Programmed Graph Rewriting with Time for
Simulation-Based Design

Eugene Syriani and Hans Vangheluwe

McGill University, School of Computer Science, Montréal, Canada
{esyria,hv}@cs.mcgill.ca

Abstract. The Discrete EVent system Specification (DEVS) formal-
ism allows for highly modular, hierarchical modelling of timed, reactive
systems. DEVS can be used to describe complex control structures for
programmed graph transformation. A side-effect of this approach is the
introduction of an explicit notion of time. In this paper we show how the
explicit notion of time allows for the simulation-based design of reactive
systems such as modern computer games. We use the well-known game
of PacMan as an example and model its dynamics with programmed
graph transformation based on DEVS. This also allows the modelling
of player behaviour, incorporating data about human players’ behaviour
and reaction times. Thus, a model of both player and game is obtained
which can be used to evaluate, through simulation, the playability of a
game design. We propose a playability performance measure and vary
parameters of the PacMan game. For each variant of the game thus ob-
tained, simulation yields a value for the quality of the game. This allows
us to choose an “optimal” (from a playability point of view) game con-
figuration. The user model is subsequently replaced by a visual interface
to a real player and the game model is executed using a real-time DEVS
simulator.

1 Introduction

Programmed (or structured) graph transformation is one of the keys to making
graph transformation scalable (and hence industrially applicable). Tools such
as FUJABA [1], GReAT [2], VMTS [3], PROGReS [], and MOFLON [5] sup-
port programmed graph transformation. These tools mostly introduce their own
control flow language. In [6] we have shown the advantages of re-using a discrete-
event modelling /simulation formalism to describe transformation control. In this
paper, we will focus on the time aspect of modelling complex transformations, a
side-effect of using a discrete-event modelling formalism. This is done by means
of the well-known PacMan example, presented in Section 2l Section Blintroduces
the DEVS formalism and how it is used for structured graph transformation.
Section [4] describes how not only the PacMan game, but also the player can be
explicitly modelled. Section [Bl describes game simulation experiments in detail.
Finally, Section [6] summarizes, concludes and proposes future work.

A. Vallecillo, J. Gray, A. Pierantonio (Eds.): ICMT 2008, LNCS 5063, pp. 91-[106, 2008.
© Springer-Verlag Berlin Heidelberg 2008

92 E. Syriani and H. Vangheluwe
2 Case Study: The PacMan Game

To demonstrate the power of timed, programmed graph transformation, in par-
ticular in the context of simulation-based design, we use a simplified version

Rule 1
paclink

-
s Y
’

gha’sryr__l_k ghOj‘rLirlk
’ ~ ” ~
s
’
1

‘I \
N :
R T A <

Fig. 1. PacMan Semantics: Ghost kills PacMan rule

Rule 2
Yourscore <ANY= 1 Your score <SPECIFIED= |1
.= - -
~ 4 ~ \4
r 1 ’ \
') ')
@ quacﬂnk é% {"pacunk
- food“nk 1: return self.LHS.nodeWithLabel(l).score + 1
Fig. 2. PacMan Semantics: PacMan eats Food rule
ghaﬁyi’(ghostLink 7 Rule3

.Q-]] -Q.

’grrdLeﬂ - grm’iefr
T

’ Y 3 ~
1 v ’ \
l v h |
\ i
6 <’

Fig. 3. PacMan Semantics: Ghost moves right rule

- pachk Rule &
pac m

I-I » - l@-l

A T
ey ! A - ngdRtht
i.___‘_"agﬁdﬁﬁ'ght q4---

Fig. 4. PacMan Semantics: PacMan moves left rule

Programmed Graph Rewriting with Time for Simulation-Based Design 93

of the PacMan video game inspired by Heckel’s tutorial introduction of graph
transformation [7].

2.1 The PacMan Language (Abstract and Concrete Syntax)

The PacMan language has five distinct elements: PacMan, Ghost, Food (Pel-
lets), GridNode and ScoreBoard. PacMan, Ghost and Food objects can be linked
to GridNode objects. This means that these objects can be “on” a GridNode.
GridNode objects are geometrically organized in a grid, similar to the PacMan
video game. Adjacency implies that PacMan and Ghost “may move” to a con-
nected GridNode. A ScoreBoard object holds an integer valued attribute score.
Our tool AToM? [8] allows modelling of both abstract and visual concrete syn-
tax (including geometric/topological constraint relations such as a PacMan being
centered over a GridNode). From these models, an interactive, visual PacMan
modelling environment is synthesized.

2.2 The PacMan Semantics (Graph Transformation)

The operational semantics of the PacMan formalism is defined in a Graph Trans-
formation model which consists of a number of rules. In the rules in the following
figures, concrete syntax is used. This is a useful feature for domain-specific mod-
elling specific to AToM?. Dashed lines were added to explicitly show the “on” links.
Rule 1 in Figure[l shows killing: when a Ghost object is on a GridNode which has
a PacMan object, the PacMan is removed. Rule 2 in Figure2lshows eating: when
a PacMan object is on a GridNode which has a Food object, Food is removed and
the score gets updated (using an attribute update expression). Note how in the se-
quel, we will focus on game playability and will ignore the score. Rule 3 in Figure[3]
expresses the movement of a Ghost object to the right and rule 8 in Figure @l the
movement of a PacMan object to the left. Similar rules to move Ghosts and Pac-
Man objects up, down, left and right are not shown. Rules 1 and 2 have priorities
1 and 2 respectively. All remaining rules have the same priority 3.

3 DEVS for Programmed Graph Transformation

We previously [6] demonstrated how the Discrete EVent system Specification
(DEVS) formalism can be used as asemantic domain for Programmed Graph Trans-
formation. In this section, our approach is described, elaborating on the the imple-
mentation in AToM? of the ideas introduced in [6]). This description will form the
basis for following sections which will focus on the use of time in our models.

3.1 The Discrete Event System Specification (DEVS)

The DEVS formalism was introduced in the late seventies by Bernard Zeigler as
a rigorous basis for the compositional modelling and simulation of discrete event
systems [9].

94 E. Syriani and H. Vangheluwe

A DEVS model is either atomic or coupled. An atomic model describes the
behaviour of a reactive system. A coupled model is the composition of several
DEVS sub-models which can be either atomic or coupled. Submodels have ports,
which are connected by channels. Ports are either input or output. Ports and
channels allow a model to send and receive signals (events) between models.
A channel must go from an output port of some model to an input port of a
different model, from an input port of a coupled model to an input port of one
of its sub-models, or from an output port of a sub-model to an output port of
its parent model.

Informally, the operational semantics of an atomic model is as follows: the
model starts in its initial state. It will remain in any given state for as long as
specified by the time-advance of that state or until input is received on some
port. If no input is received, after the time-advance of the state expires, the model
first (before changing state) sends output, specified by the output function and
then instantaneously jumps to a new state specified by the internal transition
Sfunction. If input is received before the time for the next internal transition
however, then it is the external transition function which is applied. The external
transition depends on the current state, the time elapsed since the last transition
and the inputs from the input ports.

The semantics for a coupled model is, informally, the parallel composition of
all the sub-models. A priori, each sub-model in a coupled model is assumed to
be an independent process, concurrent to the rest. There is no explicit method
of synchronization between processes. Blocking does not occur except if it is ex-
plicitly modelled by the output function of a sender, and the external transition
function of a receiver. There is however a serialization whenever there are multi-
ple sub-models that have an internal transition scheduled to be performed at the
same time. The modeller controls which of the conflicting sub-models undergoes
its transition first by means of select function.

For this paper, we use our own DEVS simulator called pythonDEVS [10],
grafted onto the object-oriented scripting language Python.

