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Abstract. There are two approaches to define Plaintext Awareness
(PA). The first one is a classical approach to define the PA security and
is used to define the PA security of the random oracle model. This ap-
proach enables us to define the PA-ness simply, but no one know whether
we can define the standard model PA security based on this approach.
In contrast, the second approach is a current approach to define the PA
security. It enables us to define the standard model PA security formally,
but it is more elaborate than the overwhelming-based approach. In this
paper, we aim to clarify relations between the two approaches. We define
the standard model PA security based on the first approach. Then we
show that, under a very weak condition, it is equivalent to the known
definition of the standard model PA security based on the second ap-
proach.

Keywords: Plaintext Awareness, Standard Model.

1 Introduction

1.1 Background

The Plaintext Awareness (PA) [BR94,BDPR98,HLM03,BP04,D06,TO06,BD07]
is one of the most fundamental notion about a Public-Key Encryption scheme
(PKE). Intuitively, we say that a PKE is PA secure, if it satisfies the following
property: whenever an adversary generates a ciphertext, the adversary “knows”
the corresponding plaintext.

The PA notion is important, because the PA-ness together with the IND-CPA
security implies the IND-CCA2 security [BR94,BDPR98,BP04]. This means that
we can use the PA security when we show the IND-CCA2 security. Moreover,
it can bring some insight or an alternative perspection on the design of existing
PKE with IND-CCA2 security, as said by Bellare and Palacio [BP04].

Although the intuitive definition mentioned above is quite simple, it is elab-
orate task to define the PA notion formally. Therefore, many definitions of the
PA security are there. Mainly, there are two approaches to defining PA security,
which we will call “overwhelming-based approach” and “indistinguishability-
based approach.”



The overwhelming-based approach is a classical approach to define the PA
security and is used to define the PA security [BR94,BDPR98] of the random
oracle model. This approach enables us to define the PA-ness simply, but no
one know whether we can define the standard model PA security based on this
approach. In contrast, the indistinguishability-based approach is a current ap-
proach to define the PA security. It enables us to define the standard model PA
security formally [BP04], but it is more elaborate than the overwhelming-based
approach.

Reviewing Two Approaches: Both the overwhelming-based approach and
the indistinguishability-based approach are defined by using an adversary and
an extractor. However, the details of two approaches are quite different. In the
case of the overwhelming-based approach, the adversary outputs one ciphertext
and the extractor extracts the corresponding plaintext from the ciphertext. We
say that a PKE is PA secure, if there exists an extractor which succeeds the
extraction with overwhelming probability.

In contrast, the indistinguishability-based approach defines the PA security
through the indistinguishability of two worlds. In the first and second worlds,
an adversary can polynomially many times access to the decryption oracle and
the extractor respectively. We say that a PKE is perfectly/statistically/com-
putationally PA secure, if these two worlds are perfectly/statistically/compu-
tationally indistinguishable for the adversary.

1.2 Our Contributions

Motivation. In order to see the motivation of our work, we review the intuition
behind the PA-ness. Recall that the intuition behind the PA-ness is “A knows
the decrypted plaintext M ,” and this intuition is realized by the existence of an
extractor K which can extract M .

In the definition of the standard model PA-ness [BP04], an extractor K re-
quires to extract polynomially many plaintexts M1, . . . , Mn. This means that
the standard model PA-ness [BP04] requires that “A knows all of M1, . . . , Mn.”

However, our intuition suggests that “A knows all of M1, . . . , Mn” holds if
and only if all of the following facts holds: “A knows M1,”. . ., and “A knows
Mn.” Therefore, the extractor K should be “decomposed” into the extractors
K1, . . . ,Kn. Here Ki is an extractor which can extract Mi.

We would like to know whether this intuition is true or not. Recall that the
overwhelming-based PA-ness requires an extractor to extract only one plain-
text. Therefore, if the above intuition is true, the extractor K for the standard
model PA-ness of [BP04] can “decompose” into the extractors K1, . . . ,Kn of
the overwhelming-based PA security. So, the above motivation can rephrase as
follows: “Can we define the standard model PA-ness by using the overwhelming-
based methodology?”

Two Approaches are Almost Equivalent. In this paper, we define OverWhelming-
Based PA security (OWB-PA) in the standard model and study the relationship
between the OWB-PA security and the indistinguishability-based PA security



[BP04]. In particular, we show that the extractor K for statistical PA-ness, which
extracts M1, . . . , Mn can be constructed from the extractor K1, . . . ,Kn of the
OWB-PA security. Here Ki is an extractor which extracts Mi.

