
Non-Linear Reduced Round Attacks Against SHA-2 Hash family

Somitra Kumar Sanadhya⋆ and Palash Sarkar

Applied Statistics Unit,
Indian Statistical Institute,
203, B.T. Road, Kolkata,

India 700108.
somitra r@isical.ac.in, palash@isical.ac.in

Abstract. Most of the attacks against (reduced) SHA-2 family in literature have used local collisions which
are valid for linearized version of SHA-2 hash functions. Recently, at FSE ’08, an attack against reduced
round SHA-256 was presented by Nikolić and Biryukov which used a local collision which is valid for the
actual SHA-256 function. It is a 9-step local collision which starts by introducing a modular difference of 1
in the two messages. It succeeds with probability roughly 1/3. We build on the work of Nikolić and Biryukov
and provide a generalized nonlinear local collision which accepts an arbitrary initial message difference. This
local collision succeeds with probability 1. Using this local collision we present attacks against 18-step SHA-
256 and 18-step SHA-512 with arbitrary initial difference. Both of these attacks succeed with probability 1.
We then present special cases of our local collision and show two different differential paths for attacking
20-step SHA-256 and 20-step SHA-512. One of these paths is the same as presented by Nikolić and Biryukov
while the other one is a new differential path. Messages following both these differential paths can be found
with probability 1. This improves on the previous result where the success probability of 20-step attack was
1/3. Finally, we present two differential paths for 21-step collisions for SHA-256 and SHA-512, one of which
is a new path. The success probability of these paths for SHA-256 is roughly 2−15 and 2−17 which improves
on the 21-step attack having probability 2−19 reported earlier. We show examples of message pairs following
all the presented differential paths for up to 21-step collisions in SHA-256. We also show first real examples
of colliding message pairs for up to 20-step reduced SHA-512.

1 Introduction

Cryptanalysis of hash functions has been an area of intense interest to the research community since
past decade and a half. Many hash functions were broken in this time, most notable among them
are MD5 [12], SHA-0 [13] and theoretical break of SHA-1 [11]. This has directed the attention of the
cryptology community to the SHA-2 family of hash functions.

Known Results for the SHA-2 Family: Gilbert and Handschuh (GH) [2] were the first to study
local collisions in the SHA-2 family. They reported a 9-step local collision for linearized version of SHA-
256 and estimated the probability of the differential path to be 2−66. This probability estimate was
later improved by Hawkes et al. [3]. Sanadhya and Sarkar [7] presented 16 new 9-step local collisions for
SHA-2 family of hash functions. All these local collisions are also for the linearized version of SHA-256.
In [8], an algorithm for generating 18-step SHA-256 collisions was developed using one of these local
collisions and many colliding message pairs for 18-step SHA-256 were obtained. The message expansion
of SHA-256 was studied by Mendel et al. [4], who reported a colliding message pair for 18-step SHA-256
which was recently corrected in [5]. They used the linearized local collision from [2] in their work. Mendel
et al. [4] also improved the probability estimate of the Gilbert-Handschuh local collision to values similar
to those obtained in [3].

Recently, Nikolić and Biryukov [6] presented a new local collision which uses modular differences
instead of the XOR differences. Since this local collision is for the actual SHA-256 (and not its linearized
version), its probability is much higher than the linearized local collisions presented earlier. For the first
time in the literature, the authors in [6] worked directly with modular differences for SHA-256. Using
this local collision they obtained 20-step and 21-step collisions for SHA-256 with probabilities 1/3 and
1/219 respectively.

⋆ This author is supported by the Ministry of Information Technology, Govt. of India.



Our Contributions: We build on the work of Nikolić and Biryukov [6] and present a generalized non-
linear local collision which accepts an arbitrary initial message difference. In [6], sufficient conditions
for the differential path are determined and a particular local collision is obtained. We work with exact
solutions of conditions imposed by the differential path and obtain general solutions of these conditions.
Since we work with exact solutions of the conditions, our local collision is deterministic i.e. it holds with
probability 1. Using this local collision, we obtain collisions for 18-step SHA-256 and 18-step SHA-512
with an arbitrary initial message difference. These attacks succeed with probability 1.

Then we show special instances of our generalized local collision which are suitable for finding
collisions for 20-step SHA-256 and 20-step SHA-512. We present two such instances. One of these
instances is a new local collision which can be realized in two different ways. The other one is the same
as that presented by Nikolić and Biryukov for obtaining 20-step collision in [6]. However, unlike in [6],
our 20-step attacks succeed with probability 1.

Finally, we use 20-step collisions to obtain 21-step collisions for SHA-256 as in [6]. There the prob-
ability for 21-step SHA-256 collisions is experimentally estimated to be about 2−19. We improve the
efficiency of the probabilistic search used in this case and obtain 21-step collisions for SHA-256 with
estimated experimental probability of 2−15. This is also the first time that actual collisions for SHA-512
reduced up to 20 steps are presented.

2 Notation

In this paper we use the following notation:

– mi ∈ {0, 1}n, Wi ∈ {0, 1}n, W ′

i ∈ {0, 1}n for any i. The word size n is 32 for SHA-256 and 64 for
SHA-512.

– The colliding message pair: {m0, m1, m2, . . . m15} and {m′

0, m′

1, m′

2, . . . m′

15}.
– The expanded message pair: {W0, W1, W2, . . .Wr−1} and {W ′

0, W ′

1, W ′

2, . . .W ′

r−1}. The number of
steps r is 64 for SHA-256 and 80 for SHA-512.

– The internal registers for the two message pairs in step i: {ai, . . . , hi} and {a′i, . . . , h
′

i}.
– ROTRk(x): Right rotation of an n-bit quantity x by k bits.

– SHRk(x): Right shift of an n-bit quantity x by k bits.
– ⊕: bitwise XOR.
– +: addition modulo 2n.
– −: subtraction modulo 2n.
– δX = X ′ − X where X is an n-bit quantity.
– δΣ1(ei) = Σ1(e

′

i) − Σ1(ei).
– δΣ0(ai) = Σ0(a

′

i) − Σ0(ai).

– δf i
MAJ(x, y, z): Output difference of the fMAJ function in step i when its inputs differ by x, y and

z. That is, δf i
MAJ(x, y, z) = fMAJ(ai + x, bi + y, ci + z) − fMAJ(ai, bi, ci).

– δf i
IF (x, y, z): Output difference of the fIF function in step i when its inputs differ by x, y and z.

That is, δf i
IF (x, y, z) = fIF (ei + x, fi + y, gi + z) − fIF (ei, fi, gi).

3 The SHA-2 Hash Family

The newest members of SHA family of hash functions were standardized by US NIST in 2002 [10].
There are 2 differently designed functions in this standard: the SHA-256 and SHA-512. In addition,
the standard also specifies their truncated version: SHA-224 and SHA-384. The number in the name of
the hash function refers to the length of message digest produced by that function. Next we describe
SHA-256 and SHA-512 in detail.

The round function of SHA-2 hash family is shown in Figure 1. Eight registers are used in the
evaluation of SHA-2. The initial value in the registers is specified by an 8×n bit IV, n=32 for SHA-256



Fig. 1. Round function of SHA-2 hash family

+

+

+

+

+

+

+

ai−1 bi−1 ci−1 di−1 ei−1 fi−1 gi−1 hi−1

ai bi ci di ei fi gi hi

∑
0

∑
1

fIF

Ki

fMAJ

Wi

and 64 for SHA-512. In Step i, the 8 registers are updated from (ai−1, bi−1, ci−1, di−1, ei−1, fi−1, gi−1,
hi−1) to (ai, bi, ci, di, ei, fi, gi, hi) according to the following equations:

ai = Σ0(ai−1) + fMAJ(ai−1, bi−1, ci−1) + Σ1(ei−1)
+fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi

bi = ai−1

ci = bi−1

di = ci−1

ei = di−1 + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1)
+hi−1 + Ki + Wi

fi = ei−1

gi = fi−1

hi = gi−1







































































The fIF and the fMAJ are three variable boolean functions defined as:

fIF (x, y, z) = (x ∧ y) ⊕ (¬x ∧ z),
fMAJ(x, y, z) = (x ∧ y) ⊕ (y ∧ z) ⊕ (z ∧ x).

For SHA-256, the functions Σ0 and Σ1 are defined as:

Σ0(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x),
Σ1(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x).

For SHA-512, the corresponding functions are:

Σ0(x) = ROTR28(x) ⊕ ROTR34(x) ⊕ ROTR39(x),
Σ1(x) = ROTR14(x) ⊕ ROTR18(x) ⊕ ROTR41(x).

Round i uses a n-bit word Wi which is derived from the message and a constant word Ki. There
are 64 steps in SHA-256 and 80 in SHA-512. The hash function operates on a 512-bit (resp. 1024-bit)



message specified as 16 words of 32 (resp. 64) bits for SHA-256 (resp. SHA-512). Given the message
words m0, m1, . . . m15, the Wi ’s are computed using the equation:

Wi =

{

mi for 0 ≤ i ≤ 15
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 for 16 ≤ i ≤ 63 (or 80)

(1)

For SHA-256, the functions σ0 and σ1 are defined as:

σ0(x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x),
σ1(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x).

And for SHA-512, they are defined as:

σ0(x) = ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x),
σ1(x) = ROTR19(x) ⊕ ROTR61(x) ⊕ SHR6(x).

The IV = (a−1, b−1, c−1, d−1, e−1, f−1, g−1, h−1) is defined as (0x6a09e667, 0xbb67ae85, 0x3c6ef372,
0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19) for SHA-256. Different IV values are
defined for SHA-224, SHA-384 and SHA-512. For details, see [10].

The output hash value of a one block (512-bit for SHA-256 and 1024-bit for SHA-512) message is
obtained by chaining the IV with the register values at the end of the final round as per the Merkle-
Damg̊ard construction. A similar strategy is used for multi-block messages, where the IV for next block
is taken as the hash output of the previous block.

4 Collision Attacks Against the SHA-2 Hash Family

The aim of collision attacks against hash functions is to obtain two different messages which produce the
same digest under that hash function. The hash functions use one word of the message in each step and
process the message for multiple steps. Typically, an attacker introduces a small difference in one word of
the message. Using the terminology from [1], this initial difference is called the “perturbation message
difference”. Next few message words are chosen to differ in such a manner that all the introduced
differences cancel themselves with high probability. These later message word differences are called
“correction differences”.

Not all the message words used in different steps of the hash function are freely available to the
attacker. Most of the hash designs have 16 words of freedom which is available in the first 16 steps
of hash evaluation. Rest of the message words are computed on the basis of the first 16 words using
“message expansion”.

A “local collision” is a collision producing differential path (and the message differences required for
this path) spanning a small number of steps in which the message expansion in not considered. Gilbert
and Handschuh reported the first local collision for SHA-256 [2] using XOR differences in the message
words. Sanadhya and Sarkar [7] reported 16 other local collisions, all of which used XOR differences in
the message words. Very recently, Nikolić and Biryukov [6] showed a different type of local collision,
which used modular differences in the message words. The XOR difference based local collisions have
linear property, i.e. any number of them can be freely superimposed, whereas the modular difference
based local collision can not be superimposed freely. For this reason, we refer to them as “linear local
collisions” and “nonlinear local collisions” respectively.

We present our new nonlinear local collision next.

5 A General Class Of Nonlinear Local Collisions

Table 1 shows the general structure of a 9-step local collision for SHA-2 family. The perturbation message
difference is taken to be x and other message differences are later computed. In Table 1, the registers
(ai−1, . . . , hi−1) and Wi are inputs to Step i of the hash evaluation and this step outputs the registers
(ai, . . . , hi).



Table 1. A 9-step nonlinear local collision for SHA-256.

Step i δWi δai δbi δci δdi δei δfi δgi δhi

i − 1 0 0 0 0 0 0 0 0 0

i x x 0 0 0 x 0 0 0

i + 1 δWi+1 0 x 0 0 y x 0 0

i + 2 δWi+2 0 0 x 0 z y x 0

i + 3 δWi+3 0 0 0 x 0 z y x

i + 4 δWi+4 0 0 0 0 x 0 z y

i + 5 δWi+5 0 0 0 0 0 x 0 z

i + 6 δWi+6 0 0 0 0 0 0 x 0

i + 7 δWi+7 0 0 0 0 0 0 0 x

i + 8 δWi+8 0 0 0 0 0 0 0 0

5.1 Message Word Differences for Table 1

In Step i of SHA-2, only the registers ai and ei are computed. Rest of the registers are copies of the old
ones. Therefore we focus on these two register evaluations only. From (1), we get:

δei = δΣ1(ei−1) + δfIF (δei−1, δfi−1, δgi−1) + δdi−1 + δhi−1 + δWi, (2)

δai = δΣ0(ai−1) + δfMAJ(δai−1, δbi−1, δci−1) + δΣ1(ei−1) +

δfIF (δei−1, δfi−1, δgi−1) + δhi−1 + δWi,

= δΣ0(ai−1) + δfMAJ(δai−1, δbi−1, δci−1) + δei − δdi−1. (3)

We now try to satisfy the restriction imposed by the differential path of Table 1 by defining suitable
difference of the message words in various steps.

Step i : If δWi = x, then this difference will propagate to both the registers ai and ei.

Step (i+1) : At this step a′i − ai = e′i − ei = x. We want δai+1 = 0 and δei+1 = y. From (3) and (2),
we get:

δai+1 = 0 = δΣ0(ai) + δf i
MAJ(x, 0, 0) + δΣ1(ei) + δf i

IF (x, 0, 0) + δWi+1,

δei+1 = y = δΣ1(ei) + δf i
IF (x, 0, 0) + δWi+1.

The exact solution of the equations above is:

y = −δΣ0(ai) − δf i
MAJ(x, 0, 0), (4)

δWi+1 = y − δf i
IF (x, 0, 0) − δΣ1(ei). (5)

Step (i+2) : At this step b′i+1 − bi+1 = f ′

i+1 − fi+1 = x and e′i+1 − ei+1 = y. We want δai+2 = 0 and
δei+2 = z. From (3) and (2), we get:

δai+2 = 0 = δf i+1

MAJ(0, x, 0) + δΣ1(ei+1) + δf i+1

IF (y, x, 0) + δWi+2,

δei+2 = z = δΣ1(ei+1) + δf i+1

IF (y, x, 0) + δWi+2.

The conditions above translate to:

z = −δf i+1

MAJ(0, x, 0), (6)

δWi+2 = z − δf i+1

IF (y, x, 0) − δΣ1(ei+1). (7)



Step (i+3) : At this step c′i+2 − ci+2 = g′i+2 − gi+2 = x, e′i+2 − ei+2 = z and f ′

i+2 − fi+2 = y. We want
δai+3 = 0 and δei+3 = 0. From (3) and (2), we get:

δai+3 = 0 = δf i+2

MAJ(0, 0, x) + δΣ1(ei+2) + δf i+2

IF (z, y, x) + δWi+3,

δei+3 = 0 = δΣ1(ei+2) + δf i+2

IF (z, y, x) + δWi+3.

The conditions above translate to:

δf i+2

MAJ(0, 0, x) = 0, (8)

δWi+3 = −δf i+2

IF (z, y, x) − δΣ1(ei+2). (9)

Step (i+4) : At this step d′i+3 − di+3 = h′

i+3 − hi+3 = x, f ′

i+3 − fi+3 = z and g′i+3 − gi+3 = y. We
want δai+4 = 0 and δei+4 = x. From (3) and (2), we get:

δai+4 = 0 = δf i+3

IF (0, z, y) + x + δWi+4,

δei+4 = x = δf i+3

IF (0, z, y) + x + x + δWi+4.

The conditions above translate to:

δWi+4 = −x − δf i+3

IF (0, z, y). (10)

Step (i+5) : At this step e′i+4 − ei+4 = x, g′i+4 − gi+4 = z and h′

i+4 − hi+4 = y. We want δai+5 =
δei+5 = 0. From (3) and (2), we get:

δai+5 = 0 = δΣ1(ei+4) + δf i+4

IF (x, 0, z) + y + δWi+5,

δei+5 = 0 = δΣ1(ei+4) + δf i+4

IF (x, 0, z) + y + δWi+5.

The conditions above translate to:

δWi+5 = −y − δf i+4

IF (x, 0, z) − δΣ1(ei+4). (11)

Step (i+6) : At this step f ′

i+5 − fi+5 = x and h′

i+5 − hi+5 = z. We want δai+6 = δei+6 = 0. From (3)
and (2), we get:

δai+6 = 0 = δf i+5

IF (0, x, 0) + z + δWi+6,

δei+6 = 0 = δf i+5

IF (0, x, 0) + z + δWi+6.

The conditions above translate to:

δWi+6 = −z − δf i+5

IF (0, x, 0). (12)

Step (i+7) : At this step g′i+6 − gi+6 = x. We want δai+7 = δei+7 = 0. From (3) and (2), we get:

δai+7 = 0 = δf i+6

IF (0, 0, x) + δWi+7,

δei+7 = 0 = δf i+6

IF (0, 0, x) + δWi+7.

The conditions above translate to:

δWi+7 = −δf i+6

IF (0, 0, x). (13)

Step (i+8) : At this step h′

i+7 − hi+7 = x. We want δai+8 = δei+8 = 0. This will happen as desired if
we have:

δWi+8 = −x. (14)



5.2 Solution of Equations

To find a local collision, we need message pairs which will satisfy (4) to (14). Out of these, only (8) puts
restrictions on the message pair. Rest of the equations merely define the correction message differences.
For clarity, we reproduce the condition here.

δf i+2

MAJ(0, 0, x) = 0.

Next we explain how to satisfy this condition easily. This is based on the technique in [6]. The fMAJ

function has registers (a, b, c) as inputs. The necessary condition for the two different inputs to the fMAJ

to not propagate the difference in the output is that :

– Registers ai+2 and bi+2 must have same value at those bit positions where registers c′i+2 and ci+2

differ.

Note that bi+2 = ai+1. Although the condition above requires us to ensure equality of bit patterns
in the two registers only at some places, we can strengthen this condition a little and try to make these
register values exactly equal. Thus, we need to satisfy ai+2 = ai+1.

Note that we have put no restriction on the message words themselves in solving earlier equations.
The only restrictions are on the “difference” of messages. To ensure the equality of the registers as
desired, we can now put some conditions on the actual message word Wi+2. When the (i + 2)th step
of the hash evaluation is executed, the registers {ai+1, . . . , hi+1} will already be available. So we can
choose Wi+2 such that it produces a value in register ai+2 which is equal to the already known value
ai+1. This requires solving the following equations simultaneously:

ai+2 = Σ0(ai+1) + fMAJ(ai+1, bi+1, ci+1) + Σ1(ei+1) + fIF (ei+1, fi+1, gi+1) + hi+1 + Ki+2 + Wi+2,

ai+2 = ai+1.

Hence, we choose Wi+2 such that:

Wi+2 = ai+1 −Σ0(ai+1)− fMAJ(ai+1, bi+1, ci+1)−Σ1(ei+1)− fIF (ei+1, fi+1, gi+1)− hi+1 −Ki+2. (15)

5.3 Obtaining a Local Collision

To obtain the 9-step local collision as in Table 1, we first select the perturbation message difference δWi

as a randomly generated 32-bit (or 64-bit) quantity x. The differences δWj for j ∈ {(i + 1), . . . , (i + 8)}
are defined by (5), (7), (9), (10), (11), (12), (13) and (14). In addition, as discussed in the last section,
we choose Wi+2 such that (15) is satisfied. Rest of the message words could be any randomly chosen
32-bit (or 64-bit) words. This local collision holds with probability 1, since all the steps are deterministic
and feasible.

6 Extending a Single Local Collision to Obtain 18-Step Collisions

In this section we explain how to obtain 18-step collisions using the local collision shown in this paper.
We discuss three different types of differential paths depending on the value of the differential z used
in δei+2 to δhi+5 in Table 1.

For all the different cases that we describe next, we choose to span the 9-step local collision from
Step 3 to Step 11. The message differentials δWi for i ∈ {3, 4, . . . , 11} are defined by the local collision.
We use a single local collision, which implies that all the other free message words are equal. That is,
δWi = 0 for i ∈ {0, 1, 2, 12, 13, 14, 15}.

First two steps of message expansion of SHA-2 define the message words W16 and W17 as follows:

W16 = σ1(W14) + W9 + σ0(W1) + W0

W17 = σ1(W15) + W10 + σ0(W2) + W1



From these two equations, it is clear that if δW9 = δW10 = 0 then the two expanded message words
will be equal for Steps 17 and 18. This will result in an 18-step collision for SHA-2. Note that δW9 and
δW10 correspond to Steps 7 and 8 of the local collision used. Hence our target is to get differentials of
the message in these two steps to vanish.

6.1 When z = 0 in the Local Collision

In this case the local collision looks similar to the one given in [6]. But note that that our local collision
accepts any random message difference x, whereas in [6] the specific value x = 1 is used.

As explained above, we need to ensure that (12) and (13) give zero differences. In addition we also
need z = 0 from (6).

To get z = 0, we need to have δf4
MAJ(0, x, 0) = 0. Similar to the methods used in Section 5.2, we

can ensure this by the sufficient condition a4 = c4 (i.e. a4 = a2) which can be deterministically satisfied
by suitable choice of W4.

Next we need two consecutive message differences zero at Steps 10 and 11 of the differential path.
Equation 12 corresponding to Step 10 gives zero difference if δf8

IF (0, x, 0) = 0. This can be determinis-
tically satisfied by choosing W8 such that e8 = 0. In this case, fIF selects its third argument which does
not have any difference. Similarly (13) can be satisfied by choosing W9 such that δf9

IF (0, 0, x) = 0 i.e.
this time we need e9 = −1. Thus we can deterministically obtain 18-step collisions for SHA-2 for any
random initial perturbation x. Message pairs colliding for 18-step SHA-256 and for 18-step SHA-512
with initial perturbation selected randomly are given in Section A.

6.2 When z 6= 0 in the Local Collision

As before, we need that (12) and (13) give zero difference in message words. Stating these equations
explicitly, we require that:

−z = fIF (e8, f8 + x, g8) − fIF (e8, f8, g8), (16)

0 = fIF (e9, f9, g9 + x) − fIF (e9, f9, g9). (17)

Equation 17 is easy to satisfy by selecting W9 such that e9 = −1. Then fIF selects its second
argument which does not have any difference. However, (16) is not easily satisfied this time. This
equation is easy to solve only for special z values of the type z = 0 or z = ±x. To have an 18-step
collision, we need z to take these special values. We discuss the two non-zero cases for z separately.

When z = −x: The value z gets defined by (6). So we need to handle this equation, which states that:

z = −δf4
MAJ(0, x, 0).

This puts restrictions on the values of the registers {a4, b4, c4} and perturbation difference x such
that the following condition holds:

fMAJ(a4, b4 + x, c4) − fMAJ(a4, b4, c4) = x. (18)

Left hand side of (18) can be thought of as a function which accepts 4 words of input and returns
1 word of output. Clearly, there are many solutions to this equation. One solution to this equation is
a4 = −1, c4 = 0 with b4 being any arbitrary value. For any x, this will be a solution to (18). [This
solution was suggested by an anonymous reviewer of ACISP 2008.] Alternately, random search of the 4
word space can be made which also quickly gives solutions for (18). The cost of finding random solutions
to this equation is also negligible.

Once some values for (a4, b4, c4) = (a4, a3, a2) and x which satisfy (18) have been selected, we need to
have these register values in the differential path at the appropriate step. This can be done by choosing



W4, W3 and W2 appropriately. Let the selected values of (a4, a3, a2) be (α, β, γ). Then the message
words should be chosen to satisfy the following equations:

W2 = γ − Σ0(a1) − fMAJ(a1, b1, c1) − Σ1(e1) − fIF (e1, f1, g1) − h1 − K2, (19)

W3 = β − Σ0(γ) − fMAJ(γ, b2, c2) − Σ1(e2) − fIF (e2, f2, g2) − h2 − K3, (20)

W4 = α − Σ0(β) − fMAJ(β, γ, c3) − Σ1(e3) − fIF (e3, f3, g3) − h3 − K4. (21)

We also need to satisfy (16). This is easily handled by having e8 = −1 so that fIF selects its middle
argument and propagates the difference x. This can be done by choosing W8 appropriately.

To summarize, we start a local collision spanning Steps 3 to 11 and choose some values of (a4, a3, a2)
and x such that (18) is satisfied. The differences in messages words δWi for i ∈ {3, 4, . . . 11} are defined
by the local collision. In addition, we select message words W2, W3 and W4 by solving (19), (20) and (21).
The local collision also requires us to choose W5 in a particular manner (as explained in Section 5.2).
Finally, we need to choose W8 and W9 so as to ensure that e8 = e9 = −1. Rest of the message words
can be selected randomly. Note that we must first select W0 and W1 and then only can we solve for
W2, W3 and W4 etc. Further, the only cost involved in obtaining such 18-step collisions is in selecting
suitable values of (a4, b4, c4) and x. The 18-step collision, which is obtained after any solution of (18) is
chosen, holds with probability 1.

When z = x: This time the majority condition takes the form:

fMAJ(a4, b4 + x, c4) − fMAJ(a4, b4, c4) = −x. (22)

There are many solutions to this equation as well. In particular, one subset of solutions is given by
the following choice of the variables: a4=b4=p and c4=p+x where p is any arbitrary 32-bit quantity and
x = 231. This solution works because 231 = −231 in modulo 232 arithmetic. The SHA-512 case is similar
where we can use 263 in place of 231. The cost for finding random 32-bit solutions for the above equation
is experimentally found to be about 224. This means that finding a random solution for SHA-256 takes
a few seconds on an ordinary PC. Few such solutions for 32-bit words are listed in Table 2.

Table 2. Example values of register (a, b, c) and x such that fMAJ (a, b + x, c)− fMAJ (a, b, c) = −x. Registers a and c can
also be exchanged due to the symmetry of fMAJ .

No. a b c x

1 0 0 80000000 80000000

2 44070d26 9f85286b 823480b1 7ffdfffc

3 1b1704f1 511209a2 f504556a 00000100

4 fcbeab96 a56c2117 0f94f865 fe27f002

5 a4cffbbd 8266ace3 392a62f6 fffffffa

In this case, (12) and (13) are:

δW9 = −x − δf8
IF (0, x, 0)

δW10 = −δf9
IF (0, 0, x)

The right hand side of the second equation above can be made zero by choosing e9 = −1 so that
the fIF function chooses its middle argument. This can be achieved by suitably choosing W9. We use
random choices of words to obtain δW9 = 0. The complexity of this step is directly related to the
hamming weight of x. For a 1-bit x the probability of satisfying this step is about 1/2 to 1/23. For



20-bit x this equation gets satisfied with probability about 1/28 to 1/220. This cost is equivalent to a
fraction of a second on an ordinary PC.

To summarize, we start a local collision spanning steps 3 to 11 and choose some values of (a4, a3, a2)
and x such that (22) is satisfied. The differences in messages words δWi for i ∈ {3, 4, . . . 11} are defined
by the local collision. In addition, we select message words W2, W3 and W4 by solving (19), (20) and (21).
The word W8 is selected as explained above. Besides, W5 is selected in the same way as in Section 5.2.
Rest of the message words can be selected randomly.

There are two costs involved in obtaining such 18-step collisions: (1) Selecting suitable values of
(a4, b4, c4) and x satisfying (22), and (2) Satisfying δW9 = 0. The first condition can be always satisfied
by choosing suitable pre-computed values. The only probability for such 18-step collisions comes from
the satisfaction of the second condition.

Message pairs colliding for 18-step SHA-256 and 18-step SHA-512 following this differential path
(for both the cases z = x and z = −x) are shown in Section A.

7 Extending a Single Local Collision to Obtain 20-Step Collisions

We follow the technique used in [6] to obtain 20-step collisions for SHA-256. This time we need to handle
first 4 steps of message expansion. These steps are:

W16 = σ1(W14) + W9 + σ0(W1) + W0

W17 = σ1(W15) + W10 + σ0(W2) + W1

W18 = σ1(W16) + W11 + σ0(W3) + W2

W19 = σ1(W17) + W12 + σ0(W4) + W3

If a single local collision spanning from Step 5 to Step 13 is used and all other messages outside the
scope of this local collision are taken to have zero differentials, then δWi = 0 for i ∈ {0, 1, 2, 3, 4, 14, 15}.
This implies that if we can have δW9 = δW10 = δW11 = δW12 = 0, then the differentials of the first 4
expanded message words will be zero. In this case the message expansion will not play a role and we
will be able to extend a single local collision to 20 steps.

The local collision presented in [6] is such that the message differentials at steps i+4 to i+7 are zero
for it (i = 5 is the starting step of the local collision). Hence it can be used to obtain 20-step collisions
directly. The local collision we presented is more general but does not necessarily have 4 consecutive
message differentials equal to zero. Now we find particular instances of our local collision such that we
have zero differentials as desired. This time we work with sufficient conditions as in [6].

To obtain the 4 consecutive zero differentials in the local collision, we need to have differentials
generated by (10), (11), (12) and (13) (corresponding to Steps 9, 10, 11 and 12 of the differential path)
to be equal to zero. We next discuss the conditions put by these equations. We also need to control the
values of y and z by (4) and (6). As in [6], we start the local collision by choosing x = 1.

Equation 4: This equation contains the term δΣ0(a5) = Σ0(a
′

5) − Σ0(a5). From the differential path
we know that δa5 = a′5 − a5 = x. Differential behavior of the non-linear function Σ0 is difficult to
analyze. To make it tractable, we choose δΣ0(a5) = x = 1. For this case, the only solutions are
a5 = −1 = 0xffffffff and a′5 = 0. We also put restriction that the fMAJ term doesn’t propagate
any difference. This condition f5

MAJ(x, 0, 0) = 0 implies b5 = c5, i.e. a4 = a3. Conditions on a4 and a5

registers can be deterministically satisfied by choosing W4 and W5 suitably. By the choices made above,
this equation gives y = −1.

Equation 11: This equation contains the term δΣ1(e9) = Σ1(e
′

9)−Σ1(e9). From the differential path
we know that δe9 = e′9 − e9 = x. Differential behaviour of the non-linear function Σ1 is difficult to
analyze. Similar to the previous equation, we choose δΣ1(e9) = x = 1. Once again, the only solutions



are e9 = −1 = 0xffffffff and e′9 = 0. This condition can be deterministically satisfied by choosing
W9 suitably. Finally, we wish to make the following difference zero:

δW10 = −y − δf9
IF (x, 0, z) − δΣ1(e9)

= −(−1) − (fIF (e9 + 1, e8, e7 + z) − fIF (e9, e8, e7)) − (Σ(e9 + 1) − Σ1(e9))

= 1 − fIF (0, e8, e7 + z) + fIF (−1, e8, e7) − 1

= e8 − e7 − z

We have already chosen suitable values for x and y but z is still free. Having worked with the 18-step
collisions earlier, we realize that only suitable values for z are 0, +1 and −1.

Equation 13: This equation is the easiest to satisfy. We need δW12 = 0. But δW12 = δf11
IF (0, 0, x). If

the fIF function chooses its middle argument then we will have the desired. Hence we need to ensure
e11 = −1. This can be done deterministically by choosing W11 suitably.

Equation 8: This is a condition which needs to be satisfied. To get δf7
MAJ(0, 0, x) = 0, it is sufficient

to ensure that a7 = a6. This can be done deterministically by choosing W7 suitably.
All the conditions are summarized in Table 3.

Table 3. Conditions put on the registers and differential path along with conditions yet to be satisfied.

1 x = 1, y = −1 5 e8 − z − e7 = 0 (11)

2 a4 = a3, a5 = −1 6 δf6
MAJ (0, x, 0) = −z (6)

3 a7 = a6 7 −x = δf8
IF (0, z, y) (10)

4 e9 = −1, e11 = −1 8 δf10
IF (0, x, 0) = −z (12)

We need to consider three choices for z: 0, 1 and −1. The middle arguments to the δf 6
MAJ function

are a5 + 1 and a5, both of which have already been set to specific values 0 and −1 respectively (Cf.
Condition 2). This causes difficulty in the satisfaction of Condition 6 in Table 3 for z = 1. Hence we
consider the other two values for z now.

7.1 When z = 0

This is the same 20-step differential path considered in [6]. We now attempt to satisfy conditions 5 to
8 in Table 3.

– Taking a6 = a4 satisfies condition 6. This can be done by suitably choosing W6.
– Taking e8 = e7 satisfies condition 5. This can be done by suitably choosing W8.
– Taking e10 = 0 satisfies condition 8. This can be done by suitably choosing W10.

The only condition remaining now is Condition 7 which is δf8
IF (0, 0,−1) = −1. There is no message

freedom left to satisfy this condition. In [6], this condition is let to be free and is satisfied with probability
1/3 by random choices of messages. We now show that it is possible to satisfy even this condition
deterministically.

It is clear that if we have e8 = 0 then fIF will select its last argument which has a difference of −1.
Thus the output of fIF will be −1 as desired. But we have already chosen W8 such that e8 = e7. All
the earlier message words starting from W4 have also been used to satisfy some condition or the other.
We now look at the calculation of e7:

e7 = d6 + Σ1(e6) + fIF (e6, f6, g6) + h6 + K7 + W7

= d6 + a7 − Σ0(a6) − fMAJ(a6, b6, c6)

= a3 + a7 − Σ0(a6) − fMAJ(a6, a5, a4)

= a4 + a6 − Σ0(a6) − fMAJ(a6,−1, a4)



If we can ensure that a6 = a4 = 0 then e7 = e8 = 0 will be deterministic, which in turn will lead to a
20-step collision with probability 1. We used W4 to get a4 = a3 earlier. Now we choose the free word
W3 to get a3 = 0. Rest of the conditions remain the same as in [6] and we get 20-step deterministic
collisions for SHA-2. Examples of colliding message pairs for 20-step SHA-256 and SHA-512 are given
in Section A. The set of conditions on the registers are given as Case 1 in Table 4.

Table 4. Conditions on the registers for 20-step deterministic collisions for SHA-2. Satisfaction of these conditions lead
to 20-step collisions for SHA-2 with probability 1. A condition on ai (or ei) can be satisfied by suitable choice of Wi. The
condition on e7 in each case gets satisfied automatically when other conditions are met.

Case 1 x = 1, y = −1, z = 0

1 a3 = a4 = 0, a5 = −1, a6 = a7 = 0

2 e7 = e8 = 0, e10 = 0, e9 = e11 = −1

Case 2-A x = 1, y = −1, z = −1

1 a3 = a4 = −1, a5 = −1, a6 = a7 = 0

2 e7 = 0, e8 = −1, e9 = −1, e10 = e11 = −1

Case 2-B x = 1, y = −1, z = −1

1 a3 = a4 = 0, a5 = −1, a6 = a7 = −1

2 e7 = 1, e8 = 0, e9 = −1, e10 = e11 = −1

7.2 When z = −1

Similar to the case z = 0 above, we can determine conditions for 20-step collisions in SHA-2 and
deterministically satisfy all the conditions. This time we get two sets of conditions. These are listed as
Case 2-A and 2-B in Table 4. Note that this case gives rise to a new 20-step differential path for SHA-2.
Colliding pairs of messages satisfying these conditions are given in Section A.

8 Extending a Single Local Collision to Obtain 21-Step Collisions

Using a single local collision to obtain 21-step collisions appears difficult because initial message words
start repeating in the recursion of the message expansion this time. In [6], a single local collision spanning
from Step 6 to Step 14 is used and a 21-step collision for SHA-256 is obtained probabilistically. Note
that the earlier 20-step collisions had the local collision spanning from Step 5 to Step 13. This time the
local collision has been slid down by one step. We first describe the method used in [6].

First 5 steps of message expansion for SHA-2 are:

W16 = σ1(W14) + W9 + σ0(W1) + W0

W17 = σ1(W15) + W10 + σ0(W2) + W1

W18 = σ1(W16) + W11 + σ0(W3) + W2

W19 = σ1(W17) + W12 + σ0(W4) + W3

W20 = σ1(W18) + W13 + σ0(W5) + W4

Since the chosen local collision has 4 consecutive zero message differentials within its span, we have
δWi = 0 for i ∈ {10, 11, 12, 13}. Further, this being the only local collision, messages outside the span
of the local collision do not have any difference. Thus, we also have δWi = 0 for i ∈ {0, 1, 2, 3, 4, 5, 15}.
Terms which may have non-zero differentials in the above equations are underlined.

All these zero differentials imply that if δσ1(W14) + δW9 = 0 then the first 5 steps of the message
expansion will not produce any difference, and we will have a 21-step collision. Since both W14 and W9

are random, it can be expected that they will cancel the differences in this manner. The probability



for this cancellation to happen is estimated to be about 2−17.5 in [6]. Since their local collision has
probability roughly 1/3, the probability of the 21-step collision is estimated to be approximately 2−19.

We use the same technique for our deterministic 20-step collisions and slide the single local collision
one step to attempt a 21-step collision. We first observe that in having the 20-step collisions with
probability 1, we have lost some message freedom and consequently, δW9 is no more random for two of
the three cases described in Table 4. This happens for Case 1 and Case 2-B from this table. For proof
of this claim, see Section B.

To use the 20-step collision described by Case 1 in Table 4, we need to relax some of the conditions
there and obtain some randomness in δW9. An example of such a relaxation is not to enforce a3 = a4 = 0,
rather only ensure a3 = a4. This also causes relaxation on the condition on e7, and the 20-step collision
becomes probabilistic now. In fact, this is exactly the same 20-step collision described in [6]. The 21-step
collision can now be found for this case as described in [6]. We describe an improvement to the search
for messages satisfying δσ1(W14) + δW9 = 0 a little later.