3.2 Controlled Graph Rewriting with DEVS

At the heart of our approach is the embedding of graphs in DEVS events and
of individual transformation rules into atomicDEVS blocks. Figure Bl shows how
our approach comprises a number of transformations. First, we model a col-
lection of transformation rules in domain-specific notation (shown on the top
left of the figure). Each of these transformations is translated to a class with
the same name as the rule (pacDie is shown here on the top right). The core
of the generated code is the method execute which takes a (host) graph as
argument and encodes the transformation rule (matching and re-writing). Sec-
ond, we build a hierarchical model of the Modelled and Modular Timed Graph
Transformation language, in the MoTif (Modular Timed model transformation)
visual modelling language (shown at the bottom left of the figure). All building

Programmed Graph Rewriting with Time for Simulation-Based Design 95

Specifiy the graph grapmmar rules Class rule independent from AToM*
u

b Compile
—— . ——— 3 9 class pacoie:
def execute(graph):
| % B L]
- o"n
Spemfy (he_ control structure of the transforma}ngn (py)DEVS code
A0 T i i 4TE
Output
cla{™ QGRuleEat:
ad Rules Used
{ class GGRuleKil 1: PacManUp
o def _init_(self): Eat
. o selfstate = KillState(pacDie’) y :
Compile self.graph_in = self.addInport() Simulate ERPacHManboNa
d selfsuccess_out = self.addOutPort : Eat
q : PacManDown
d def extTransition(): : Eat
2| “graph = self.peak(self.graph_in) . PacManDown
1| g=selfstate.rule.execute(graph) . Eat
dd retum self.state : GhostRight
- : GhostDown
i| def intTransition(): : Kill
- : GhostUp
d‘e return self state . GhostLeft
def outputFnc() : GhostUp
if (self state.isMatched) : GhostLeft
self poke(self. success_out, self state.graph) : GhostRight

dg
p
def imeAdvance():
return self.state.weighy

Fig. 5. DEVS-based Programmed Graph Rewriting Architecture

blocks have ports for incoming graphs (top left port), outgoing graphs in case
of successful rule application (bottom left port), outgoing (unmodified) graphs
in case of failed rule application (bottom right port), incoming transformation
interrupt (top right port), incoming pivot (hint about where to start matching)
information (left side port) and outgoing pivot information (right side port).
These ports appear on both atomic (ARule: single rectangle frame) and cou-
pled (CRule: double rectangle frame) transformation models which implies that
they can be used interchangeably to build complex hierarchical transformation
models. ARules contain a reference to the compiled rule class. Other special
atomic models such as a Synchronizer block as well as default atomic and cou-
pled models can be used to control the flow of the transformation. Third, the
MoTif model gets compiled into a DEVS model. CRules get translated into
coupledDEVS models. A Rules models get translated into atomicDEVS models.
In the latter, the execute method encoding the transformation is called in the
external transition function of the atomicDEVS model. This transition func-
tion is triggered by the arrival of an external event (in which a to-be-transformed
graph is embedded). Finally, all generated code is linked and presented to a
DEVS simulator which performs the transformation and produces a trace.

3.3 The PacMan Case Study

The overall model of the PacMan game is shown in Figure [Gl

96 E. Syriani and H. Vangheluwe

The coupledDEVS block control_out
User is responsible for user

. . h_init_outh/ r A ist it
(player) interventions. It SrePh Mo, grah.in siep-ot

e ey dong_rcv
can send the initial graph
to be transformed, the | notity]
L graph_init_in done| send| step_in
number of rewriting steps control_out ontrol_in
Controller

to be performed (possibly AT T wtograph_out
Al A]
infinite) and some control graph_unmodi graph_modified
information. In the con- l: S"i"
text of our previous work
[6], t'he control information User
was in the form of key code oIl controlied b Autonomous I
presses to model the user Rules Rules
interrupts of a game. All
these events are received
by the Controller, another i
atomicDEVS block. This
block encapsulates the co- Fig. 6. Overall Transformation Model
ordination logic between
the external input and the transformation model. It sends the host graph through
its outport to a rule set (the Autonomous Rules CRule) until the desired num-
ber of steps is reached. If a control event is received however, the Controller
sends the graph to another rule set (the User Controlled Rules CRule). The
Autonomous Rules CRule expects a graph to perform the rewriting, whereas
the User Controlled Rules A Rule waits for a control, too. The details are omitted
here to focus on the overall structure.

The model described in [6] does not model a realistic, playable game. When
the user sends a key, the corresponding transformation rule is executed and the
graph is sent to the Autonomous Rules until another key is received or the
PacMan entity has been deleted. What prohibits this from being suitable for a
playable game is:

A~

— A rule consumes a fixed amount of time. From the graph rewriting perspec-
tive, this allows one to compute how long a transformation takes. From the
input model perspective, it gives a way of quantifying the complexity of a
model. This does however not take into consideration any notion of game
levels or any real-time behaviour which such a game should have.