A naive definition of the OWB-PA security is obtained by “directly standard
modelizing” the overwhelming-based PA security [BR94,BDPR98] of the random
oracle model. However, we can show that the naive OWB-PA security seems to be
equivalent to none of the perfect/statistical/computational PA security [BP04].
Therefore, we somewhat modify the definition of the OWB-PA security, assume
a very weak condition on a PKE and show that this (modified) OWB-PA security
is equivalent to the statistical PA-security under this condition.

The modification we use is allowing an adversary to access the decryption
oracle, and giving an auxiliary input to the adversary. Our condition for a PKE
is about secret keys. Recall that, in some PKE such as the Cramer-Shoup scheme
[CS98], one public key has two or more corresponding secret keys. Our condi-
tion, named sk-non-redundancy, is as follows: “If two secret keys sk1 and sk2

correspond to the same public key, Decsk1
(C) = Decsk2

(C) holds for any cipher-
text C.” Clearly, this condition is satisfied for any honestly generated ciphertext
C = Encpk(M), because Decsk1(C) = Decsk2(C) = M holds. The heart of the
sk-non-redundancy is that Decsk1

(C) = Decsk2
(C) holds even for maliciously gen-

erated ciphertext C. We can say that our sk-non-redundancy condition is very
weak, because all known PKEs satisfy this condition.

Significance. One of the most significant point of our result is that it shows the
“independence” of knowledge extractions. Recall that our result shows that the
extractor K for the statistical PA-ness can be “decomposed” into the extractor
K1, . . . ,Kn of the OWB-PA security. Here K is an extractor which extracts all
M1, . . . , Mn from decryption queries C1, . . . , Cn of an adversary and Ki is an
extractor which extracts Mi from Ci. Since Ki can extract Mi independent
from other Kj , this means that the knowledge extractions of Mi and Mj are
“independent” from each other.

This independence is non-trivial fact from the folloing reason. Recall that the
definition of the statistical PA-ness requires that (M1, . . . , Mn) ' (Decsk(C1), . . .,
Decsk(Cn)) holds. Here “'” denote the statistical indistinguishability.

However, the statistical indistinguishability (X1, . . . , Xn) ' (Y1, . . . , Yn) may
not hold even if X1 ' Y1, . . . , Xn ' Yn holds, where Xi and Yi are random
variables. (In fact, (X1, . . . , Xn) ' (Y1, . . . , Yn) hold only if the distribution
of X1, . . . , Xn are independent from each other.) Recall that an adversary of
the statistical PA-ness can output {Ci}i such that the distribution of Ci is not
independent from that of other Cj . Therefore, if K extracts Mi ' Decsk(Ci) one
by one, (M1, . . . , Mn) ' (Decsk(C1), . . . , Decsk(Cn)) may not holds.

Our result is non-trivial because it shows that (M1, . . . , Mn) ' (Decsk(C1),
. . ., Decsk(Cn)) always holds even if K extracts Mi ' Decsk(Ci) one by one by
using the extractor Ki of the OWB-PA-ness. That is, our result shows that the
“independence” of knowledge extraction holds even if the distributions of C1,
. . ., Cn are dependent.



More Detailed Studies about the Equivalence. As mentioned before, we
show that the OWB-PA security was equivalent to the statistical PA security
[BP04] only if a PKE is sk-non-redundant. However, we also consider a slightly
modified version of the PA security [BP04] (named sk-PA security), where a
distinguisher is provided with the secret key. Then we show that the OWB-
PA security is equivalent to the sk-statistical PA security, even if a PKE is not
sk-non-redundant.

In the statistical case, we can say that the difference between the sk-PA
security and the original PA security is quite small, because we can show that
these two notions are equivalent for a sk-non-redundant PKE and all known
PKEs are sk-non-redundant.

However, the definition of the computational PA security dramatically changes
if a distinguisher is provided with the secret key. In fact, we can prove that the
sk-computational PA security is equivalent to the sk-statistical PA security, al-
though the original computational PA security is strictly weaker than the original
statistical PA security [TO06,TO08].

We can say that the above result show what the difference between the
computational PA security and the statistical PA is. That is, we can say that
the only difference between the computational PA security and the statistical
PA security is in the knowledge of sk.

Computational PA-ness. We finally note about the computational PA-ness.
One may think that our result can be generalized to the case of the computational
PA-ness. That is, one may think that the computational PA-ness is equivalent
to the “computational OWB-PA-ness.” Here the computational OWB-PA-ness
is a variant of the OWB-PA-ness such that an extractor requires to extract a
plaintext only from one ciphertext and the extracted plaintext is only required
to be computationally indistinguishable from the decrypted plaintext.