We note that the conditions in case 2-B of Table 4 cannot be relaxed to obtain randomness in δW9

and consequently this case can not be used for 21-step collisions. We also note that Case 2-A introduces
randomness in δW9 by default, so we do not need to relax any condition for this case. This is a good case
for obtaining 21-step collisions, since it has probability 1 for all the steps other than the cancellation
of δW9 as described above. Next we describe our improved method of searching for suitable messages
such that the difference in W14 and W9 cancels the difference in W18.

8.1 Obtaining messages satisfying δσ1(δW14) + δW9 = 0

We have that δW14 = W ′

14−W14 = −1. We expect δW9 to be random. It is stated in [6] that by random
choice of message words, the condition above can be satisfied with probability 2−17.5. This expectation
seems to be based on the randomness of δσ1(W14). We note that the difference of two σ1 terms when
their inputs differ by −1 is highly non-random.

The choices made in the local collision make the term δW9 biased towards values which are small
in magnitude. A rough idea of the distribution of δW9 can be had from the following example: We ran
the code for 21-step collisions of [6] 5 × 105 times and observed that only 174 times the value of δW9

came out to be larger than 1000 in magnitude. Further, there were only 334 values larger than 500, 594
values larger than 300 and 1870 values larger than 100.

At the same time, σ1(W14 − 1) − σ1(W14) is biased towards large magnitudes for random values of
W14. In fact, for a large number of points p ∈ {0, 1}32 there is no solution to the equation σ1(W14 −
1) − σ1(W14) = −δW9 = p. Interestingly, this equation does not have any solution for W14 for even
values of p. The distribution of the left hand side of this equation is so non-uniform that there are only
4 values of δW9 in {−300, 300} for which a solution for W14 exists. We list these 4 values of δW9 and
corresponding values of W14 in Table 5.

Table 5. Some solutions to the equation σ1(W14 − 1) − σ1(W14) + δW9 = 0 for SHA-256.

No. δW9 W14

1 00000041 7fc00000, 80400000

2 00000101 d5000000, 81000000, 7f000000, 2b000000

3 ffffff41 4c400000, b3c00000

4 ffffff01 19000000, 4d000000, b3000000, e7000000

This analysis suggests that a specific suitable value of δW9 should first be selected and then we
should search for corresponding W14. Even if this procedure is used, the probability of being able to get
the correct W14 is of the order of 2−32. This implies that the search in [6] is not over random messages,



rather a pre-computed value of W14 is used for a specific δW9. From the colliding message pair given
in [6], we observe that the value of δW9 used is ffffff01 and the corresponding W14 is 19000000. This
particular choice of δW9 occurs with probability 2−17.5 which corresponds to the estimate given in [6].

We use a speed-up in the search for the correct W14. First we create a list of pairs (σ1(p)−σ1(p−1), p)
for all p ∈ {0, 1}32. We sort this list on the first element. While running the code for 21-step collision,
we compute δW9 and do a binary search over this list. If this value matches with the first element of a
pair in the list, then we use the second element to define W14. With this improvement, we obtain a 16
fold improvement to the probability of obtaining the correct δW9. Since W14 is pre-computed, the only
probability is in getting the right difference δW9.

We have extended two types of 20-step collisions to obtain 21-step collisions for SHA-256. One of
the local collisions is the Case 1 of Table 4 with some conditions relaxed. As already mentioned, this
is the Nikolić-Biryukov local collision [6] having probability 1/3. For this case our method succeeds in
finding correct δW9 with probability roughly 2−13.5. Thus the overall probability of the 21-step SHA-256
collision is about 2−15.

The second 20-step collision we extend to 21 steps is described by Case 2-A of Table 4. For this case,
we could find suitable δW9 with probability roughly 2−17. Since the probability of the 20-step collision
is 1 in this case, we get the 21-step collision with probability roughly 2−17.

9 Conclusions

In this paper we presented a generalized local collision for SHA-2. Using a single instance of this local
collision, we obtained 18-step collisions with an arbitrary starting message difference. These collisions
hold with probability 1. We then presented two different differential paths for 20-step collisions in SHA-2
both of which hold with probability 1. Finally, we improved on the search for 21-step collisions in SHA-
256 increasing the probability of success 16 fold. Apart from the colliding message pairs for different
cases and different number of steps for SHA-256, we also show colliding message pairs for up to 20-step
SHA-512 for the first time in the literature.

Acknowledgements

We would like to thank anonymous reviewers of ACISP 2008 for giving useful suggestions.

References

1. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo Krawczyk, editor, Advances in Cryptology

- CRYPTO 1998, 18th Annual International Cryptology Conference, Santa Barbara, California, USA, August 23-27,

1998, Proceedings, volume 1462 of Lecture Notes in Computer Science, pages 56–71. Springer, 1998.
2. Henri Gilbert and Helena Handschuh. Security Analysis of SHA-256 and Sisters. In Mitsuru Matsui and Robert J.

Zuccherato, editors, Selected Areas in Cryptography, 10th Annual International Workshop, SAC 2003, Ottawa, Canada,

August 14-15, 2003, Revised Papers, volume 3006 of Lecture Notes in Computer Science, pages 175–193. Springer, 2003.
3. Philip Hawkes, Michael Paddon, and Gregory G. Rose. On Corrective Patterns for the SHA-2 Family. Cryptology

eprint Archive, August 2004. Available at http://eprint.iacr.org/2004/207.
4. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Analysis of Step-Reduced SHA-256.

In Matthew J. B. Robshaw, editor, Fast Software Encryption, 13th International Workshop, FSE 2006, Graz, Austria,

March 15-17, 2006, Revised Selected Papers, volume 4047 of Lecture Notes in Computer Science, pages 126–143.
Springer, 2006.

5. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Analysis of Step-Reduced SHA-256.
Cryptology eprint Archive, March 2008. Available at http://eprint.iacr.org/2008/130.

6. Ivica Nikolić and Alex Biryukov. Collisions for Step-Reduced SHA-256. In Kaisa Nyberg, editor, Fast Software

Encryption 2008, volume Pre-proceedings version of Lecture Notes in Computer Science, pages 1–16. Springer, 2008.
7. Somitra Kumar Sanadhya and Palash Sarkar. New Local Collisions for the SHA-2 Hash Family. In Kil-Hyun Nam

and Gwangsoo Rhee, editors, Information Security and Cryptology - ICISC 2007, 10th International Conference,

Seoul, Korea, November 29-30, 2007, Proceedings, volume 4817 of Lecture Notes in Computer Science, pages 193–205.
Springer, 2007.



8. Somitra Kumar Sanadhya and Palash Sarkar. Attacking Reduced Round SHA-256. In Steven Bellovin and Rosario
Gennaro, editors, Applied Cryptography and Network Security - ACNS 2008, 6th International Conference, New York,

NY, June 03-06, 2008, Proceedings, volume To appear of Lecture Notes in Computer Science. Springer, 2008.
9. Victor Shoup, editor. Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference,

Santa Barbara, California, USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer Science.
Springer, 2005.

10. Secure Hash Standard. Federal Information Processing Standard Publication 180-2. U.S. Department of Commerce,
National Institute of Standards and Technology(NIST), 2002. Available at http://csrc.nist.gov/publications/

fips/fips180-2/fips180-2withchangenotice.pdf.
11. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-1. In Shoup [9], pages 17–36.
12. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In Ronald Cramer, editor, Advances

in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in Computer

Science, pages 19–35. Springer, 2005.
13. Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision Search Attacks on SHA-0. In Shoup [9], pages

1–16.

A Colliding message pairs

Table 6. Colliding message pair for 18-step SHA-256 with standard IV. These messages follow the differential path of
Table 1 with x = b875622d, y = e4bfa8a5, z = 0.

