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Abstract. Classifying objects in computer vision, we are faced with a
great many features one can use. This paper argues that diagrammatic
representations help to comprehend properties of features. This is im-
portant for the purpose of deciding which features should be used for a
given classification task. We introduce such a diagrammatic representa-
tion for a shape feature and show how it enables one to decide whether
this feature helps to distinguish some categories given. Additionally, it
shows that the proposed feature keeps up with other features falling into
the same complexity class.

1 Introduction

In computer vision several features have been devised in order to describe ob-
jects. While some of them are more intuitive than others, even the intuitive ones
raise the question whether they are appropriate given a number of categories
which are to be distinguished. For instance, a feature like the compactness obvi-
ously allows two object categories to get distinguished which are clearly different
regarding their roundness. However, determining this feature for a number of cat-
egories it is quite difficult to comprehend its meaning. What does a difference,
lets say, of 0.1 tell us about the shapes of two object categories? This question is
especially to be asked from the point of view of the expert, who possesses par-
ticular skills about his domain but not about some methods he needs to apply
to this domain.

It is frequently difficult or even impossible to determine which object prop-
erties, and as a consequence, which categories can be distinguished by specific
features without thoroughly analysing them regarding that feature. Furthermore,
it is even more difficult to comprehend how a number of different features com-
bine. The problem we are faced with is more general and concerns the difficulty
to choose among a number of methods. Normally, the appropriateness of the
chosen method is not revealed before having used it. Here, we argue in favour
of visualisation techniques which relate to diagrammatic representations. Such
techniques enable us to assess the meaning of some method or feature by visu-
alising some of its properties. Thereby, its inherent structure is made explicit,
allowing attention to be guided in a specific way.

From the point of view of diagrammatic reasoning, [8] point out that atten-
tion mechanisms are relevant when interpreting diagrams. In particular, the ease

To appear in: 29th Annual German Conference on Artificial Intelligence (KI 2006). Bremen, Germany, June 14–19, 2006



of recognition is strongly affected by what information is explicit in a representa-
tion. The idea is to make use of these findings by devising diagrams which relate
a feature’s semantics to its range of values. In this paper we shall demonstrate
how this works for a representation which comprises a structure that enables a
specific feature defined on it to be visualised, so that the relationship between
semantics and structure is made visible. As a consequence, it can intuitively be
decided how well a number of categories can be distinguished by this feature.

In Sect. 2 previous work on a qualitative shape description is reviewed. At the
same time, a diagrammatic representation for a shape feature is introduced which
is based on this shape description. Applying this feature to shapes of the MPEG
test dataset, Sect. 3 shows that this feature is in fact more expressive than others
which pertain to the same class of features in terms of the complexity required for
comparisons. But more importantly, it also shows that the feature’s meaning can
be comprehended very well through its diagrammatic representation. Section 4
discusses for a number of pairwise similar as well as pairwise different categories
how their diagrammatic representation enables one to decide in favour or against
the application of our feature. Finally, Sect. 5 summarises our conclusions.

2 Scope Histograms

For the purpose of dealing with shape data we choose polygons to be the un-
derlying representation for our approach. Polygons can easily be extracted from
binary raster images containing the silhouette of an object. Additionally, they
allow the creation of a more compact representation through the application
of polygonal simplification algorithms — even with only little influence on the
perception of shape [2]. We apply especially the method proposed in [11], choos-
ing an approximation error of one percent of a polygon’s perimeter, in this way
being invariant regarding the scale.

Consider the 13 qualitative relations between one-dimensional time inter-
vals [1]. Their generalisation to two dimensions define the notion of positional-
contrast [7] which allows intervals in the two-dimensional plane to be charac-
terised. Using the orientation grid of [12], [6] introduces 23 BA23 relations that
can occur between two line segments (Fig. 1 left and centre). This description
is not only restricted to single lines. Instead, using an ordered sequence of BA23

relations, it is also possible to describe the course of a polygon w. r. t. one of its
segments. This description has linear space complexity, since each of the poly-
gon’s segments is described by one BA23 relation. Indeed, an even more compact
description is possible. This can be accomplished by characterising the polygon
by its position as a whole, instead of describing the positions of its segments
individually.

2.1 Representing Polygons by Their Scope

While BA23 relations are suitable in order to describe arrangements between
line segments, they are not devised for the purpose of describing polygons as a
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Fig. 1. The 23 BA23 relations that can be distinguished between two line segments
in the two-dimensional plane. Left: Example arrangements. Centre: Mnemonic labels.
Right: Iconic representation of the respective scopes

whole. This is due to the fact that, in contrast to single line segments, polygons
are not restricted to being straight. On this account, there exist polygons that
cannot be characterised by single BA23 relations, namely those with a course
circulating one or more times completely around the reference segment. BA12,
which is a subset of BA23, can be used instead. It contains only the relations
Bl, BOl, Dl, FOl, Fl, Fm, Fr, FOr, Dr, BOr, Br, and Bm. These relations
are referred to as atomic BA relations. They have the property of being located
either in only one of the orientation grid’s sectors or of passing exactly one of
the orientation grid’s singularities connecting two adjacent sectors.

Applying the notion of a scope [7], which is nothing other than a set of
connected BA12 relations, it is possible to describe the location of any other
segment or even the whole course w. r. t. the reference segment. As depicted on
the right hand side of Fig. 1 the scopes of the atomic relations contain only the
respective relation itself. In contrast, the scopes of the non-atomic BA23 relations
are obtained by simply computing the union of the atomic relations comprising
their positions. Starting from this, the description of a course is straightforward
by simply aggregating BA12 relations which together make up this course.

2.2 Conceptual Neighbourhoods of Scopes

Applying the scope representation described above, the characterisation of a
polygon’s course w. r. t. one of its segments can be accomplished with constant
space complexity. This is due to the fact that we are always dealing with a set
of at most twelve atomic relations. In theory, 212 = 4096 different scopes can
be distinguished. When dealing with simple, closed polygons, we can confine
ourselves to those scopes, which do not have gaps between their atomic relations.
The application of this definition restricts the number of realisable scopes to 133.

After having defined the set of realisable scopes, the question arises as to
how they relate concerning their similarity. As an example, the scope of relation
Fl may be considered to be more similar to Fm than it is to Br. As suggested in



[4], it is useful to connect qualitative relations explicitly by defining a conceptual
neighbourhood structure. This does not only allow coarse knowledge to be dealt
with, as described in [4], but also defines a distance between scopes. Starting from
the scope’s representation, we define two scopes to be conceptual neighbours if
they can directly be transformed into one another by shortening or elongating
them with exactly one atomic relation. Since the underlying reference system is
circular, the visualisation of the conceptual neighbourhood structure is circular,
too. The scopes of the BA12 relations are located at the outmost positions. The
more atomic relations a scope contains the shorter is its distance to the centre,
where the universal scope is located which contains all atomic relations. The top
left quadrant of this neighbourhood structure is depicted in Fig. 2. For instance,
in accordance to the neighbourhood structure the distance of the scopes of Fl

and Fm is two. In contrast, the scopes of Fl and Br are located at converse
locations within the neighbourhood structure, which corresponds to a distance
of twelve edges within this graph.

2.3 Computing Scope Histograms

The scope representation introduced in Sect. 2.1 has the advantage of allowing a
polygon to be described w. r. t. one of its segments with constant space complex-
ity. That is to say, we always deal with a set of at most twelve atomic relations
regardless of how many line segments are required to represent a specific polygon.
Since this is a very coarse description, it is necessary to characterise a polygon
not only w. r. t. one of its segments, but w. r. t. to all of its segments. In doing
so, we gain a description with linear space complexity, O(n). This approach has
the disadvantage that its time complexity for the comparison of two polygons
is accordingly higher. This is due to the ordered sequences of scopes which are
circularly permutable and due to the fact that different polygons do not have the
same number of scopes, from what follows, that time complexity for the com-
parison of two scope sequences is O(mn3). Since efficient retrieval algorithms
are generally desired, it is worth analysing how performance can be improved.
Abandoning the scopes’ order, time complexity can be reduced to O(1) by com-
puting a histogram of the occurring scopes. This also leads to constant space
complexity for the description, since only the frequencies of occurring scopes
have to be described.