However, Bellare and Palacio [BP04] already showed that such computational
OWB-PA-ness was strictly weaker than the computational PA-ness. (They used
the term “PA0-ness” for the computational OWB-PA-ness.)

2 Standard Model PA-ness

We review the definition of the standard model PA-ness, which was given by
Bellare and Palacio [BP04] and was given through indistinguishability-based
methodology. From a technical reason, we slightly change the definition of [BP04].
That is,

– we give an auxiliary input to an adversary.

We will see in Subsection 4.2 why we need this modification.

Definition 1 (Standard Model PA-ness[BP04]) Let Π = (Gen, Enc, Dec)
be a PKE. Let A, K, P be polytime machines, which are respectively called
adversary, extractor, and plaintext creator.



—PADec
Π,A,Enc◦P(λ, z)—

Take random tapes R and µ for A and P.

(pk, sk)← Gen(1λ).

Run A(pk, z; R) until it halts:
If A makes an encryption query (enc, Q)

C ← Encpk ◦ P(Q;µ).
Send C to A as the reply.

If A makes a decryption query (dec, Q)
M ← Decsk(Q).
Send M to A as the reply.

Return an output T of A.

—PAK
Π,A,Enc◦P(λ, z)—

Take random tapes R, µ, and ρ for A, P, K.

(pk, sk)← Gen(1λ).
Initialize the list EList to ε.
Initialize the state StK of K to ε.
Run A(pk, z; R) until it halts:
If A makes an encryption query (enc, Q)

C ← Encpk ◦ P(Q;µ), EList← EList‖C.
Send C to A as the reply.

If A makes a decryption query (dec, Q)
(M, StK)← K(pk, z, Q,R, EList, StK; ρ).
Send M to A as the reply.

Return an output T of A.

Fig. 1. Experiments for the Standard Model PA-ness of Bellare-Palacio [BP04]

For a plaintext creator P , let StP and µ denote the state of P and the random
tape of P respectively. The state StP is initialized to the null string ε. We let
Encpk ◦ P(Q; µ) denote the algorithm which executes the following procedures:
(M, StP)← P(Q, StP ; µ), C ← Encpk(M), and output C.

For a security parameter λ, a polynomial poly, and an auxiliary input z ∈
{0, 1}poly(λ) ofA, we define two experiments PADec

Π,A,Enc◦P(λ, z) and PAK
Π,A,Enc◦P(λ, z),

shown in Fig. 1. For a distinguisher D, we set

PA,poly,K,P,D(λ) = max
z∈{0,1}poly(λ)

|Pr[D(PADec
Π,A,Enc◦P(λ, z)) = 1]−Pr[D(PAK

Π,A,Enc◦P(λ, z)) = 1]|.

We say that a PKE Π is perfectly, statistically, or computationally PA secure
(with auxiliary input) if it satisfies the following property 1, 2, or 3 respectively.

1. ∀A∀poly∃K∀P∀D (superpolytime distinguisher)∀λ : PA,poly,K,P,D(λ) = 0.
2. ∀A∀poly∃K∀P∀D (superpolytime distinguisher) : PA,poly,K,P,D(λ) is negligible for λ.
3. ∀A∀poly∃K∀P∀D (polytime distinguisher) : PA,poly,K,P,D(λ) is negligible for λ.

We say that K is successful for A if it satisfies the above relation for any P
and any D.

We stress that (pk, sk) is chosen after z is determined. This fact is important.
In fact, if the auxiliary input z depends on (pk, sk), the definition of the PA-ness
become meaningless. If we allow z to depend on (pk, sk), z can be equal to some
ciphertext z = Encpk(M). Then A can obtain an auxiliary input z = Encpk(M)
“without knowing” the plaintext M . Then clearly, no extractor can obtain M ,
if Encpk is oneway. Therefore, no non-trivial scheme satisfies the PA-ness.

3 Definition of Overwhelming-Based Standard Model PA

3.1 Definition

We review the definition of the random oracle PA-ness [BR94,BDPR98], because
the random oracle PA-ness is given through the overwhelming-based approach.



Take random tapes R and ρ for A and K.

(pk, sk)← GenHash(1λ).

C0 ← A
Hash,EncHash

pk (pk; R).

EList←(The list of all answers from the oracle EncHash
pk ).

HList←(The list of all pairs of hash queries of A and the corresponding answers).
M0 ← K(pk, C0, EList, HList; ρ).

If M0 = DecHash
sk (C0) return 1. Otherwise return 0.