W1 0-7 e6f590fc 58f290f9 53ac42fa 3a7c9ee6 30dc2357 2ee1b785 0abebaa2 f61d8c82

8-15 147e048b 501bc66b 75a3d802 3c9ca879 8f454627 8b3ff382 55a4de5a a3e613ea

W2 0-7 e6f590fc 58f290f9 53ac42fa f2f20113 87b66fa8 77801baf 57d16843 9da87bd1

8-15 9d408abf 501bc66b 75a3d802 8427464c 8f454627 8b3ff382 55a4de5a a3e613ea

Table 7. Colliding message pair for 18-step SHA-256 with standard IV. These messages follow the differential path of
Table 1 with x = 60097ffe, y = a5dba93b, z = x.

W1 0-7 9868945f 43e023b2 672e208d d5c4df8c 294d3db9 a7bbabdc 20ff800b 76bad5a7

8-15 1e09c4ef e778eba6 406fc989 0f0f6380 b91e9155 7965e503 f4c4c13a 57301b93

W2 0-7 9868945f 43e023b2 672e208d 35ce5f8a d3a2bd52 63ff4094 c0be1992 78b4cf6e

8-15 3407e934 e778eba6 406fc989 af05e382 b91e9155 7965e503 f4c4c13a 57301b93

Table 8. Colliding message pair for 18-step SHA-256 with standard IV. These messages follow the differential path of
Table 1 with x = ec1fe92d, y = a01beee5, z = −x = 13e016d3.

W1 0-7 eda26041 7ea8c572 74155b82 d4d697e9 a8c75b74 cdc3dba6 b6bc5d2f 2b2fc241

8-15 51d8186a 416d969f 0eb5cd0c 7044ff7e 0731645f 464c0913 d7d58642 896f7bdb

W2 0-7 eda26041 7ea8c572 74155b82 c0f68116 d75df145 9cc03075 7fcf9d26 ef2fe209

8-15 5678aad9 416d969f 0eb5cd0c 84251651 0731645f 464c0913 d7d58642 896f7bdb

B Impossibility of some 21-step differential paths

We now show that by one step sliding of a 20-step collision for Cases 1 and 2-B of Table 4, we cannot
obtain a 21-step collision for SHA-2.



Table 9. Colliding message pair for 20-step SHA-256 with standard IV. These messages follow the differential path of
Table 1 with x = 1, y = -1, z = 0. These messages satisfy Case 1 of Table 4.

W1 0-7 17cf6aff 89e9ba13 c90b578d b0db265f ba7c84b0 a24899eb 980f02b7 627ec4ec

8-15 efaf5d4e 4cb1ae36 157b67d7 3cdc84e2 d9d4c9ac 0c32f8ca 5a262489 86f0592b

W2 0-7 17cf6aff 89e9ba13 c90b578d b0db265f ba7c84b0 a24899ec 93ef0235 6e9ec56e

8-15 efaf5d4d 4cb1ae36 157b67d7 3cdc84e2 d9d4c9ac 0c32f8c9 5a262489 86f0592b

Table 10. Colliding message pair for 20-step SHA-256 with standard IV. These messages follow the differential path of
Table 1 with x = 1, y = -1, z = -1. These messages satisfy Case 2-A of Table 4.

W1 0-7 5a603c44 0f5fdd15 69e8c2a4 1754c271 60518701 feef6b5f c7f50d13 fdc492ca

8-15 d5d49f53 d4c9d37f bf796ac4 aaf3823e a24e8e62 8d8898c8 fc4456f3 8d557ae5

W2 0-7 5a603c44 0f5fdd15 69e8c2a4 1754c271 60518701 feef6b60 d3d50e93 f9a49248

8-15 d2326157 d4c9d37f bf796ac4 aaf3823e a24e8e62 8d8898c7 fc4456f3 8d557ae5

Table 11. Colliding message pair for 20-step SHA-256 with standard IV. These messages follow the differential path of
Table 1 with x = 1, y = -1, z = -1. These messages satisfy Case 2-B of Table 4.

W1 0-7 f9b685e2 4e18d30f 066c47b9 380fb811 364c2fb9 085aafac 8d999930 17532d80

8-15 2e182279 92e6647c 2263df08 aaf3823e 46efda92 400ed683 56bba6ad c7133d81

W2 0-7 f9b685e2 4e18d30f 066c47b9 380fb811 364c2fb9 085aafad 917999b0 1b332dff

8-15 323822f9 92e6647c 2263df08 aaf3823e 46efda92 400ed682 56bba6ad c7133d81

Table 12. Colliding message pair for 21-step SHA-256 with standard IV. These messages follow the differential path of
Table 1 with x = 1, y = -1, z = 0. For these messages, δW9 = ffffff41.

W1 0-7 f1497cd4 7fe4857c df070eea a035b751 ece48886 f42a8fc9 fb1fe099 2052dc45

8-15 79f17c4b 8b1ee7ab 85da1bdc c07222ad 3ccee34f be164fd8 b3c00000 571b5a2f

W2 0-7 f1497cd4 7fe4857c df070eea a035b751 ece48886 f42a8fc9 fb1fe09a e233a2c1

8-15 75d17add 8b1ee6ec 85da1bdc c07222ad 3ccee34f be164fd8 b3bfffff 571b5a2f

Table 13. Colliding message pair for 21-step SHA-256 with standard IV. These messages follow the differential path of
Table 1 with x = 1, y = -1, z = -1. For these messages δW9 = ffffe191.

W1 0-7 4158ecc7 3a3ffe61 ba7149f0 ed452440 4d9ab924 f016459f 22f5578c c56333c1

8-15 ff1941ff 19b8055b fb2876ba ca4d6044 8d41a28d 8194372b 7e100000 5240bb72

W2 0-7 4158ecc7 3a3ffe61 ba7149f0 ed452440 4d9ab924 f016459f 22f5578d c1433241

8-15 fb39427d 19b7e6ec fb2876ba ca4d6044 8d41a28d 8194372b 7e0fffff 5240bb72

Table 14. Colliding message pair for 18-step SHA-512 with standard IV. These messages follow the differential path of
Table 1 with x = 373c5915a7e8cd1a, y = bac8b5823e5656cb, z = 0.

W1 0-3 eb1eb59ecf0b3342 e205af0b51f81569 62759b3c1cbbfb60 d94c8594e1468081

4-7 21c555e5eb4a74ff 466534f9e5c4dd20 2c55b4e93bd76391 0dffe3bf30abcb91

8-11 f2051be933e8762d 57417ceddcf050ed a7116f111de85809 5ed73acd8290c14c

12-15 d60a9f4bbcadc128 54ea8bb9f46b36ef 3ac446634c581411 cbf82d9f9493f84d

W2 0-3 eb1eb59ecf0b3342 e205af0b51f81569 62759b3c1cbbfb60 1088deaa892f4d9b

4-7 537807237bcf8a95 1b8ab570b1112066 74a8eaf30dcdac7e 1e2394a74a7a9b86

8-11 aa49e4d0d4cfdbc7 57417ceddcf050ed a7116f111de85809 279ae1b7daa7f432

12-15 d60a9f4bbcadc128 54ea8bb9f46b36ef 3ac446634c581411 cbf82d9f9493f84d



Table 15. Colliding message pair for 18-step SHA-512 with standard IV. These messages follow the differential path of
Table 1 with x = 8000000000000000, y = 7ffffff7df000000, z = x.

