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Abstract. This paper presents a framework for view-invariant action recognition
in image sequences. Feature-based human detection becomes extremely chal-
lenging when the agent is being observed from different viewpoints. Besides,
similar actions, such as walking and jogging, are hardly distinguishable by con-
sidering the human body as a whole. In this work, we have developed a system
which detects human body parts under different views and recognize similar ac-
tions by learning temporal changes of detected body part components. Firstly,
human body part detection is achieved to find separately three components of
the human body, namely the head, legs and arms. We incorporate a number of
sub-classifiers, each for a specific range of view-point, to detect those body parts.
Subsequently, we have extended this approach to distinguish and recognise ac-
tions like walking and jogging based on component-wise HMM learning.

1 Introduction

View-invariant action recognition is a constantly expanding research area due to number
of applications for surveillance (behaviour analysis), security (pedestrian detection),
control (human-computer interfaces), content-based video retrieval, etc. It is, however,
a complex and difficult-to-resolve problem because of the enormous differences that
exist between individuals, both in the way they move and their physical appearance,
view-point and the environment where the action is carried out. Fig. [l shows some
images from the HumanEva databaseﬂ, demonstrating the variation of the human poses
w.r.t. different camera views and for different actions.

Toward this end, several approaches can be found in the literature [3]. Some ap-
proaches are based on holistic body information where no attempt is made to identify
individual body parts. However, there are actions which can be better recognized by
only considering body parts, such as the dynamics of the legs for walking, running and
jogging [2]]. Consequently, action recognition can be based on a prior detection of the
human body parts [[7].

In this context, human body parts should be first detected in the image: authors like
describe human detection algorithms by probabilistic body part assembly. How-
ever, these approaches either use motion information, explicit models, a static camera,
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Fig. 1. Images from the HumanEva database demonstrate some of the challenges involved with
detecting people in still images where the positions of their body parts changes with great variety
while performing some actions like walking, jogging and boxing etc

assume a single person in the image, or implement tracking rather than pure detection.
Mohan et al. [6] used Haar-Like features and SVM for component-wise object detec-
tion. However, Haar-Like features cannot obtain certain special structural features that
can be useful to design a view invariant human detection. Moreover, there is no method
to select the best features for the SVM so that the performance can be improved by min-
imizing the feature vector size. Lastly, these works do not cope well for the detection of
profile poses.

Due to these difficulties in the view-invariant detection of the human body parts ,
action recognition has been restricted by analysing the human body as a whole from
multiple views. For example, Mendoza and Pérez de 1a Blanca [3]] detect human actions
using Hidden Markov Models (HMM) by using the contour-based histogram of the full
body. Also, authors in combine shape information and optical flow based on the
silhouette to achieve this goal. Likewise, [11]] uses the sum of silhouette pixels.

Our approach solves these issues by introducing a framework for view-invariant hu-
man detection and subsequently learning the stochastic changes of the body part compo-
nents to recognize actions like walking and jogging. On the one hand, we use a hierarchy
of multiple example-based classifiers for each of different body part-components and
view-invariant human detection is achieved by combining the result of those detectors
in a meaningful way. Since human action is viewed as a combination of the motion of
different body parts, action detection can be analysed as a stochastic process by learn-
ing the changes of such components. A HMM based approach is used to learn those
changes. In this way we can only consider features from those body part-components
which actually taking part into the action e.g. the legs for walking and jogging. We
observe that this component-wise stochastic behaviour is good enough to distinguish
between similar displacement actions. Our result has been compared with [9]]. Lastly,
our method for action recognition is also able to detect the direction of motion from the
likelihood map obtained from HMM.

This paper is organised as follows. In Section 2 we have presented view-invariant hu-
man detection method in detail. Section 3 describes the component wise HMM method
towards the detection of human actions. Section 4 reports on the performance of our
system. Finally conclusions are drawn in Section 5.
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Fig. 2. The overall system architecture of view-invariant human detection. There are three com-
ponent detectors head, arms and leg. These detectors are combined using geometric constraint
for full human detection.

2 View-Invariant Human Detection

The overall structure of the present system is to detect the human action independent of
view-point. To achieve this goal our system first detects human body part-components
and then combining those body parts to detect the full human. The body parts are com-
bined based on the proper geometric configuration. To ensure the view invariant human
detection for each body part more than one detector has been designed and the knowl-
edge of each of those body part detectors are combined finally to increase the robustness
of the whole system see Fig.

The component-based human detection has some inherent advantages over existing
techniques. A full-body person detector relies solely on visual information and does
not take full advantage of the known geometric properties of the human body. The
other problem in full human detection is that the system fails to detect the human where
body parts are partially occluded. This partial occlusion is accomplished by designing
the system, using an appropriate geometric combination algorithm, so that it detects
people even if all of their components are not detected.

