Skip to main content

Estimating Human Skeleton Parameters and Configuration in Real-Time from Markered Optical Motion Capture

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5098))

Abstract

This paper is concerned with real-time approaches to using marker-based optical motion capture to identify, parametrize, and estimate the frame by frame configuration of the human skeleton. An overview of the stages of a system is provided with the main emphasis devoted to two new methods for refining the rotation estimates used within the transformational algorithm class of joint parameter estimation methods. Virtual Marker Insertion uses additional markers inserted at the current estimates of joint location to partially enforce the concurrency of available joint location estimates. This simple algorithm is shown to outperform the methods presented in the literature. A conjugate gradient optimization on a minimal parameterization of the standard transformational algorithm cost function gives superior results, but at considerable computational cost, limiting its probable application to those frames which are actually rendered in a feedback system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. PhaseSpace: IMPULSE Motion Capture System, http://www.phasespace.com

  2. Codamotion: cx1, http://www.codamotion.com

  3. Lee, J., Chai, J., Reitsma, P., Hodgins, J., Pollard, N.: Interactive control of avatars animated with human motion data. In: Proc.GRAPHITE, pp. 491–500 (2002)

    Google Scholar 

  4. Autodesk MotionBuilder, http://www.autodesk.com/motionbuilder

  5. Peinado, M., Herbelin, B., Wanderley, M., Callennec, B.L., Boulic, R., Thalmann, D., Méiat, D.: Towards configurable motion capture with prioritized inverse kinematics. In: Proc.IVWR, pp. 85–97 (2004)

    Google Scholar 

  6. Silaghi, M., Plänkers, R., Boulic, R., Fua, P., Thalmann, D.: Local and global skeleton fitting techniques for optical motion capture. In: Proc.CapTech. Lecture Notes in Artificial Inteligence, IFIP, pp. 26–41. Springer, Heidelberg (1998)

    Google Scholar 

  7. Gamage, S.S.H.U., Lasenby, J.: New least squares solutions for estimating the average centre of rotation and the axis of rotation. J.Biomech 35(1), 87–93 (2002)

    Article  Google Scholar 

  8. Holzreiter, S.: Calculation of the instantaneous centre of rotation for a rigid body. J.Biomech 24, 643–647 (1991)

    Article  Google Scholar 

  9. Chang, L., Pollard, N.: Constrained least-squares optimization for robust estimation of center of rotation. J.Biomech 40(6), 1392–1400 (2007)

    Article  Google Scholar 

  10. Kirk, A., O’Brien, J., Forsyth, D.: Skeletal parameter estimation from optical motion capture data. In: Proc.CVPR, pp. 782–788. IEEE, Los Alamitos (2005)

    Google Scholar 

  11. O’Brien, J., Bodenheimer, R., Brostow, G., Hodgins, J.: Automatic joint parameter estimation from magnetic motion capture data. In: Proc.GI., pp. 53–60 (2000)

    Google Scholar 

  12. Ehrig, R., Taylor, W., Duda, G., Heller, M.: A survey of formal methods for determining the centre of rotation of ball joints. J. Biomech. 39(15), 2798–2809 (2006)

    Article  Google Scholar 

  13. Cameron, J.: Aspects of Conformal Geometric Algebra with Applications in Motion Capture. PhD thesis, Engineering Department, University of Cambridge (2007)

    Google Scholar 

  14. Horn, B.: Closed-form solution of absolute orientation using unit quaternions. JOSA A 4, 629–642 (1987)

    Article  Google Scholar 

  15. Cameron, J., Lasenby, J.: A real-time sequential algorithm for human joint localization. In: Posters SIGGRAPH (2005)

    Google Scholar 

  16. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. D. Reidel (1984)

    Google Scholar 

  17. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C++. CUP (2002)

    Google Scholar 

  18. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. CUP (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco J. Perales Robert B. Fisher

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cameron, J., Lasenby, J. (2008). Estimating Human Skeleton Parameters and Configuration in Real-Time from Markered Optical Motion Capture. In: Perales, F.J., Fisher, R.B. (eds) Articulated Motion and Deformable Objects. AMDO 2008. Lecture Notes in Computer Science, vol 5098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70517-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70517-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70516-1

  • Online ISBN: 978-3-540-70517-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics