we can only handle a finite number of input and output symbols. This
means the block lengths for the sticky channel input must be limited, so that we
have a run-length limited code. Similarly, the block lengths at the output must
be limited. For some channels, such as one where each bit is duplicated with
probability p, this limit arises naturally once we constrain the input block length.
For some channels, such as one where each bit is duplicated a geometrically
distributed number of times, this is not the case. However, we can similarly limit
the output block length, collapsing all outputs above some maximum length to
the maximum length in order to effectively truncate the matrix P. The numerical
calculations are straightforward and fast, so these limits can be set quite high,
and we would not expect them to affect the capacity calculation significantly.
There is no general formal proof of this that we know of, however. Hence, while
the approach does give a formal lower bound, and intuitively this bound can be
made very tight by taking a suitably large limits on the input and output block
lengths, formally obtaining a corresponding upper bound currently can require
significant additional work.

For the specific case where each bit is independently duplicated exactly once
with probability p, [31] gives very tight bounds on the capacity. Generally, the
bounds match to the third decimal place. The formal upper bound utilizes the
same general technique for deletion channel upper bounds in [8]: bound supx

I(x)
x

numerically.
It is worth noing that technically the techniques described for sticky chan-

nels hold more generally for channels defined by a finite transition probability
matrix Pi j, where Pi j is the probability that a maximal block of i contiguous
equal symbols at the sender yields a corresponding block of length j≥ 1 copies
of the symbol at the receiver. That is, we could consider bits being deleted as
well as inserted, as long as there is a guarantee that no block from the sender is
ever completely deleted.



Open Questions:

– Find a simpler approach for giving formal upper bounds on the capacity of
sticky channels. Possibly, the approach should be connected to the method
of obtaining a lower bound by taking a finite truncation of the matrix P.

– Develop efficient encoding and decoding schemes that give near-capacity
performance for sticky channels. Specifically, one can start with the channel
where each bit is independently duplicated with probability p.

– Derive a closed-form expression for the capacity of a sticky channel. Again,
one can start with the channel where each bit is independently duplicated
with probability p.

8.2 Segmented deletion and insertion channels

Part of the difficulty inherent in the deletion channel is that, eventually, there
will be large blocks of deletions. With constant error probability, codewords
with length n will have a patch of Ω(logn) conseutive deletions somewhere
with high probability. Finding a large missing block appears to be a significant
part of the challenge in desigining codes for the deletion channel.

This suggests that we consider adding an additional assumption restricting
how deletions occur to prevent long blocks of consecutive deletions. Liu and
Mitzenmacher [23] consider a variation of a deletion channel satisfying a seg-
mentation assumption: the input is grouped in consecutive segments of b con-
secutive bits, and there is at most one error in each segment. For example, if
segments consist of eight bits, and at most one deletion occurs per segment, on
the input

0001011100101111,

it would be possible that the fourth and eleventh bits were deleted, so that the
received sequence would be

00001110001111,

but not that last two bits were deleted, leaving

00010111001011.

To be clear, from the receiver’s point of view the segments are implicit, and
no segment markers appear in the received sequence (as shown in Figure 5).
If one had markers, then we could just use a 1-deletion correcting code, where
each segment of length b would be a codeword. The codewords could be de-
coded one at a time using the marker boundaries. 1-deletion correcting codes



Fig. 5. An example of a segmented deletion channel. In particular, there are no markers denoting
segment boundaries at the receiver.

are covered in Sloane’s survey [38]; the most well known such codes are the
Varshamov-Tenengolts (VT) codes [40]. While 1-deletion correcting codes are
not the answer in this setting, they provide direction for a solution.

Besides being motivated by the difficulty of the i.i.d. deletion channel, the
segmentation assumption captures the idea that many synchronization errors
are due to small drifts in clock synchronization. There might then naturally be
a minimal gap between deletions, as the slow drift may require some minimal
amount of time before the timing error translates into another bit error. The
segmentation assumption captures this model, and is in fact more general.