2.1 Detection of Human Body Parts

The system starts detecting people in images by selecting a 72 x 48 pixels window from
the top left corner of the image as an input for head, 184 x 108 pixels window for leg and
124 x 64 for arms. These inputs are then independently classified as either a respective
body parts or a non-body part and finally those are combined into a proper geometrical
configuration in a 264 x 124 pixels window as a person. All of these candidate regions
are processed by the respective component detectors to find the strongest candidate
components. Those component-wise window sizes and full human window size comes
from HumanEva Database [[10], since it is used for training sample creation.

The component detectors process the candidate regions by applying the modified
Histogram of Oriented Gradient (HOG) features and then these features become resul-
tant data vector for respective quadratic Support Vector Machine (SVM). Then a stan-
dard deviation based feature selection method is applied to take those features where



View-Invariant Human Action Detection Using Component-Wise HMM of Body Parts 211

the standard deviations of oriented gradients are less than one predefined threshold.
This threshold has been computed after running the test several times. The strongest
candidate component is the one that produces the highest positive raw output, as the
component score, when classified by the component classifiers. If the highest compo-
nent score for a particular component is negative, i.e. the component detector in question
did not find a component in the geometrically permissible area, then it is discarded as
false positive.

The raw output of an SVM is a rough measure of how well a classified data point fits
in with its designated class. The each component where the component score is highest
is taken to check whether they are in proper geometrical configuration with the 264 x
124 pixel window. The image itself is processed at several sizes. This allows the system
to detect various sizes of people at any location in an image.

1
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Fig. 3. Feature extraction and selection method from a training image. The training image is
divided into several blocks and then HOG features are extracted. Finally standard deviation based
feature selection method is applied to obtain feature vector for SVM.

2.2 Feature Extraction and Selection

In our approach for the body part detectors modified HOG feature is used. HOG features
are extracted from a 8x8 pixel window from top left hand corner of the training image
dividing gradients into 6 bins from -90° to +90°. In this way that 8 x 8 pixels window
slides over the total area reserved for head (72 x 48), leg (184 x 108) or arms (124 x
64). From each of this 8x8 pixel window 6 feature vectors has obtained.

Next step is to select the best 6 feature packs obtained from the method described
above. This feature selection method is based on standard deviation (o). For each posi-
tion of that 8x8 pixel window the o is calculated for each of the gradient of that 6 bin
taking into account the total training image. Now the ¢ value has been sorted and those
6 feature packets are taken where the o is less than a predefined threshold value. In
this way the feature size is minimized and those features are fed into the corresponding
detector. Fig.[Blshows the general scheme for feature extraction and selection.
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Fig. 4. Training samples for each body part detectors e.g. head, arm and leg

Fig. 5. Results of head, arm and leg detector as a validation process. Images with detection of
heads with different views, detection of arms and legs are shown.

2.3 Training Body-Part Detectors

To identify human into one particular scale of image each of the individual body part
detector has been applied simultaneously. In the present system there are four head
detector one leg detector and four arm detector. The four head detectors are for the
view angle 45° to 1359, 135 to 225°, 225° to 315° and 315 to 45°. For arm, there are
four classifiers corresponding different position of arms. Detecting arms is a difficult
task since arms have more degree of freedom than the other components. We have
used major four poses of the arm with the pose symmetry the detection of other pose
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Fig. 6. Validation process of full human detection. Detection of human with all the visible body
parts and with profile pose are shown.

possibilities can be achieved. To detect the legs two sub-classifiers have been added to
the leg detector, one for open legs and other for profile legs. In the training of component
wise detectors 10,000 true positive and 20,000 false positive samples are used.

Fig.[d shows few training samples of our body part component training database.

The results of those component detectors have combined based on geometrical con-
figuration. Since the head is the most stable part of the body, the geometric combination
has been done by first considering the head. Subsequently, the leg component is taken
into account and, after that, both arms are combined. We include the Leg Bounding
Box (LBB) (of size 184 x 108) after the Head Bounding Box (HBB) is computed (of
size 72 x 48) from the head detector. This is done by checking that the 2 component of
the center of the LBB must be within the width of HBB and the y component must be
greater than the y component of the centre of the Full Human Bounding Box (FHBB)
(of size 264 x 124). We then include arms in a similar way.

