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Abstract. The main focus of this paper is to present a method of
reusing motion captured data by learning a generative model of mo-
tion. The model allows synthesis and blending of cyclic motion, whilst
providing it with the style and realism present in the original data. This
is achieved by projecting the data into a lower dimensional space and
learning a multivariate probability distribution of the motion sequences.
Functioning as a generative model, the probability density estimation is
used to produce novel motions from the model and gradient based op-
timisation used to generate the final animation. Results show plausible
motion generation and lifelike blends between different actions.

Keywords: Animation, Motion capture, Probability Distribution Func-
tion, Principal Component Analysis, Least Square Curve Fitting, Linear
Interpolation.

1 Introduction

The purpose of this work is to develop a generative model of motion that allows
motion synthesis and blending of different cyclic movements such as walking or
running. The model is capable of generating novel motion whilst preserving the
same style and realism of the original motion capture data. This allows anima-
tors to edit, extend and blend between different cyclic movements providing the
ability to reuse motion captured data. This paper builds upon previous work
into synthesising motion using probability density estimation and proposes a
multivariate probability distribution for use in synthesis and blending.

The human visual system has the ability to efficiently and easily recognise
characteristic human movement. As a consequence, in order to generate charac-
ter animations that look realistic, it is necessary to develop methods to capture,
maintain and synthesis intrinsic style to give authentic realism to animated char-
acters. The aim of this work is to provide the general framework that addresses
this issue. The framework is based on transforming biological motion into a rep-
resentation that allows analysis using statistical techniques. Additionally, this
model will also be used to synthesise and blend realistic motion patterns.

In this paper, we present two approaches to motion synthesis and blending.
One approach uses a sine function to model a cyclic motion sequence and utilises
linear interpolation to blend between different motions. The second, more flexible
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approach, models motion as a probability density function (PDF). This model
can synthesise novel motion whilst retaining the natural variances inherent in
the original data. Blending is a result of linearly interpolating between different
PDF’s.

This paper is divided into the following sections. Section 2 briefly details
current techniques of modelling and editing motion capture data. Section [3 and
Section M present the techniques used for learning models that capture the statis-
tics and dynamics of a set of motion capture sequences. The remainder of the
paper describes the results and ends with a brief conclusion.

2 Related Work

Character animation using interpolation was one of the earliest techniques used
in computer animation and is still used by many animators today [I]. The
traditional technique uses interpolation to generate intermediate frames from
manually defined key-frames [2]. This method offers high controllability to the
animator, but it is very time consuming and requires a highly skilled animator
to produce the animation.

Motion capture provides a cost effective solution to realism as life-like motion
is easily acquired and large libraries of motion are available for use. However, to
provide realistic results, multiple sequences need to be blended together resulting
in a seamless and life-like animation. Furthermore, recorded animation lacks the
variability of natural motion and repeating a motion can look false due to its
lack of natural variance.

One solution is to develop a generative model of motion using motion capture
data. With the ability to blend between motions, one can create a sequence of
realistic actions which would otherwise be difficult to achieve using keyframing.
This approach is made possible by fitting a parametric function to the joint
coordinates of the character and interpolating between discrete points in this
parametric space. An early approach was presented by Rose et al. [3]. They de-
fined each degree of freedom of a character as a uniform cubic B-spline curve in
time. With this representation, they use radial basis functions (RBF) to inter-
polate between sample motions in this space. Kovar et al. [4] improved on this
approach by introducing motion graphs which automatically construct novel
motion from a mass of motion capture data. By representing frames in terms of
point clouds, they calculate the weighted sum of squared distance between corre-
sponding points in the clouds. If the distance is below a user-specified threshold,
the relative motions are considered similar. Similar motions can then be blended
by linearly interpolating the corresponding root positions and spherically linearly
interpolating their corresponding joint rotations.

Carvalho et al. [5] follows a simlar approach to this paper using Principal
Component Analysis (PCA) to learn motion models from motion captured data.
However, they use a Prioritised Inverse Kinematics strategy to apply constraints
with different levels of importance to synthesis the motion. As opposed to using
PCA, Grochow et al. [6] learns a PDF over character poses represented by a
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Scaled Gaussian Process Latent Variable Model. This model represents the data
in a low-dimensional latent space, and motion synthesis occurs by optimising
the likelihood of new poses given the original poses.