— The user sends information to the rewriting system to (1) configure the trans-
formation engine and (2) to control the transformation execution abstracted
to the specific domain of interest (PacMan movements). This model does
not take into account any playability issues, such as the Ghost moving too
fast versus a user reacting too slowly.

In the sequel we will present an extended model with focus on timing informa-
tion. This will allow us, through simulation, to construct an optimally “playable”
game.

Programmed Graph Rewriting with Time for Simulation-Based Design 97

4 Modelling Game and Player

The previous section showed how we can model both game syntax (using meta-
modelling) and game dynamics (using programmed graph transformation) in
an intuitive fashion suitable for non-software-experts. In our approach, the pro-
grammed graph transformation model gets compiled into a DEVS model which
can subsequently be simulated.

In current graph transformation tools, the interaction between the user —
the player, in the current context— and the transformation engine is hard-coded
rather than explicitly modelled. Examples of typical interaction events are re-
quests to step through a transformation, run to completion, interrupt an ongo-
ing transformation, or change parameters of the transformation. In the context
of the PacMan game, typical examples are game-events such as PacMan move
commands. Also, if animation of a transformation is supported, the time-delay
between the display of subsequent steps is coded in the rewriting engine.

In contrast, in our DEVS-based approach, the interaction between the user
and the game is explicitly modelled and encapsulated in the atomicDEVS block
User (see Figure[dl). Note that in this interaction model, time is explicitly present.

4.1 Modelling the Player

With the current setup, it is impossible to evaluate the quality (playability) of a
particular game dynamics model without actually interactively playing the game.
This is time-consuming and reproducibility of experiments is hard to achieve. To
support automatic evaluation of playability, possibly for different types of play-
ers/users, it is desirable to explicitly model player behaviour. With such a model,
a complete game between a modelled player and a modelled PacMan game —an
experiment— can be run autonomously. Varying either player parameters (mod-
elling different types of users) or PacMan game parameters (modelling for ex-
ample different intelligence levels in the behaviour of Ghosts) becomes straight-
forward and alternatives can easily be compared with respect to playability.
For the purpose of the PacMan game,
player behaviour parameters could
mean different user reaction speed

. .. User
or different levels of decision analy- N
sis (such as pathfinding). We have ex- User jgcsionout
. . Behaviour decisipn_in
plored these two dimensions of be- conthh out

haviour. Section [l will discuss reac- lgraph_iit_out gragh_in User confol_ofit
tion speeds more in-depth. Obviously, Interaction
evaluating quality (playability) will re-
quire a precise definition of a perfor-

mance metric. Also, necessary data tO grphinitout graphin done_rcv step_out
calculate performance metrics needs

to be automatically collected during Fig. 7. Enhanced User Model
experiments.

Explicitly modelling player behaviour can be done without modifying the
overall model described in section thanks to the modularity of DEVS. We

98 E. Syriani and H. Vangheluwe

simply need to replace the User block by a coupled DEVS block with the same
ports as shown in Figure [1

We would like to cleanly separate the way a player interrupts autonomous
game dynamics (i.e., Ghost moving) on the one hand and the player’s decision
making on the other hand. To make this separation clear, we refine the User block
into two sub-models: the User Interaction and the User Behaviour atomicDEVS
blocks. On the one hand, the User Interaction model is responsible for sending
control information such as the number of transformation steps to perform next,
or a direction key to move the PacMan. On the other hand, the User Behaviour
block models the actual behaviour of the player (often referred to as “AI” in the
game community). It is this block which, after every transformation step, receives
the new game state graph, analyzes it, and outputs a decision determining what
the next game action (such as PacMan move up) will be. Also, since it is the
User Interaction block which keeps receiving the game state graph, we chose
to give this block the responsibility of sending the initial host graph to the
transformation subsystem.

The notion of Event-driven Graph Rewriting [T1] can be found in the litera-
ture. It was proposed in the context of a meta-modelling editor: a graph rewriting
rule would be triggered in response to a user action. This concept is incorporated
in the User Controlled Rules coupledDEVS block where a rule gets triggered
depending on the user action. In our approach the user and user interaction itself
has been modelled in the User coupledDEVS block.

Different players may use different strategies. Each strategy leads to a different
model in the User Behaviour block. We have modelled three types of players for
our experiments: Random, Dummy, and Smart.

The Random player does not take the current game state graph into con-
sideration but rather chooses the direction in which the PacMan will move in
randomly. Note that this player may send direction keys requesting illegal Pac-
Man moves such as crossing a boundary (wall). This is taken care of by our
PacMan behaviour rules: the particular rule that gets triggered by that key will
not find a match in the graph, hence PacMan will not move. However, time is
progressing and if PacMan does not move, the ghost will get closer to it which
will eventually lead to PacMan death.

The Dummy user does not make such mistakes. After querying the game state
graph for the PacMan position, it moves to the adjacent grid node that has Food
but not a Ghost on it. If no such adjacent grid node can be found, it randomly
chooses a legal direction.

The Smart user is an improved version of the Dummy user. Whereas the
Dummy user is restricted to making decisions based only on adjacent grid nodes,
the Smart user has a “global” view of the board. The strategy is to compute the
closest grid node with Food on it and move the PacMan towards it depending
on the position of the Ghost. One way to implement this strategy is by using a
path finding algorithm. Many solutions exist for such problems, including some
efficient ones such as A* [I2]. Modelling A* with graph transformation rules
requires backtracking and is outside the scope of this paper. Our prototype

Programmed Graph Rewriting with Time for Simulation-Based Design 99

implementation sidesteps the pathfinding problem by slightly modifying the
meta-model of the PacMan formalism. Relative coordinates were added to the
gridNode class with the condition that if a gridNode instance g1 is associated
with another instance g2 via the gridLeft association, then gl.x < ¢g2.x and
gl.y = g2.y. Similar conditions are defined for gridRight, gridTop and gridBot-
tom associations. Therefore, the pathfinding only needs to compute the shortest
Manhattan distance from PacMan to Food as well as a simple check for the grid
node coordinates of the Ghost.

We compare the performance of different user behaviour types in Section

Note that to match different user types, we need to model similar strategies
for the Ghost to make the game fair. Indeed, a Smart user (controlling the
PacMan) playing against a randomly moving Ghost will not be interesting nor
will a Dummy user playing against a Smart Ghost. As players may become better
at a game over time, game levels are introduced whereby the game adapts to
the player’s aptitude. This obviously increases game playability.

4.2 Modelling the Game

As long as the (modelled) player does not send a decision key to move the Pac-
Man, thus changing the game state graph, the graph continues to loop between
the Controller block and the Autonomous Rules block. If no instantaneous rule
(Kill or Eat) matches, then it is the lower priority Ghost Move block that mod-
ifies the graph. In our earlier work [6], the graph received by this CRule was
concurrently sent to the Up, Down, Left and Right ARules to make the ghost
move. Non-deterministically, one of the matching rules got applied. This mod-
elled a random movement of the Ghost. In order to generalize this behaviour to
allow different strategies, a modification of the way the graph is sent to these
ARules is necessary.

|araph_in GhostMove
M

control_outl YNgraph_out

Fig. 8. Enhanced Ghost Behaviour Model

100 E. Syriani and H. Vangheluwe

Figure [l illustrates the modified topology of the Ghost movement model. The
game state graph is received by a Decider atomicDEVS block. Similar to the
User Behaviour block, it emits a direction that drives the movement of the
Ghost. The Random, Dummy and Smart strategies are analogous to the player.
The Random Ghost will randomly choose a direction, the Dummy Ghost will
look for a PacMan among the grid nodes adjacent to the one the Ghost is on and
the Smart Ghost has “global” vision and always decides to move towards the
PacMan. The same argument previously made about optimal pathfinding and
backtracking applies. Then, the Decider sends the graph and the decision (in
the form of a key) to a Dispatch block and the rest of the behaviour is identical
to that in the User Controlled Rules CRule.

4.3 Explicit Use of Time

We have now modelled both game and player, and the behaviour of both can
use Random, Dummy, or Smart strategies. However, one crucial aspect has been
omitted up to now: the notion of time. Time is critical for this case study since
game playability depends heavily on the relative speed of player (controlling the
PacMan) and game (Ghost). The speed is determined by both decision (thinking)
and reaction (observation and keypress) times.

Timed Graph Transformation, as proposed by Gyapay, Heckel and Varré [13]
integrates time in the double push-out approach. They extend the definition of
a production by introducing, in the model and rules, a chronos element that
stores the notion of time. Rules can monotonically increase the time. DEVS is
inherently a timed formalism, as explained previously. In contrast with Timed
Graph Transformation, it is the execution of a rule that can increase time and
not the rule itself. Hence, the control flow (of the graph transformation) has full
access to time. As pointed out in [I3], time can be used as a metric to express
how many time units are consumed to execute a rule. Having time at the level
of the block containing a rule rather that in the rule itself does not lose this
expressiveness.

We will now show how the notion of time from the DEVS formalism integrated
in a graph transformation system can be used for realistic modelling of both
player and game. We consider a game to be unplayable if the user consistently
either wins or loses. The main parameter we have control over during the design
of a PacMan game is the speed of the Ghost.

Each atomicDEVS block has a state-dependent time advance that determines
how long the block stays in a particular state. Kill and Eat rules should happen
instantaneously, thus their time advance is 0 whenever they receive a graph. In
fact, all rules of the PacMan grammar have time advance 0. What consumes time
is the decision making of both the player (deciding where to move the PacMan)
and the game (deciding where to move the Ghost). For this reason, only the
Decider and the User Behaviour blocks have strictly positive time advance.

To provide a consistent playing experience, the time for the Ghost to make a
decision should remain almost identical across multiple game plays. The player’s

Programmed Graph Rewriting with Time for Simulation-Based Design 101

decision time may vary from one game to another and even within the same
game. We have chosen a time advance for the Decider that is sampled from a
uniform distribution with a small variance (interval radius of 5ms). What re-
mains is to determine a reasonable average of the distribution. To make the game
playable, this average should not differ significantly from the player’s reaction
time. If they are too far apart, a player will consistently lose or win making the
game uninteresting.

5 Simulation Experiments

In the previous section, we determined that the playability of the PacMan game
depends on the right choice of the average time advance of the Decider block,
i.e., the response time of the Ghost. We will now perform multiple simulation
experiments, each with a different average time advance of the Decider block.
For each of the experiments, a playability performance metric (based on the
duration of a game) will be calculated. The value of the Decider block’s average
time advance which maximizes this playability performance metric will be the
one retained for game deployment. Obviously, the optimal results will depend
on the type of player.

5.1 Modelling User Reaction Time

First of all, a model for player reaction time is needed. Different psychophysiology
controlled experiments [14] give human reaction times (subjects between the ages
of 17 and 20):

— the time of simple visuomotor reaction induced by the presentation of various
geometrical figures on a monitor screen with a dark background

— the time of reaction induced by the onset of movement of a white point along
one of eight directions on a monitor screen with a dark background.

The reaction time distribution can be described by an asymmetric normal-like
distribution. The cumulative distribution function of frequencies for sensorimotor

human reaction time is: .
.

Fx)=e°"

where a characterizes data scatter relative to the attention stability of the sub-
ject: the larger a is, the more attentive the subject is; b characterizes the reaction
speed of the subject. For simulation purposes, sampling from such a distribution
is done by using the Inverse Cumulative Method.

For our simulation, four types of users were tested: Slow with a = 33.3 and
b = 284, Normal with a = 19.9 and b = 257, Fast with a = 28.4 and b = 237,
VeryFast with a = 17.7 and b = 222. The parameters used are those of four
example subjects in [T14].

102 E. Syriani and H. Vangheluwe

5.2 Simulation Results

For the simulations, we only consider the Smart user strategy. For each type
of user (Slow, Normal, Fast and VeryFast), the length of the simulated game
is measured: the time until PacMan is killed (loss) or no Food is left on the
board (victory). To appreciate these results, the score is also measured for each
run. Simulations were run for a game configuration with 24 gridNodes, 22 Food
Pellets, 1 Ghost and 1 PacMan. The game speed (ghost decision time) was varied
from 100ms to 400ms. Each value is the result of an average over 100 samples
simulated with different seeds.