It is worth mentioning that when dealing with simple, closed polygons not
all of the 133 scopes introduced in Sect. 2.2 actually occur. By confining our-
selves to polygons with a mathematically positive order only 86 out of the 133
distinguishable scopes can be realised (Fig. 3 left). That is, only the frequencies
of this reduced set of scopes have to be determined.

2.4 Visualising Scope Histograms

As mentioned before, an important property of scope histograms is that they
allow two polygons to be described and to be compared with constant complexity.
Another important property is the fact that a simple visualisation for scope



Fig. 2. The top left quadrant of the scope’s conceptual neighbourhood structure. The
missing quadrants can be created by reflecting the image along the bottom axis and
the right axis. Two adjacent scopes can be transformed into one another by shortening
or elongating one scope by exactly one atomic relation

histograms exists. For this visualisation we arrange the scopes accordingly to
the conceptual neighbourhood structure (Fig. 2). As depicted on the right hand
side of Fig. 3 only the position of the 86 realisable scopes have to be taken into
consideration. The size of each entry in the histogram’s visualisation depends on
how often the scope appears for a given polygon. Fig. 4 shows two examples.

Since our visualisation arranges the histogram’s entries in accordance to their
position in the conceptual neighbourhood structure, even the non expert is able
to estimate how similar two entries are. This similarity can directly be derived
from their distance in the visualisation. Extending this observation to histograms
as a whole, it is even possible to judge the similarity of two polygons solely on the
basis of their histograms’ visualisations. Another property of this visualisation
is that it can easily be determined whether two scopes are mirror images of each
other. This is the case if their entries in the histogram can be mapped onto each
other by reflecting them along the middle axis. As depicted in Fig. 4, polygons



Fig. 3. Left: Each of the 133 distinguishable scopes is depicted by a point which is
located accordingly to its position in the conceptual neighbourhood structure. The 86
scopes that are realisable by simple, closed polygons are depicted opaque, the others
transparent. Right: Scope histograms can be visualised by only taking into account
realisable scopes

Fig. 4. Two polygons and their respective scope histograms. The size of an entry’s
depiction correlates with its frequency. Left: Since the polygon has the same posi-
tion w. r. t. each of its segments, there exists only one (particularly large) entry in
the histogram. Right: This polygon has different positions w. r. t. its segments. As a
consequence, its scope histogram also contains several different entries

that have an axis of symmetry have a histogram which is symmetric w. r. t.
its middle axis. In contrast, not every scope histogram having this property
describes a reflection-symmetric polygon. With some experience, it is to some
extent possible to identify scopes only by their position in the histogram. It is
at least possible to get a coarse impression of the properties of a scope, relating
to the correspondence of structure (e.g. large entry for the universal scope) and
semantics (parts of the polygon circulating around other parts).

3 Categorising Objects

After having introduced the scope histogram in Sect. 2 we will now concentrate
on the evaluation of its performance before we discuss its visualisation in the
following Sect. 4.



A well-known method for the comparison of shape classification approaches
is the core experiment CE-Shape-1 [10] for the MPEG-7 standard. This experi-
ment compares approaches only by their retrieval results, instead of comparing
the underlying methods directly. We apply especially part B which tests the ca-
pability of similarity-based retrieval techniques with a database of 1400 images.
These are semantically grouped into 70 shape classes, each one consisting of 20
object instances. During the test all 1400 images are used as a query one after
another. For each query all images in the database are ordered w. r. t. their sim-
ilarity by the approach under consideration. Subsequently, the images belonging
to the same class as the query are counted within the first 40 results. Since each
class contains 20 instances, for each query up to 20 correct matches can be found.
For all 1400 queries the total number of correct matches is 28000. The result of
the test is the ratio of the number of found objects and the total number of
correct matches.