Unuma et al. [7] create a functional model of motion using Fourier series
expansion. The model is used to make variations of human behaviour via the
interpolation and extrapolation of their Fourier coefficients. In related work,
Troje [8] uses sine functions instead of Fourier expansion to model walks. Using
PCA, they extract relevant information from the data, representing them as
discrete components. The temporal behaviour of these components is modelled
using a sine function, and sinusoidal curve fitting is used to parameterise them
based on their respective frequency, amplitude and phase. A limitation to this
approach is that it produces identical motion cycles which are not natural, and
the sine assumption limits the type of motion that can be modelled.

Pullen and Bregler [9] introduce the idea of synthesising motion by extracting
the 'motion texture’ i.e. the personality and realism, from the motion and using
it to drive hard constraints such as foot positions on the floor. They comprise
their motion of three important features, frequency band, phase, and correlation.
These features are represented with a kernel-based probability distribution. This
distribution is used to synthesis the walk and a gradient based method used to
optimise the data. Part of this approach is adopted in the paper whereby we use
a multivariate probability distribution to model the data and synthesis a walk,
however, we are also able to blend between different distributions to create novel
motion.

3 Methods

3.1 Walking Data

The motion captured data used in this work are in a format which details the
3D Cartesian coordinates (x,y,z)[I0] for all the markers corresponding to the
frames for the full body motion capture data, although similar approaches can
be applied in polar spaces. Given a motion sequence X, each frame is formally
represented as a vector x; where X = [x1,...,xp| and F is the number of frames
containing R markers. Each frame/posture is represented as a high dimensional
vector X; = (i1, Yi1, Zils - TiR, ViR, Zir] € RO,

3.2 Dimensional Reduction and Statistical Modelling

Working with full-body, motion capture data produces a high dimensional data-
set. However, the dimensionality of the resulting space does not necessarily reflect
the true dimensionality of the subspace that the data occupies. Principal Com-
ponent Analysis (PCA) [11] is therefore used to perform dimensional reduction.

For a given D-dimensional data set X as defined in Section Bl the D principal
axes T1,Ts,...,Tp can be given by the D leading eigenvectors of the sample
covariance matrix:



A Generative Model for Motion Synthesis and Blending 221

1 &
S= G- wxi— ) (1)
i=1
where p is the sample mean p = }Zf;l x;. An eigen decomposition gives

S=> \T;, i €{l,.., D}, where A; is the ith largest eigenvalue of S.
The dimension of the data can be reduced by projecting into the eigenspace

yi=V'(x;—p) (2)

where V are the feature vectors V. = [Tq,...,T4] and d is the chosen lower
dimension d < D. This results in a d-dimensional representation of each motion
sequence in eigenspace. We will refer to each dimension as modes of variation
within the data. d is chosen such that 2?21 E/\Vi)\ > .95 or 95% of the energy is
retained.

Figure[lshows a plot of the first mode against the second mode for a male and
female walk sequence. It produces a geometric shape characteristic of a cyclic
motion, showing that the projection retains the non-linearity of cyclic movement.

Male Walk Female Walk

Fig. 1. Plot of PCA projection of the first mode against the second mode

3.3 Time Alignment

Using the PCA space data representation detailed in Section B2l the first mode
of each motion sequence can be represented as discrete sine waves, a technique
developed by Troje [8]. This is possible since walks are cyclic movements that
repeat sinusoidally. Using least square curve fitting, the first mode of each motion
sequence is parameterised as:

sin(wt + ¢) (3)

where w is the fundamental frequency and ¢ is the phase.