We have chosen the result from that sub classifiers which gives the best score result.
When a person is moving in a circular path in some cases we can have best score for two
sub classifier for arms and other cases provide us only one best score since the arms can
be occluded behind the body. We have used some sequences of HumanEva Database
[10] to train each body part component and after training we use those detector on the
other sequences of such a Database. Fig. |3 shows the result of this validation process.
Full detection has been in Figlal

3 View-Invariant Human Action Recognition

The aforementioned component wise view invariant human detection is next extended
to human action recognition. Toward this end, we learn the stochastic changes of de-
tected body parts using HMM to recognize human actions like walking and jogging. In
our system we use HMM for each body part component which has major contribution
on the action. From the HMM likely-hood we can recognise and distinguish very sim-
ilar actions. From the HMM likelihood map we can detect the direction of motion by
which we can infer the view point of the person with respect to camera.

3.1 HMM Learning

The feature set used to learn HMM is almost same as that used for SVM of each
body part detector. Instead of selecting features here we take mean of each 6 bin angle
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Fig.7. Likelihood map of walking and jogging actions tested on a walking HMM
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Fig. 8. Likeliihood map of jogging and walking actions tested on a jogging HMM

histogram vector. The significance of taking mean is to get general orientation of body
parts which intern signify one pose or series of similar poses in a action e.g. walking.
We fit Gaussian Mixture model in to those feature value to obtain different states and
key pose of particular action, the pose alphabet of our HMM. To detect actions like
walking and jogging we only use legs for HMM and we have found that this HMM is
quite good enough to distinguish the similar action like walking and jogging.
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Fig. 9. Frames corresponding to maximum likelihood values of walking

Fig. 10. Performance of full human detection in KTH’s database

We have used same training set as of the body part detectors to train component
wise HMM. We have chosen a sequence of frames to define one cycle for walking and
jogging. After that we map those frame sequence into pose alphabet to obtain one state
sequence for HMM learning. We use HumanEval Database as our validation database.
This database contains several action sequences like walking, jogging and boxing which
are performed by 4 different agents of both sex. We have trained our component HMM
using some sequence of that database and tested the same with other similar sequences
to validate the HMM learning.

The likelihood map has been computed using the probability values obtained from
the HMM for each frame of the test sequence. The maximum values of likelihood map
actually describe the end of each walking cycle. We here use two steps starting with
right leg as one walking and jogging action cycle. Fig. [0l demonstrates frames corre-
sponding to first 6 maximum likelihood values which clearly shows the end of each
walking cycle and also detects the direction of motion.

4 Experimental Results

We have used KTH’s 9] Databasd] to test the performance of our system architecture.
In that database we have found different types of actions: walking to the right, walking
to the left, jogging to the right, jogging to the left etc. These actions were performed
outdoors by 25 different people of both sexes with different lighting conditions and
shadows. Fig. shows some examples of the performance of our component wise

% http://www.nada.kth.se/cvap/actions/
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Table 1. Comparison of detection action detection with other two approaches. Column (a) is
Local feature and SVM based detection [9], and (b) is our approach.

Approach (a) Approach (b)

Walking 83.8 100.0
Jogging 60.4 60.0

human detection. In this figure we have shown one example of profile pose detection
and one example of frontal pose detection. We have tested our component HMMs,
which have been learned for the actions performed in circular path, on KTH’s database
where agents are not in circular path and our approach can detect those actions robustly
which justify the view-invariance action detection. We have taken all sequences of the
walking and jogging for testing of HMM.

Fig.[Zlshows the likelihood of the walking sequence and jogging sequence when ap-
plied to walking HMM. Fig.[8lis just the same but for jogging HMM. In both the figures
we can observe that a difference in likelihood values. When the walking action sequence
is tested in the walking HMM we have found the higher likelihood values and when
jogging action sequence is tested on the same the likelihood value decreases and this
is same for jogging HMM. The two actions presented in the figure are horizontal and
diagonal walking and jogging for two different agents. Table [Il shows detection rates
of action recognition using local feature and SVM from [9] and using our approach.
We have achieved higher detection rate in walking and similar result in jogging. Since
our method considers the stochastic change of body parts having major contribution
in action so if there is some similarity in movement of those components then recog-
nition using HMM becomes difficult. We have found some of jogging sequences are
misclassified as walking.

5 Conclusions

This paper presents one approach to detect view point invariant human action detection.
Human detection in a view-invariant framework is achieved by example-based classi-
fiers for each body part components. Our work performs really well in profile poses.The
performance can be improved by adding more training samples and introducing more
angular views. One difficultly is that there is not good database for different body part
components so building component database is an important task.

In the action detection phase focus is given to distinguish similar actions by consider-
ing only the major contributing body parts. This approach is computationally efficient
since we have used the same kind of features for the body part detectors and results
show that it is enough to consider leg to distinguish those similar actions. We can use
this approach to learn HMM for hands and to apply that to detect and distinguish actions
like boxing, different gestures e.g. waving.
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