In order to measure the performance of the scope histogram, we apply fea-
tures that pertain to the same class of complexity required for comparisons, i. e.
that they also allow two shapes to be compared with constant time complexity.
Especially we use the compactness [3], which corresponds to the ratio 4πA

P 2 of
area and perimeter, the radius ratio Rmin

Rmax
of the minimum enclosing circle and

the maximal contained circle [5], and the aspect ratio Hr

Wr
of the minimal enclos-

ing rectangle [3]. Each of these features characterises the shape of an object by a
single number and therefore compares two objects with constant time complex-
ity. The performance of these features as well as that of the scope histogram is
listed in Table 1. The results show that the numeric features, namely compact-
ness, radius ratio, and aspect ratio gain results between about 16% and 24%.
In contrast, our scope histogram achieves results of about 46% and therefore
outperforms the other approaches. Better results can be achieved by combining
features. The results show that a combination of the three numeric features al-
ready gains about 52% correct matches. Combining these features with the scope
histogram almost 64% can be achieved. Eventually, it is worth mentioning that
this retrieval result is only about twelve percentage points less than the 76.46%
achieved by the correspondence of visual parts of [9]. However, this latter ap-
proach has a significantly higher time complexity of O(mn3) for the comparison
of two objects, while the 64% are achieved with constant time complexity.

Table 1. Classification results of compactness (CO), radius ratio (RR), aspect ratio
(AR), and scope histogram (SH) for CE-Shape-1 Part B. Furthermore, the classification
has been evaluated for the combination of all numeric features (NF) as well as their
combination with the scope histogram (NS)

CO RR AR SH NF NS

21.86 16.82 24.12 45.52 51.58 63.75



There is yet another advantage of scope histograms, namely that they allow
prototypes of categories to be defined. This is useful since a common categori-
sation technique is based on the definition of clusters which define classes by
training examples. In order to analyse whether the scope histogram qualifies it-
self as such a clustering method, we shall define clusters upon the MPEG dataset
and rerun our evaluation on this basis. For this purpose the average of the val-
ues of all features is taken for each class. For the scope histogram we determine
the average of the corresponding entries. In proceeding this way we define a
number of 70 prototypes, one for each class. Using these prototypes we achieve
the results listed in Table 2. It shows that the classification results of the three
numeric features do not significantly change when they are solely applied in a
clustering scenario. By contrast, the scope histogram’s results can be improved
by 20 percentage points to 66%. The scope histogram now even outperforms the
combination of the three numeric features, which achieve together about 63%.
A combination of the numeric features and the scope histogram leads to almost
83% correct matches.

Table 2. The classification results of Table 1 can be improved if a prototype is com-
puted for each class of the MPEG test dataset

CO RR AR SH NF NS

22.14 15.43 24.43 65.57 62.57 82.93

Summarising these results, the scope histogram combined with other features
offering constant time complexity achieves about 64% in the MPEG test. By
computing a prototype for each class the retrieval results for the MPEG test
dataset can even be improved to almost 83%. As elaborated above, this result
reflects the scope histogram’s qualification as a clustering method.

4 Discussion

In this section we will take a closer look at some selected scope histograms. On
this basis we will discuss how the visualisation introduced in Sect. 2.4 supports
decisions on whether the application of our approach is useful or not, given a
number of classes which are to be distinguished. For this purpose we analyse
the classes from the MPEG test dataset and especially their prototypes. The
prototypes’ scope histograms as well as one example instance from each class
are depicted in Figs. 5 to 7.

Comparing the polygons it shows that the prototype of the “Spring” class
can be distinguished from all other prototypes by the universal scope which
frequently occurs in this class; this scope consists of all twelve atomic BA12

relations, and it represents those line segments which are completely circulated
by their polygon’s course. In the case of the spring class, the frequency of the



universal scope can be attributed to those segments which are located within
its ends. This is a particular salient feature of this class in that the universal
scope appears in no other class so frequently. Analysing all classes the universal
scope is found rather seldom. Further remarkable occurrences can be determined
within the body of the “Sea Snake”, in the inner half of the “Horseshoe”, at the
inner side of the tail of the “Lizzard”, and within the handle of the “Cup” class.

Another notable scope is that one of the BA23 relation Cl (Fig. 1), i. e. the
relation containing all atomic relations located on the left side of the orientation
grid. It does not only appear if line segments are in relation Cl but whenever
the polygon is located completely left w. r. t. the reference segment. Since this
scope describes a reference segment that is convex w. r. t. its polygon (i. e. the
segment is part of the polygon’s convex hull), it is not surprising that it appears
much more frequently than the universal scope. As an example, it has remarkable
occurrences in the “Bottle”, “Cellular Phone”, “Face”, and the “Pencil” classes.
It also appears quite often in the scopes of the “Apple” and the “Pocket” class.
As objects pertaining to these classes show, apples and pockets have in common
that they have a big round body with a significantly smaller part on the top.
This is reflected in their scope histograms, which show that there are five entries
in the case of the apple and similar frequencies at the very same entries in the
scope histogram of the pocket. It is worth mentioning, that due to the fact, that
we do not consider the order in which the scopes appear, there are yet other
classes which have similar scope histograms. This holds in particular for the
“Heart” class and the “Jar” class.

Apparently, the prototypes of some classes are described by very simple scope
histograms, i. e. they are made up of only a few different scopes. This can be
explained by the fact, that all instances in these classes have very similar scope
histograms. On the one hand this brings in the advantage that distances between
two instances of this class are small. On the other hand this poses a problem
if the dominant scopes are very common and if their combination appears in
other classes, too. Examples for classes that do not contain dominant scopes
and which have similar scope histograms are the “Guitar”, the “Key”, as well
as the “Spoon” class.

Another problem arises from classes containing instances with completely
different shapes. This is due to the fact that the classes for the MPEG test
dataset have been compiled semantically, so that it is impossible to classify
shapes correctly using solely shape information. Examples for classes of this
kind are the “Elephant” class as well as the various “Device” classes.

Coming to a conclusion, two classes of shapes can be distinguished very well
by our method if their scope histograms have frequencies which are both dom-
inant and different. It has been shown that the visualisations of the scope his-
tograms enable us to directly judge how promising their application is. Defining
those visualisations only on the basis of the size of the spots depicting frequen-
cies in the histograms, such diagrams are not difficult to interpret. Moreover,
in contrast to other histograms which are used to show, for example, the colour
distribution of images, the entries of the scope histogram have been arranged



in a specific way. By this means relations between semantics and structure are
made explicit in that the position of a spot in the diagram reflects the complex-
ity of the polygon w. r. t. specific reference segments as well as to specific shape
properties such as the convexity for specific parts.

5 Summary

We introduced a new approach for the description and comparison of objects by
their shape. Due to its intuitive diagrammatic visualisation, it can be easily esti-
mated whether the application of our approach is promising or not. Besides, our
approach offers a constant time complexity for the comparison of two objects. It
shows that by combining it with other features offering the same time complexity
retrieval results of about 64% can be achieved in the MPEG test. Furthermore,
retrieval performance for the MPEG test dataset can even be improved to almost
83% by the application of prototype shapes.
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Apple: Bat: Beetle:

Bell: Bird: Bone:

Bottle: Brick: Butterfly:

Camel: Car: Carriage:

Cattle: Cellular Phone: Chicken:

Children: Chopper: Classic:

Comma: Crown: Cup:

Deer: Device0: Device1:

Fig. 5. Histogram prototype and example instance for each MPEG class (Part I)



Device2: Device3: Device4:

Device5: Device6: Device7:

Device8: Device9: Dog:

Elephant: Face: Fish:

Flatfish: Fly: Fork:

Fountain: Frog: Glas:

Guitar: Hammer: Hat:

Hcircle: Heart: Horse:

Fig. 6. Histogram prototype and example instance for each MPEG class (Part II)



Horseshoe: Jar: Key:

Lizzard: Lmfish: Misk:

Octopus: Pencil: Personal Car:

Pocket: Rat: Ray:

Sea Snake: Shoe: Spoon:

Spring: Stef: Teddy:

Tree: Truck: Turtle:

Watch:

Fig. 7. Histogram prototype and example instance for each MPEG class (Part III)