The following presents the simulation results obtained by means of the DEVS
simulations of our game and player model. All figures show results for the four
types of users (Slow, Normal, Fast and VeryFast). Figure[@shows the time until the
game ends as a function of the time spent on the Ghost’s decision. The increasing
shape of the curves imply that the slower the ghost, the longer the game lasts.
This is because the user has more time to move the PacMan away from the Ghost.
One should note that after a certain limit (about 310ms for the VeryFast user and
350ms for the Normal user), the curves tend to plateau. An explanation for this
behaviour is simply that after a certain point, the Ghost decision time is too low
and the user always wins. Therefore, the optimal average time advance value we
are looking for is found in the middle of the steep slope of the plots.

ﬁ i
| SN/
| Sl

Length of game (s)

100 150 200 250 300 350 400

Game speed (ms)

—4—Slow ——Normal —&—Fast ——VeryFast

Fig. 9. Time till end

Programmed Graph Rewriting with Time for Simulation-Based Design 103

100

75
70

8
—
—
> B
T —
»
>

50

-
) Mool /
. / N
.). N

A % od

100 150 200 250 300 325 350 400

Victory frequency (%)

Game speed (ms)

——+—Slow ——Normal —&—Fast —<—VeryFast

Fig. 10. Victory frequency

Figure [[Q depicts the frequency with which a player will win a game (when
playing a large number of games) as a function of the time spent on the Ghost’s
decision. We decided that we want to deploy a game where the user should be
able to win with a probability of 75%. Thus, the optimal average Ghost time
advance (decision time) was found to be 325ms.

To give further insight in the variability of the game experience, Figure [IT]
shows the game length distribution at the optimal time advance value. It is a
unimodal distribution with a peak at 7.5s. This average is quite low, but not
surprising given the small game board. Experience with the finally deployed
real-time game application is consistent with this value.

5.3 Game Deployment

Having found a prediction for the optimal time the Decider block should spend
on the choosing the next movement of the ghost entity, we can now test the simu-
lated game with real users, in real-time. We simply discard the player model and
deploy the real-time game model (by executing the translated programmed graph
rewriting system in a real-time DEVS simulator). In an attempt to generate the
application completely from models, we (mostly) synthesized (yet another model
transformation) an Ajax/SVG-based application from the PacMan meta-model
built in AToM3.

104 E. Syriani and H. Vangheluwe

Frequency (%)

Length of Game (<)

Fig. 11. Game length distribution; Normal user, game time advance 325ms

6 Conclusions

In this article, we described the use of the Discrete-EVent system Specifica-
tion (DEVS) formalism for the specification of complex control structures for
programmed graph rewriting, with time. DEVS allows for highly modular, hi-
erarchical modelling of timed, reactive systems. In our approach, graphs are
embedded in events and individual rewrite rules are embedded in atomicDEVS
models. A side-effect of this approach is the introduction of an explicit notion
of time. This allows one to model a time-advance for every rule as well as to
interrupt (pre-empt) rule execution.

We have shown how the explicit notion of time allows for the simulation-
based design of reactive systems such as modern computer games. We used the
well-known game of PacMan as an example and modelled its dynamics with
programmed graph transformation based on DEVS. This allowed the modelling
of player behaviour, incorporating data about human players’ behaviour and re-
action times. We used the models of both player and game to evaluate, through
simulation, the playability of a game design. In particular, we proposed a playa-
bility performance metric and varied parameters of the PacMan game. This led
to an “optimal” (from a playability point of view) game configuration. The user
model was subsequently replaced by a web-based visual interface to a real player
and the game model was executed using a real-time DEVS simulator.

The use of graph transformation at the heart of this approach allows non-
software-experts to specify all aspects of the design in an intuitive fashion. The
resulting simulations give quantitative insight into optimal parameter choices.
This is an example of Modelling and Simulation Based Design, where the graph

Programmed Graph Rewriting with Time for Simulation-Based Design 105

transformation rules and the timed transformation system are modelled, as well
as the user (player) and the context. Having modelled all these aspects in the
same model transformation framework, MoTif, allows for simulation-based de-
sign.