It can be seen in Figure 2] that the first mode is almost a perfect sine wave
and is closely approximated by the sine function, the parameters of which can
be used to normalise the data.

t'=((t+w)+¢) (4)
where ' is the new time.
Since the first mode contains most of the motion’s variance, it is not necessary
to fit a sine function to the subsequent modes. The first mode is sufficient to
normalised the time domain of the sequence.
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Fig. 2. Least square curve fitting of first mode wave representation for a male walker

Blending using Time Aligned Sine Waves. With two or more walking
sequences time aligned as above, it is possible to blend between them using
linear interpolation. For two sequences, male walk (mw) and female walk (fw),
blending can be achieved using linear interpolation, where a weight w indicates
the contribution of each sequence to the resulting motion.

y/(t) _ ymw(t) ;_yfw(t) + wymw(t) 2_ wa(t) (5)
where y is the respective posture at a given time ¢, and w is the weighting
variable (1 < w < —1) where w = 1 for the male walk animation, w = —1 for
the female walk animation and w = 0 for the mid-point between them.

However, there are a number of issues with this approach. Firstly, time align-
ment will only work well if the motion is well represented by a sine wave. Sec-
ondly, it can only blend between similar cyclic motions such as walks or runs
and cannot provide successful blends between more sophisticated motions. It
also destroys the time/velocity information during normalisation. Finally, the
synthesised motions have no variability, unless the original data is retained and
resampled. In the next section we overcome these problems by representing the
original data as a PDF in the eigenspace.

4 Generative Model of Motion Using a Probability
Distribution Function

A statistical model of the constraints and dynamics present within the data can
be created using a probability distribution. This model is created using kernel
estimation. Each kernel p(y;) is effectively a Gaussian centred on a data exam-
ple. Since we want our probability distribution to represent the dimensionally
reduced data set Y of d dimensions, where Y = {y;}1"; as noted in Section B2
the likelihood of a pose in eigenspace is modelled as a mixture of Gaussians using
multivariate normal distributions.

F
1
Ply)= > () (6)
i=1
Figure B shows a plot of such a distribution for the case of a male and female

walker with the first mode plotted against the second mode. The width of the
Gaussian in the i'" dimension is set to ay/);. For these experiments a = 0.25.
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Male Walk Female Walk

Fig. 3. PDF of a male walk sequence vs female walk sequence

4.1 Motion Synthesis
To generate novel motion the procedure is:

(1) P(y) is constructed as PDF in the pose space that gives the likelihood of
any particular pose configuration.

(2) As we are particularly interested in motion, a second PDF is constructed
that encodes the likelihood of motion in the pose space for a given configuration

P(y, Cg ) where

dy;
dt =VYi+1 — Y (7)

assuming regular sampling over the motion capture data. P(y, ‘Z’t') is constructed
similarly to Equation [f using F' Gaussian kernels in %27, Similarly to Equation
[6 the covariance is set to

VAL e e e 0

0 cvov e e e o

where o; is the standard deviation of the derivatives.
(3) To locate a suitable starting configuration, the kernel that generates the
highest likelihood is found.

max = arglrwnax(P(yi)) 9)
i=1
(4) From this configuration y, = y,,,. the highest likelihood movement is
selected
dy

) (10)

maxA = argmax(P(y,,
vy
dt
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(5) The model pose is then updated such that

d
YmazA (11)

=y, +
Yir1 = V¢ dt

and the pose is then reconstructed for rendering as x;11 = 1+ Vy,
(6) The process then repeats from step (4).

4.2 Correction Term Constraint

To increase the robustness of the PDF distribution and to account for the in-
creasing probability estimation error, a correction term is added to the optimi-
sation process. The correction term constrains the estimated posture to remain
within the PDF. This is brought about by adding a weighting to all estimated
postures. Each estimation is multiplied by the likelihood of that posture being a
valid posture, discouraging movement outside the pose PDF. Step (4) therefore
becomes

dy
dt

dy

maxrA = arg max(P(y,, dt

dy
Vit

JP(y:+ 5.)) (12)

This improves the optimisation in step (4), reducing drift, resulting in plau-
sible poses.