Fig. 2. Experiment used to define the random oracle PA security [BDPR98]

Definition 2 (Overwhelming-Based PA Security in the Random Ora-
cle Model [BR94,BDPR98]) Let Π = (GenHash, EncHash, DecHash) be a PKE
which uses a hash function Hash. Let A and K be polytime machines, which
are respectively called adversary and extractor. For a security parameter λ, we
define an experiment OWB-PARO

Π,A,K,Enc(λ) as in Fig.2. In this experiment, C0

must not be an element of EList.
We say that Π is OverWhelming-Based PA secure (OWB-PA) in the random

oracle model, if Π satisfies the following property:

∃K∀A : Pr[OWB-PARO
Π,A,K,Enc(λ) 6= 1] is negligible for λ.

We give an overwhelming-based standard model PA-ness by modifying the
above definition in the following ways:

1. We “directly standard modelize” Definition 2. That is,
(a) We remove the random oracle.
(b) We allow a non-black-box extractor.
(c) We add a plaintext creator P .

2. We give an auxiliary input to A.
3. We allow an adversary to access the decryption oracle.

As mentioned in [BP04], the modifications (a), (b), and (c) are definitely
required when we define the standard model PA-ness. The modification 2 and 3
are required in order to show the equivalence between the OWB-PA-ness and the
indistinguishability-based statistical PA-ness. See Subsection 4.2 for the details.

Definition 3 (OverWhelming-Based PA security (OWB-PA) in the
Standard Model) We take Π = (Gen, Enc, Dec), A, K, P , λ, and poly, as
in Definition 1. We let define Encpk ◦ P as in the Definition 1. For an auxiliary
input z ∈ {0, 1}poly(λ) of A, we define an experiment OWB-PAΠ,A,K,Enc◦P(λ, z)
as in Fig.3. In this experiment, C0 must not be an element of EList.

We say that Π satisfies OverWhelming-Based PA security (OWB-PA) in the
standard model, if it satisfies the following property:

∀A∀poly∃K∀P : max
z∈{0,1}poly(λ)

Pr[OWB-PAΠ,A,K,Enc◦P(λ, z) 6= 1] is negligible for λ.

We say that K is successful for A if it satisfies the above property for any P .



—OWB-PAΠ,A,K,Enc◦P(λ, z)—

Take random tapes R, ρ, and µ for A, K, and P.

(pk, sk)← Gen(1λ).

C0 ← A
Encpk◦P(·;µ),Decsk(pk, z; R)

EList←(The list of all answers from the oracle Encpk).
DList←(The list of all answers from the oracle Decsk).
M0 ← K(pk, z, C0, R,EList, DList; ρ).
If M0 = Decsk(C0), return 1. Otherwise return 0.

Fig. 3. Experiment used to define the Definition of OWB-PA security

3.2 The Decryption Oracle Strengthens the Definition

At first glance, the modification 3 of Subsection 3.1 seems to be meaningless, be-
cause (1) the OWB-PA security (with or without the modification 3) means that
“an adversary A knows a plaintext corresponding to the ciphertext generated
by A,” (2) in particular, “an adversary knows the plaintext Mi corresponding to
the i-th decryption query Ci,” (3) therefore, an adversary can obtain Mi without
accessing the decryption oracle.

However, the above discussion is not true. Recall that the intuition “an adver-
sary A knows a plaintext” is realized by using a polytime extractor. Therefore,
“an adversary knows the plaintext Mi corresponding to the i-th decryption query
Ci” means that “there exists a polytime extractor Ki which can extract Mi from
Ci.” The problem is in the dependency of Ki on i. Suppose that A makes de-
cryption query λ times, where λ is the security parameter. Since Ki depends on
i, the number of steps Ti of Ki also depends on i. Therefore, it is possible that
Ti = 2ipi(λ) holds for some polynomial pi.

For each fixed i, the number of steps Ti = 2ipi(λ) of Ki is polynomial of
the security parameter λ. Therefore, each Ki is a polytime machine. However,
A needs superpolytime if A executes all of K1, . . . ,Kλ. Therefore, if A cannot
access the decryption oracle, A needs superpolytime in order to obtain all of
M1, . . . , Mλ. This means that the polytime adversary A cannot obtain all of
M1, . . . , Mλ. Therefore, we can say that the decryption oracle is meaningful.
Note that Bellare and Palacio [BP04] use similar discussions in other context.

4 OWB-PA Security Implies Statistical PA

4.1 Result

In this section, we prove that the OWB-PA-ness implies the statistical PA-ness:

Theorem 4 (OWB-PA ⇒ Statistical PA). Let Π be a PKE satisfying the
OWB-PA security. Then Π satisfies the statistical PA security.