The decision about which next move the computer player (Ghost) should
make was simplified by avoiding pathfinding concerns as mentioned in Section
T We plan to investigate the specification of pathfinding strategies by means
of graph transformation rules. This will require support for backtracking.

At the model structure level, it is noted how topologically similar the User
Controlled Rules and Ghost Move CRules are. Re-use and parametrization of
transformation models deserves further investigation.

Acknowledgments

The Canadian NSERC and MITACS agencies are gratefully acknowledged for
partial support of this work.

References

1. Nickel, U., Niere, J., Ziindorf, A.: Tool demonstration: The FUJABA environment.
In: ICSE 2000, pp. 742-745 (2000)

2. Agrawal, A., Karsai, G., Kalmar, Z., Neema, S., Shi, F., Vizhanyo, A.: The design of
a language for model transformations. Software and Systems Modeling (SoSyM) 5,
261-288 (2005)

3. Lengyel, L., Levendovszky, T., Mezei, G., Charaf, H.: Model transformation with a
visual control flow language. International Journal of Computer Science (IJCS) 1,
45-53 (2006)

4. Schiirr, A., Winter, A.J., Ziindorf, A.: Graph grammar engineering with PRO-
GRES. In: Proceedings of the 5th European Software Engineering Conference, pp.
219-234. Springer, Heidelberg (1995)

5. Schiirr, A., Rotschke, T., Amelunxen, C., Konigs, A.: MOFLON: A Standard-
Compliant Metamodeling Framework with Graph Transformations. In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 361-375. Springer,
Heidelberg (2006)

6. Syriani, E., Vangheluwe, H.: Programmed graph rewriting with DEVS. In: Applica-
tions of Graph Transformations with Industrial Relevance (AGTIVE), pp. 134-149
(2007)

7. Heckel, R.: Graph transformation in a nutshell. In: Proceedings of the School on
Foundations of Visual Modelling Techniques (FOVMT 2004) of the SegraVis Re-
search Training Network. ENTCS, vol. 148, pp. 187-198. Elsevier, Amsterdam
(2006)

8. de Lara, J., Vangheluwe, H.: AToM?: A tool for multi-formalism and meta-
modelling. In: Kutsche, R.-D., Weber, H. (eds.) ETAPS 2002 and FASE 2002.
LNCS, vol. 2306, pp. 174-188. Springer, Heidelberg (2002)

9. Zeigler, B.P.: Multifacetted Modelling and Discrete Event Simulation. Academic
Press, London (1984)

106 E. Syriani and H. Vangheluwe

10. Bolduc, J.S., Vangheluwe, H.: The modelling and simulation package PythonDEVS
for classical hierarchical DEVS. MSDL technical report MSDL-TR-2001-01, McGill
University (2001)

11. Guerra, E., de Lara, J.: Event-Driven Grammars: Towards the Integration of Meta-
modelling and Graph Transformation. In: Ehrig, H., Engels, G., Parisi-Presicce, F.,
Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 54-69. Springer, Heidelberg
(2004)

12. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4,
100-107 (1968)

13. Gyapay, S., Heckel, R., Varré, D.: Graph transformation with time: Causality and
logical clocks. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.)
ICGT 2002. LNCS, vol. 2505, pp. 120-134. Springer, Heidelberg (2002)

14. Zaitsev, A.V., Skorik, Y.A.: Mathematical description of sensorimotor reaction
time distribution. Human Physiology 28(4), 494-497 (2002)

	Programmed Graph Rewriting with Time for Simulation-Based Design
	Introduction
	Case Study: The PacMan Game
	The PacMan Language (Abstract and Concrete Syntax)
	The PacMan Semantics (Graph Transformation)

	DEVS for Programmed Graph Transformation
	The Discrete Event System Specification (DEVS)
	Controlled Graph Rewriting with DEVS
	The PacMan Case Study

	Modelling Game and Player
	Modelling the Player
	Modelling the Game
	Explicit Use of Time

	Simulation Experiments
	Modelling User Reaction Time
	Simulation Results
	Game Deployment

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