Deterministic, linear-time, zero-error codes with relatively high rates are
possible under the segmentation assumption [23] The codes utilize codes of 1-
deletion codes of length b with certain additional properties; codewords for the
segmentation channel are obtained by concatenating codewords of this code.
The additional properties are specially selected so that one can decode by read-
ing the received sequence left to right without losing synchronization.

We provide the theorem describing the code properties. First, we require
some notation. For a b-bit string u, let D1(u) be the set of all (b−1)-bit strings
that can be obtained by deleting one bit from u. We also useD1(S) =∪u∈SD1(u).
A zero-error 1-deletion correcting code C must satisfy for any u,v ∈ C , with
u 	= v, D1(u)∩D1(v) = /0. For a string x of length k> 1, let prefix(x) be the first
k−1 bits of x, and similarly define suffix(x) be the last k−1 bits of x. For a set
S of strings let prefix(S) = ∪x∈Sprefix(x) and define suffix(S) similarly.

Theorem 3. Consider the segmented deletion channel with segment length b.
Let C be a subset of {0,1}b with the following properties:
– for any u,v ∈ C , with u 	= v, D1(u)∩D1(v) = /0;
– for any u,v ∈ C , with u 	= v, prefix

(
D1(u)

)⋂
suffix

(
D1(v)

)
= /0;

– any string of the form a∗(ba)∗ or a∗(ba)∗b, where a,b ∈ {0,1}, is not in C.
Then, using C as the code for each segment, there exists a linear time decoding
scheme for the segmented deletion channel that looks ahead only O(b) bits to
decode each block.



Since the constraints are expressed on pairs of possible strings, by treating
each possible bit-string as a vertex and placing an edge between every pair of
nodes that cannot both simultaneously be in C , the problem of finding a large
code C reduces to an independent set problem, in a manner similar to other
1-deletion code problems [38]. For small b, solutions to the independent set
problem can be found by exhaustive computation; for larger b, heuristic methods
can be applied to find large independent sets. As an example, for b = 8, or
equivalently at most one deletion per byte, a code with rate over 44% was found
exhaustively, and for b= 16, a code with rate over 59% was found by a heuristic
search [23]. Rates appear to improve as b increases.

Liu and Mitzenmacher also consider insertions under the segmentation as-
sumption. Finally, they present a more advanced scheme that experimentally
yields a higher rate but is more expensive computationally and not zero-error.
However, if the segmentation assumption holds in real systems, the determinis-
tic approach already seems well suited to implementation.

Open Questions:

– Find expressions for the capacity for segemented deletion or insertion chan-
nels, either in the zero-error setting or the setting where errors are allowed.

– Find better methods for finding maximum independent sets in graphs that
arise in the study of deletion codes and related codes.

– Provide codes that allow for higher rates for segmented deletion channels,
by trading off computational effort and code rate.

8.3 Deletions over Larger Alphabets

Thus far we have focused on the case of a binary alphabet. Some of the work
generalizes naturally to larger alphabets (see, e.g., [7, 12]). However, for sig-
nificantly larger alphabets, codes based on blocks of the same repeated symbol
does not appear to be the appropriate approach. Indeed, for very large alpha-
bets, one could simply embed a sequence number in the sent symbol itself. In
some sense, this is what is already done in the Internet today, where packets
contain sequence numbers significantly smaller than the standard packet size,
and deletions thereby become more easily handled erasures.

From a theoretical standpoint, however, it is interesting to consider what
can be done in the case of deletions over larger alphabets. There may also be
practical settings where such coding techniques would apply; in a system where
symbols (or packets) consist of for example 64 bits, encoding a sequence num-
ber may be too costly.

In [30], a verification-based methodology used previously for channels over
q-ary alphabets with errors [26], is suggested in the setting of channels with



deletions, transpostions, and random insertions. The framework borrows heavily
from that of low-density parity-check codes. For convenience, let us think of q
as being a power of 2, so that symbols are bit strings and exclusive-ors (XORs)
are the natural operation. The main ideas are the following: first, we assume
each message symbol sent appears to be a random symbol from a q-ary alphabet,
by XORing some mutually agreed upon (pseudo)-random value to each symbol.
Second, we establish an encoding based on constraints of the form that the XOR
of certain collections of symbols take on a given, agreed upon (pseudo)-random
value.