We here give the idea behind the proof. The formal proof will be depicted in
the full paper.



Proof. (idea) Let Π be an OWB-PA secure PKE, A0 be an adversary for the
statistical PA-ness of Π and n0 be the number of decryption queries of A0.
Bellow, z is an auxiliary input of A0 and (pk, sk) is a public key/secret key pair.

1. We construct an adversary B0 of the OWB-PA security such that, on input
(pk, 1i‖z), B0 outputs the i-th decryption query of A0(pk, z). The description
of B0(pk, z′) is as follows:

– B0 parses z′ as 1i‖z. (If z′ is not this type, B0 outputs ⊥ and terminates.)
– B0 executes A0(pk, z) if i ≤ n0. (Otherwise, B0 outputs ⊥ and termi-

nates.)
– If A makes encryption queries B0 answers them by passing the queries

to the encryption oracle of B0.
– If A makes the j-th decryption query Cj for j < i, B0 answers them by

passing the query to the decryption oracle of B0.
– If A makes the i-th decryption query Ci, B0 outputs it and terminates.

2. From the OWB-PA security of Π , there exists an extractor L0 for B0.
3. We let K0(pk, 1i‖z, Ci, R, EList, St; ρ) be the algorithm which executes L0(pk,

1
i‖z, Ci, R, EList, St; ρ), obtains an output Mi of L0, and outputs Mi.

Since K0(pk, 1i‖z, Ci, R, EList, St; ρ) executes the extractorL0(pk, 1i‖z, Ci, R,
EList, St; ρ) for B0(pk, 1i‖z), and since B0 outputs the i-th decryption query of
A0(pk, 1i‖z), the outputs Mi of K0 is equal to Decsk(Ci) with overwhelming
probability.

We show that the number T of steps of K0(pk, 1i‖z, Ci, R, EList, St; ρ) is
bounded by some polynomial, which is independent from i. Note that the inde-
pendency from i is quite important. If T depends on i, T = 2ipi(λ) can hold for
some polynomial pi(λ). This means that T become superpolynomial T = 2λpλ(λ)
when K0 extracts a plaintext from λ-th decryption query of A.

Since K0(pk, 1i‖z, Ci, R, EList, St; ρ) = L0(pk, 1i‖z, Ci, R, EList, St; ρ), we
have to show the following facts in order to show that K0 is a polytime machine:

– The description of L0 is independent from i.
– The length of the input (pk, 1i‖z, Ci, R, EList, St; ρ) of L0 is bounded by some

polynomial, which is independent from i.

We can prove that the description of L0 is independent from i, because
the L0 depends only on B0 and because the description of B0 is independent
from i. We next prove that the length of the input (pk, 1i‖z, Ci, R, EList, St, ρ) is
bounded by some polynomial, which is independent from i. Recall that i is the
number of decryption queries of A. Since A is a polytime machine, this means
that i is bounded by the polynomial n0 which is independent from i. Here n0

is the number of steps of A. This means that the length of 1i is bounded by
the polynomial n0 which is independent from i. Moreover, from the definition of
the statistical PA-ness, the length of z is bounded by some polynomial poly(λ),
which is independent from i. The lengths of other inputs are clearly bounded by
a polynomial which is independent from i. ut



4.2 Why Are the Modified Definitions Required?

When we define the (standard model) OWB-PA-ness, we modify the random
oracle OWB-PA-ness in two ways. That is, we give an auxiliary input to an
adversary and allows an adversary to access the decryption oracle. Similarly, we
slightly modify the original definition of the statistical PA-ness [BP04] and give
an auxiliary input to an adversary for it.

We think that these modifications are quite important to show Theorem 4.
In this subsection, we see why these modifications are required.

Effect of Auxiliary Inputs: In the proof of Subsection 4.1, we use an adversary
B0 such that, by giving an auxiliary input 1i‖z, B0 outputs the i-th decryption
query Ci of A0. Therefore, if we do not give adversaries to auxiliary inputs, we
cannot use the proof of Subsection 4.1.

One way to “prove” Theorem 4 without using auxiliary inputs is to construct
adversary Bi which depends on i. That is, we “prove” Theorem 4 as follows. Here
A0 is an adversary for the statistical PA security. We would like to construct an
extractor for A0.

– For each i, we construct an adversary Bi for the OWB-PA security, such that
Bi outputs the i-th decryption query Ci of A0. (Contrary to the previous
B0, each i is coded in the program of Bi. Therefore, Bi does not require an
auxiliary input 1i‖z.)

– From the OWB-PA-ness of the PKE Π , there exists extractor Li for each
Bi.

– We construct an extractor K0 for A0 such that K0 uses Li in order to extract
a plaintext from Ci.

The failure of the above “proof” is that the above K0 may be superpolytime
machine. The reason is as follows. In the above “proof,” we construct Bi which
depends on i. Hence, the extractor Li of Bi depends on i also. Therefore, the
number Ti of steps of Li can depend on i. Therefore, it is possible that Ti =
2ipi(λ) holds for some polynomial pi.

For each fixed i, the number of steps Ti = 2ipi(λ) of Li is polynomial of the
security parameter λ. Therefore, Li is a polytime extractor of Bi for the OWB-
PA security. However, K0 becomes a superpolynomial extractor, because K0 uses
all of L1, . . . ,Ln0 and therefore requires steps more than 2n0pn0(λ). Here n0 is
the number of steps of A0 and therefore is a polynomial of λ.

Effect of the Decryption Oracle: In the proof of Subsection 4.1, we use
an adversary B0 which accesses the decryption oracle. Therefore, if we do not
allow an adversary to access the decryption oracle, we cannot use the proof of
Subsection 4.1.

One way to to “prove” Theorem 4 without using the decryption oracle is
to construct adversaries and their extractors recursively. That is, we seem to
“prove” Theorem 4 as follows. Here A0 is an adversary for the statistical PA
security. We would like to construct an extractor for A0.



– For each i, we construct an adversary Bi for the OWB-PA-ness and its ex-
tractor Li recursively:

• We define Bi as follows: Bi executes A0 and answers the j-th decryption
query Cj of A0 by using Lj for j < i, and outputs i-th decryption query
Ci of A0.

• We set Li to an extractor of Bi for the OWB-PA-ness.

– We construct an extractor K0 for A0 such that K0 uses Li in order to extract
a plaintext from Ci.

The failure of the above “proof” is that the above K0 may be superpolytime
machine. The reason is similar to that for an auxiliary input. In the above
“proof,” Bi and Li depends on i also. Therefore, it is possible that the number
Ti of steps of Li satisfies Ti = 2ipi(λ) for some polynomial pi.

For each fixed i, the number of steps Ti = 2ipi(λ) of Li is polynomial of the
security parameter λ. Therefore, Li is a polytime extractor of Bi for the OWB-
PA security. However, K0 becomes a superpolynomial extractor, because K0 uses
all of L1, . . . ,Ln0 and therefore requires steps more than 2n0pn0(λ). Here n0 is
the number of steps of A0 and therefore is a polynomial of λ.

5 The Statistical PA Is Equivalent to the OWB-PA

Security, Under Very Weak Condition

We already showed that the OWB-PA security implied the statistical PA security
of Section 2. In this section, we show that the converse holds under very weak
condition.

5.1 Equivalency under very weak condition

We first give the condition (named sk-non-redundancy), under which the OWB-
PA security is equivalent to the statistical PA security. Recall that each public
key pk of a some PKE, such as the Cramer-Shoup scheme [CS98,CS01], has many
corresponding secret keys. (Here we say that a public key pk corresponds to sk, if
there exists a random tape ν satisfying (pk, sk) = Gen(1λ; ν).) Intuitively, the sk-
non-redundancy is the condition which ensures that Decsk1

(C) = Decsk2(C) holds
with overwhelming probability for any secret keys sk1 and sk2 corresponding
to the same public key pk. Clearly, this condition is satisfied for any honestly
generated ciphertext C = Encpk(M), because Decsk1(C) = Decsk2(C) = M holds.
The heart of the sk-non-redundancy is that Decsk1

(C) = Decsk2
(C) holds even

for maliciously generated ciphertext C.
We can say that our sk-non-redundancy condition is very weak, because all

known PKEs satisfy this condition. However, we can give an artificial example
Π ′ = (Gen′, Enc′, Dec′) of Fig.4 such that Π ′ is not sk-non-redundant. Here
Π = (Gen, Enc, Dec) is an arbitrary PKE. Since sk′ = sk‖R holds and since
Decsk′(1‖C) is equal to R, the output Decsk′(1‖C) varies depending on a secret



—Gen′(1λ)—

(pk, sk)← Gen(1λ)
R← (λ-bit random bit string).
pk′ ← pk, sk′ ← sk‖R.
Output (pk′, sk′).

—Enc′pk′(M)—
C ← Encpk(M), C′ ← 0‖C. Output C ′.

—Dec′sk′ (C
′)—

Parse C′ as b‖C.
If b = 0, output Decsk(C).
Otherwise, output R.