4.3 Gradient Based Optimisation

Gradient based optimisation works well with the assumption that the optimisa-
tion in stage (4) finds a good global maximum. Since the surface is smooth (due
to the use of Gaussian kernels) and the space contiguous (in that the positions
of two adjacent frames are spatially close in the eigenspace), a simple gradient
ascent method can be used. A Mean Shift approach works well since it is only
necessary to asses the likelihood at the corners of the search region (again as-
suming the surface is smooth). However, such a search is O(D?k)where k is the
number of iterations to convergence and D, the dimensionality of the space. It is
worth noting that in the case of P(y, ‘g) this dimensionality is twice the num-
ber of eigenvectors retained in the projection. Line optimisation methods such
as Powells Method work well as the surface is smooth and the search become
linear in the number of dimensions O(Dk). Newton type methods requiring Ja-
cobian and Hessians are more problematic due to the large number of kernels in
the PDF. We therefore optimise along the direction of each eigenvector in turn,
using the previous location as the starting point of the search.

4.4 Blending Using a PDF

Blending between different sequences using the PDF follows a very similar pro-
cedure to motion synthesis. The different walk sequences are firstly projected
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Fig. 4. Plot of four synthesised cyclic motion sequences superimposed over their re-
spective distributions

into the same eigenspace by performing PCA on their combined data (as ex-
plained in Section B2). After projection down into the combined eigenspace,
separate PDF’s are constructed for each of the sequences. The PDF used in syn-
thesis is the weighted average of all distributions. By changing the weighting,
the influence of each sequence on the final animation can be changed and tran-
sitions between the sequences made. If P(y,) = ;a 221 P(y?) for walk a and

Ply,) = 5, S5 P(y?) for walk b, then step (3) is replaced with:
F 1 1
maz = arghax(, (Pa(y,) + Poy)) + v, (Paly) = Bily.)) (13
and similarly, step (4) is replaced with:

dy
)
dt
(14)
However, with slight rearranging, these equations can be re-written to reduce
the number of access to the kernel functions.

dy
dt

dy
dt

dy

1
Po(yy,

))+w2

1
mazA = argmax(, (Pa(yes ) + (¥ )~ Py,

dy
Vit

5 Results

To illustrate the approach, 4 motion capture sequences were projected down
into their combined eigenspace and 4 models constructed each consisting of two
PDEFE’s, one for pose and one for motion. The datasets were ‘male walk’, ‘female
walk’, ‘female running’, and ‘female skipping’. Figure @ shows a visualisation of
the PDFs of 4 sequences projected onto the two primary eigenvectors. It can be
seen that these distributions vary considerably but occupy the same space. Using
the outlined procedure, a maximum likelihood path was generated from each of
the PDF’s. The result of which are superimposed on top of their respective
distributions. As can be seen, the data points, corresponding to a sequence of
postures, remain within the distributions and follow the characteristic shapes
of their original data. Also note that small errors in the optimisation procedure
produce natural variation in the trajectory. An additional noise term could be
added to the estimation procedure, however, in practice these inherent errors
are sufficient to produce natural variation 'novelty’.
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Fig. 5. Image showing animations of synthesised walks using PDF. (a) Male walk, (b)

Female walk, (c) Female skipping, (d) Female running.

Fig. 6. Image showing animations of blended walks using PDF. (a) Blend from a female

walk to a female run, (b) Blend from a male walk to female skipping, (c) Blend from
a female skipping to female run.
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When animated (as shown in Figure [), they resemble their original data and
produce plausible animations.

Figure[f shows the effect of blending between motions by changing the weight-
ing attributed to the contribution of any one PDF to the overall density estimate.
Again it can be seen that smooth and natural transition are achieved, even when
moving between less usual motions such as ‘male walk’ to ‘female skip’.
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6 Conclusion

It has been shown that a generative model of motion can be used to synthesis
and blend novel motion, whilst retaining the important characteristic motion
features from the original data. As the results show, it is possible to learn from
motion captured data and provide unlimited novel animation that blends be-
tween motions automatically. Style is chosen by selecting the relative contribu-
tion of different styles and motions using simple weights. In addition, as no time
alignment is required for the process, the temporal information in the animation
is preserved. This approach can be extended to blend between different types
of non-cyclic movement. The success of this is dependent upon the quantity of
motion sequences used, since a larger more disparate eigenspace would require
more samples to provide sufficient connectivity between the distributions. Fur-
ther work will investigate this possibility.
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