To see the benefit of this, suppose each constraint consists of an XOR of six
symbols (as in a 3-6 LDPC code). Consider an algorithm that simply considers
all combinations of six arrived symbols and checks if the XOR of their values
is the value given by some constraint. Since each symbol value appears ran-
dom, for q sufficiently large the probability that any combination of six received
symbols besides the “right” six is small and can be ignored. Specifically, if sym-
bols are uniform over the q-ary alphabet, then the probability a collection of six
symbols takes on the constraint value is 1/q, which in the example setting of
64-bit symbols is 2−64. As long as the number of combinations of six received
symbols is substantially less than 264, the probability of mistakenly identifying
the symbols associated with a constraint is quite small. Once symbols are iden-
tified, their locations can be determined, and once five symbols corresponding
to a constraint are determined, the sixth can be determined as well. A suitable
LDPC-style analysis determines the rate achievable using such a scheme.

Using more sophisticated analyses based on analyses of similar LDPC codes,
one can show that this verification-based coding can achieve rates arbitrarily
close to optimal, at the expense of complexity. As shown in [30], when dele-
tions occur with probability p, a rate of (1−ε)(1− p) is possible with decoding
complexity nO(1/ε2) logq.

While the approach of [30] appears far from suitable for real implementa-
tions, it is possible that the underlying ideas could prove useful. Metzner has
suggested improved techniques using similar ideas that appear efficient enough
to be potentially practical [27].

Open Questions:

– Design practical implementations of verification-based decoding for dele-
tion channels or other channels.

– Find ways to lower the probability of error for verification-based decoding
so that is performs well for smaller alphabets.



9 Trace Reconstruction

Up to this point, we have been focusing on deletions in the setting of codes,
where there is a codebook chosen by the sender and the receiver. To conclude
this survey, we consider a different but related class of problems, consisting of
natural variations of the problem where we do not control the input. Such prob-
lems can generally referred to as trace reconstruction problems, and include
the following canoncial example. A binary string X = x1x2 . . .xn yields a collec-
tion of traces Y 1,Y 2, . . . ,Ym, where each Y i is independently obtained from X
by passing X through a deletion channel under which each bit is independently
deleted with fixed probability δ . Given the traces (and the value of n and δ ), we
wish to reconstruct the original string X exactly with high probability. The ques-
tion is how many traces are necessary for reconstruction. Here one can consider
the problem over worst-case inputs X , or over random inputs X . Combinatorial
variations of trace reconstruction were considered by Levenshtein [21, 22], but
study of the above variation was recently initiated by Batu, Kannan, Khanna,
and McGregor [2] (see also [17]).

The problem can naturally be extended to consider broader classes of er-
rors, but even the case of only deletions has potential real-world implications.
For example, in a sensor network, an array of sensors could be used to record a
sequence of events, with each event corresponding to a 1 (positive outcome) or 0
(negative outcome). Noise or mechanical imperfections may cause some sensors
to fail to detect each event, giving rise to deletions in each individual sensor’s
trace. Reconstructing the correct sequence of events from a collection of indi-
vidually inaccurate sensors where each sensor independently misses each event
with fixed probability corresponds to the trace reconstruction problem with dele-
tions. Trace reconstruction also seems natural in biological settings; one may
have several samples of DNA sequences from descendants of a common ances-
tor, and the goal is to reconstruct as well as possible the DNA sequence of the
ancestor.

Recently, it has been shown that when X is chosen uniformly at random,
there exists a universal constant γ such that for for δ < γ , reconstruction is pos-
sible with polynomially many traces with high probability (over both X and the
traces) [15]. The polynomial can be taken to be independent of δ , and the recon-
struction itself also takes polynomial time. Previous work for the case of random
X has required sub-constant deletion probabilities (e.g., [2]). However, the re-
construction result for constant γ is purely theoretical, in that the polynomial
obtained is prohibitive for a practical implementation. Perhaps the most natural
open question in this space is to design a practical algorithm for constant dele-



tion probabilities. However, the study of these problems is still in its infancy,
and there are many other related questions to consider.

A natural direction is to consider approximate trace reconstruction, where a
small number of errors would be tolerated. Tradeoffs between accuracy and the
number of traces required have yet to be explored.

As a different direction, there are natural coding-theoretic analogues of the
trace reconstruction problem. Consider a channel consisting of k independent
deletion subchannels. That is, the sender’s binary message is simultaneously
sent through k independent deletion subchannels, with each bit being deleted
with probability p in each channel, and the receiver obtains the output from all
k subchannels. What is the capacity of this channel? This problem appears un-
studied, even in the case where k = 2. The corresponding problem with erasure
channels is trivial; for the corresponding problem on the binary symmetric er-
ror channel, the capacity is easily calculated, and density evolution techniques
can be used to design practical near-optimal codes [28, 35]. For deletion chan-
nels, the problem appears much more difficult. Maximum likelihood approaches
would naturally apply, since the likelihood of an initial string X given two inde-
pendent outputs Y1 and Y2 is given by

Pr(X | Y1,Y2) = Pr(Y1,Y2 | X)
Pr(X)
Pr(Y1,Y2)

= Pr(Y1 | X)Pr(Y2 | X)
Pr(X)
Pr(Y1,Y2)

and is therefore proportional to the product of #S(X ,Y1) ·#S(X ,Y2). (The result
extends for larger k.) This brings us back to the problems discussed at the begin-
ning of this survey, namely understanding maximum likelihood on the deletion
channel, even in the case where the codewords are assumed to be chosen inde-
pendently and uniformly at random.

Open Questions:

– Consider the limits of trace reconstruction for random strings and worst-case
strings. What is the maximum deletion probability that can be tolerated with
a polynomial number of traces? What is the tradeoff between the deletion
probability and the number of traces need for reconstruction?

– Extend the results of [15] to channels with insertions, transpositions, and/or
other errors.

– Find practical algorithms that perform well on trace reconstruction in prac-
tice, and prove rigorous statements about their performance.

– Develop an appropriate framework for approximate trace reconstruction,
and prove results in that framework.

– Consider lower bounds for the number of traces required for trace recon-
struction. (See [15, 41] for some lower bound results.)



– Prove capacity bounds in the coding setting for deletion channels where
multiple independent traces can be obtained.

10 Conclusion

The area of synchronization contains many open problems that appear to hold
significant challenges. In particular, while there are has been clear progress on
the problem of determining the capacity for the deletion channel, tight bounds
remain elusive. An analysis of the maximum likelihood approach appears to
be the the biggest prize, potentially dominating the previous bounds obtained.
Even an analysis for the case of codewords chosen uniformly at random, which
corresponds to natural questions on the behavior of random sequences and sub-
sequences, would be a significant step forward.

While in this survey issues related to efficient coding and decoding have
arisen only tangentially, the problem of finding practical codes with good per-
formance is also well worth studying. Some recent efforts in this direction for
channels with deletions and possibly other errors include [3, 5, 33], but thus far
most of the work in this area remains fairly ad hoc. Clear design principles need
to be developed. Perhaps the work done thus far to improve bounds on the ca-
pacity can naturally lead to reasonably efficient coding methods.

To conclude, although the problem of coding for the deletion channel and
other channels with synchronization errors has been around for decades, it re-
mains a largely unstudied area. Just as the edit distance (or Levenshtein distance)
between two strings is a much more complicated construct than the Hamming
distance, coding over channels with synchronization errors appears potentially
much more complicated than coding over channels with only symbol errors.
We expect that efforts to confront this complexity will lead to interesting new
results, techniques, and connections between information theory and computer
science.
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