W1 0-3 d5d231bd0aee1913 988d1c29544b4e23 77641612867ae0ba c3b0ce9aee99e947

4-7 4a65130318dcc860 2ffd17efc9d7826d 8773e9f2c175c1c7 d8dcc93460a556ba

8-11 f0f055a560f90591 e586e628eca6fdaa 74763eadbd1b619b 63faa21560edc065

12-15 f97c799fa4a01d9f d119e52a631aa6ec 16e76e09c000af74 8a32144bfd97630e

W2 0-3 d5d231bd0aee1913 988d1c29544b4e23 77641612867ae0ba 43b0ce9aee99e947

4-7 4a62f2faf79cc860 b3ceb7df69bee62d 877609f2a2b5c1c7 d8dcc92c40a556ba

8-11 70ee75ad82390591 6586e628eca6fdaa 74763eadbd1b619b e3faa21560edc065

12-15 f97c799fa4a01d9f d119e52a631aa6ec 16e76e09c000af74 8a32144bfd97630e

Table 16. Colliding message pair for 18-step SHA-512 with standard IV. These messages follow the differential path of
Table 1 with x = c0145fc22e2f8106, y = 70df70d99098ebeb, z = −x = 3feba03dd1d07efa.

W1 0-3 649447f9cd22cbc1 b56e3ca4d7d16a57 5bd5d12d24969ab4 0e2ea85d485ad0f9

4-7 87afbac32285a4a7 69bf436266be288e 46aa45bd104ef93c 370586b96422ce9b

8-11 d7534fa56ee15811 423b664e4392c00e 50133367aa291e21 09691402f481d4b4

12-15 06a12448353c4575 358db4301a231c4c f5d1794c82015a66 c1464f23262776b4

W2 0-3 649447f9cd22cbc1 b56e3ca4d7d16a57 5bd5d12d24969ab4 ce43081f768a51ff

4-7 e4ac8281951462fe 97b78dd2e69b6cec 114335dbcd070889 0e21b1394492621b

8-11 9a5eb6e1de5fd1a0 423b664e4392c00e 50133367aa291e21 4954b440c65253ae

12-15 06a12448353c4575 358db4301a231c4c f5d1794c82015a66 c1464f23262776b4

Table 17. Colliding message pair for 20-step SHA-512 with standard IV. These messages follow the differential path of
Table 1 with x = 1, y = -1, z = 0. These messages satisfy Case 1 of Table 4.

W1 0-3 6058ceb9a1077eb2 a4cf55c2b1bb8fce 784193965385ff3b 7463839e2fe1d369

4-7 88168bd7f18e72a7 2c4bba75ff7d74e6 2aebc8365586a02d c3506e0db562134a

8-11 73a70156e11e07c2 9947f674a891d76c 1023901ef5eace3b b258c2dde4e508ac

12-15 f644b8df45fbe4d8 bb87a43dc0674b95 61d9c1b117244b44 e2264ccbf7bf427e

W2 0-3 6058ceb9a1077eb2 a4cf55c2b1bb8fce 784193965385ff3b 7463839e2fe1d369

4-7 88168bd7f18e72a7 2c4bba75ff7d74e7 2af008365506a02d c34c2e0db5e2134a

8-11 73a70156e11e07c1 9947f674a891d76c 1023901ef5eace3b b258c2dde4e508ac

12-15 f644b8df45fbe4d8 bb87a43dc0674b94 61d9c1b117244b44 e2264ccbf7bf427e

Table 18. Colliding message pair for 20-step SHA-512 with standard IV. These messages follow the differential path of
Table 1 with x = 1, y = -1, z = -1. These messages satisfy Case 2-A of Table 4.

W1 0-3 1c99041525eeeeb3 7dfc74f74bab1a89 aaca442cddb37351 21d1684a782a5b87

4-7 3d374aed94c9d766 296c28f080eced7a 62f73e6df90ce266 d4c85286272c52c1

8-11 e2d8e832fb623115 5c43e3fc9bee94c3 5ef6f726192a4213 aaf3823c2a004b1f

12-15 fa18ffe92868d117 8584328bd3146ed0 c3ce87104858e6cb 6dc9cd6519344c6a

W2 0-3 1c99041525eeeeb3 7dfc74f74bab1a89 aaca442cddb37351 21d1684a782a5b87

4-7 3d374aed94c9d766 296c28f080eced7b 62fafe6df88ce264 d4cc928628ac52c0

8-11 f73a261982122135 5c43e3fc9bee94c3 5ef6f726192a4213 aaf3823c2a004b1f

12-15 fa18ffe92868d117 8584328bd3146ecf c3ce87104858e6cb 6dc9cd6519344c6a



Table 19. Colliding message pair for 20-step SHA-512 with standard IV. These messages follow the differential path of
Table 1 with x = 1, y = -1, z = -1. These messages satisfy Case 2-B of Table 4.

W1 0-3 7f446c831ae44cd8 fe2fdbf87099c0da 5d260ebc8025368b 2c24db0985d910d7

4-7 71ec2db073b48f6a 4c95a6faaa6dd1a5 1f12885da19643e6 3ac1f1ef5ef38304

8-11 03cf1b75849b5222 1d5c1436e6417e2a 1b619cf7e4dfde50 aaf3823c2a004b1f

12-15 f3fd487aea68fbd9 fcf6a431bae731ff aba4536a50179e3d 837c2afdff067b28

W2 0-3 7f446c831ae44cd8 fe2fdbf87099c0da 5d260ebc8025368b 2c24db0985d910d7

4-7 71ec2db073b48f6a 4c95a6faaa6dd1a6 1f1e485d9f1643e7 3abe31ef5f7382ff

8-11 03d35b75851b5221 1d5c1436e6417e2a 1b619cf7e4dfde50 aaf3823c2a004b1f

12-15 f3fd487aea68fbd9 fcf6a431bae731fe aba4536a50179e3d 837c2afdff067b28

First note that the cases described in Table 4 are for a local collision spanning from Steps 5 to
13. Now that we have shifted the local collision by one step to span it from Step 6 to Step 14, all the
conditions of Table 4 also need to be shifted by one index. Hence a condition on ai in this table will
become a condition on ai+1 for our present case.

B.1 Case 1: (x = 1, y = −1, z = 0):

We have a4 = a5 = a7 = a8 = 0, a6 = −1, e8 = e9 = e11 = 0, e10 = e12 = −1. From (9), δW9 =
−δf8

IF (0,−1, 1) − δΣ1(e8). Simplifying this we get:

δW9 = fIF (e8, e7, e6) − fIF (e8, e7 − 1, e6 + 1) + Σ1(e8) − Σ1(e8)

= fIF (0, e7, e6) − fIF (0, e7 − 1, e6 + 1) + Σ1(0) − Σ1(0)

= e6 − (e6 + 1) = −1

We now need a pair of message words W14 and W ′

14 = W14 − 1 such that δW14 = −δW9 = 1. We
note that there does not exist any 32-bit word W14 which can satisfy this condition.

B.2 Case 2-B: (x = 1, y = −1, z = −1):

We have a4 = a5 = 0, a6 = a7 = a8 = −1, e8 = 1, e9 = 0, e10 = e11 = e12 = −1. From (9),
δW9 = −δf8

IF (−1,−1, 1) − δΣ1(e8). Simplifying this we get:

δW9 = fIF (e8, e7, e6) − fIF (e8 − 1, e7 − 1, e6 + 1) + Σ1(e8) − Σ1(e8 − 1)

= fIF (1, e7, e6) − fIF (0, e7 − 1, e6 + 1) + Σ1(1) − Σ1(0)

= fIF (1, e7, e6) − fIF (0, e7 − 1, e6 + 1) + Σ1(1)

The fIF function selects its output bit from either its second or third argument. Since the first
arguments of the two fIF terms differ only at the lowest bit, the output from the difference of the two
fIF terms can only be +1 or 0 or -1. The last term Σ1(1) is a constant quantity. We now need a pair
of message words W14 and W ′

14 = W14 − 1 such that δW14 = −δW9. We note that there does not exist
any 32-bit word W14 which can satisfy this condition.