Fig. 4. A Scheme Π ′ which is not sk-non-redundant

key sk′, even if the corresponding public key pk′ does not vary. Note that Bellare
and Palacio [BP04] used a similar scheme in other context.

We now formalize the sk-non-redundancy. Recall that the sk-non-redundancy
means that Decsk1

(C) = Decsk1(C) holds for any secret keys sk1 and sk2 corre-
sponding to the same public key pk. In other words, Decsk(C) depends only on
pk and C, and therefore does not depend on sk. If Decsk(C) is determined from
pk and C, we can define a (superpolytime) function Dec satisfying Decpk(C) =
Decsk(C).

Definition 5 Let Π = (Gen, Enc, Dec) be a PKE. We say that Π satisfies sk-
non-redundancy if there exists a superpolytime deterministic function Dec such
that

max
C ∈ {0, 1}∗

pk0 ∈ {0, 1}∗

Pr[(pk, sk)← Gen(1λ) : Decsk(C) 6= Decpk0
(C) | pk = pk0] is negligible for λ.

We next give our main result:

Theorem 6 (OWB-PA = Statistical PA under sk-non-redundancy). Let
Π be a sk-non-redundant PKE. Then Π is statistically PA secure if and only if
OWB-PA secure.

The “only-if” part of the above theorem has already been shown in Theorem
4. We give the idea behind the proof of the “if”-part. The formal proof will be
described in the full paper.

Proof. (idea) Let Π be a PKE which is sk-non-redundant and is statistically PA
secure. Let A0 be an adversary for the OWB-PA security, (pk, sk) be a public
key/secret key pair and z is an auxiliary input for A0. We construct an adversary
B0 for the statistical PA security as follows. B0(pk, z) executes A0(pk, z). If A0

makes a decryption query, B0 answers it by passing it to the decryption oracle.A0

finally outputs a ciphertext C0 and terminates. Then B0 makes decryption query



C0, obtains answer M0 to the query, outputs (pk, C0, M0), and terminates. From
the assumption, there is an extractor K0 for B0 of the statistical PA security.

We construct a superpolytime distinguisher D0 which tries to distinguish
an output of PADec

Π,B0,Enc◦P0
(λ, z) and that of PAK0

Π,B0,Enc◦P0
(λ, z), where P0 is a

plaintext creator. D0(pk, C0) computes (one of) a secret key sk′ corresponding
to pk by using superpolytime. Then D0 outputs 1 or 0, depending on whether
M0 = Decsk′(C0) holds or not.

In PADec
Π,B0,Enc◦P0

(λ, z), the decryption oracle sends the answer Decsk(C0)
to A0. From the sk-non-redundancy, Decsk′(C0) = Decsk(C0) holds with over-
whelming probability. Therefore, D0 outputs 1 if (pk, C0, M0) is an output
of PADec

Π,B0,Enc◦P0
(λ, z). This means that even if (pk, C0, M0) is an output of

PAK0

Π,B0,Enc◦P0
(λ, z), D0 outputs 1 with overwhelming probability. That is, an

output of K0 is equal to Decsk(C0) with overwhelming probability. This means
that K0 can use an extractor for A0 of the OWB-PA security. Since A0 is an
arbitrary adversary for the OWB-PA security, this means that Π is OWB-PA
secure.ut

5.2 Effect of sk-non-redundancy

The sk-non-redundancy is important to show Theorem 6. In fact, we can show
that the OWB-PA security does not imply the statistical PA security, if we
suppose no assumption for the PKE:

Theorem 7 (Perfect, Statistical and Computational PA ; OWB-PA).
Suppose the existence of a perfectly (resp. statistically, computationally) PA se-
cure PKE in the standard model. Then there exists a PKE which is not OWB-PA
secure but is perfectly (resp. statistically, computationally) PA secure in the sence
of Section 2.

Proof. (idea) We only show the theorem for the case of the statistical PA security.
We can show the theorem for other cases quite similarly.

Let Π = (Gen, Enc, Dec) be a PKE which is statistically PA secure. By
using Π , we construct another PKE Π ′ = (Gen′, Enc′, Dec′) as in Fig.4. We
show that Π ′ is not OWB-PA secure. Let A be an adversary which outputs
C ′ = 1‖Encpk′(0). Then an extractor K for A has to output R = Decsk′(C

′).
However, K succeeds in outputting R with only negligible probability, because
the distribution of R is independent from the view of K. This means that Π ′ is
not OWB-PA secure.

We next show that Π ′ is statistically PA secure. Let A be an adversary for
Π ′. We can recognize A as adversary for Π . Since Π is statistical PA secure,
there exists an extractor K of A for Π . We construct an extractor K′ of A for Π ′

as follows. K′ selects R′ randomly and fixed it. If K′ is provided with a ciphertext
C ′ = 0‖C for some C, K′ executes K by giving C, obtains the output M of K,
and sends M back to A. If K′ is provided with a ciphertext C ′ = 1‖C for some
C, K′ sends R′ back to A.



We see that K′ is a successful extractor. Since K is a successful extractor, if
C ′ = 0‖C holds, K′ obviously succeeds in simulating the decryption oracle with
overwhelming probability. Since the distribution of R is independent from the
view of A, A cannot distinguish R and R′. Therefore, even if C ′ = 1‖C holds, K′

succeeds in simulating the decryption oracle with overwhelming probability.ut

6 The sk-PA Security

We showed that the OWB-PA security was equivalent to the statistical PA se-
curity [BP04] only if a PKE was sk-non-redundant. In this section, we consider
a slightly modified version of the PA security [BP04] (named sk-PA security),
where a distinguisher is provided with the secret key. Then we see that the OWB-
PA security is equivalent to the sk-statistical PA security, even if a PKE is not
sk-non-redundant. The formal definition of the sk-PA security will depicted in
the full paper. Note that Fujisaki [F06] also considered a variant of a PA-ness
where a distinguisher is provided with the secret key.

The modification that we give the secret key to a distinguisher is quite small,
in the case of statistical PA security. In fact, since a distinguisher D of the
statistical PA security is a superpolytime machine, D can compute a secret key
corresponding to the public key pk by using superpolytime. However, there may
be many secret keys corresponding to pk as mentioned in Subsection 5.1, and D
cannot know which one is true sk. Therefore, we can say that the only advantage
of the sk-statistical PA security is that the distinguisher can know which one is
sk.

If a PKE is sk-non-redundant, Decsk(C) = Decsk′(C) holds for any sk and
sk′ corresponding to the same public key pk. Therefore, the sk-statistical PA
security is not advantageous to the statistical PA security, in this case. Hence,
we can show the following theorem. The proof will be described in the full paper.

Theorem 8. (statistical PA = sk-statistical PA, under sk-non-redundancy)
Suppose that a PKE Π satisfies the sk-non-redundancy. Then Π satisfies the sta-
tistical PA security if and only if it satisfies the sk-statistical PA security.

We now give our result.

Theorem 9. (OWB-PA = sk-statistical PA = sk-computational PA) The
following properties are equivalent:

– the OWB-PA security.
– the sk-statistical PA security.
– the sk-computational PA security.

We can prove the above theorem in a similar way to that of Theorem 4. The
proof will be described in the full paper. Note that we can generalize Theorem
9 into the case of the perfect PA security, if we allow an extractor to output fail

with negligible probability.



One of the most surprising fact of the above theorem is that the sk-statistical
PA security is equivalent to the sk-computational PA security. This fact is im-
pressed because the statistical PA security is strictly stronger than the compu-
tational PA security [TO06,TO08]. Therefore we can say that the only difference
between the statistical PA security and the computational PA security is in the
knowledge of sk.

We can also define more stronger variant of PA security, named the View-PA
security, such that a distinguisher is given the views of all entities. Above, “the
views of all entities” means the key generation algorithm Gen, an adversary A, a
plaintext creator P , and the encryption oracle Encpk(·). Then it is also equivalent
to the OWB-PA security. We will describe the proof in the full paper.

Theorem 10 (OWB-PA = View-statistical PA = View-computational
PA).

The following properties are equivalent:

– the OWB-PA security.
– the View-statistical PA security.
– the View-computational PA security.

7 Conclusion

There were two approaches to define the PA-ness, the indistinguishability-based
approach and the overwhelming-based approach. The current definition [BP04]
of the PA-ness was given by using the indistinguishability-based approach.

In this paper, we defined an alternative definition of the (standard model)
PA-ness, OWB-PA security, based on the overwhelming-approach. Basically, this
notion was given by “standard modelizing” the random oracle model PA-ness
[BR94,BDPR98]. However, we essentially changed the definition in one point,
that is, we allowed an adversary to access the decryption oracle.

We then showed that our OWB-PA security was equivalent to the statistical
PA security of [BP04], under a very weak condition, the sk-non-redundancy. We
also gave a new definition of the PA-ness, named sk-PA-ness, and showed that
the OWB-PA security was equivalent to the sk-statistical PA-ness, even if a PKE
was not sk-non-redundant.
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