Skip to main content

Effect of Friction and Material Compressibility on Deformable Modeling of Human Lung

  • Conference paper
Biomedical Simulation (ISBMS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5104))

Included in the following conference series:

Abstract

A three dimensional finite element model has been developed to investigate the sliding mechanics and compressibility of human lungs of seven lung cancer patients. The model consists of both lungs, tumor, and chest wall. The interaction between lungs and chest cavities is modeled using surface-based contact with coefficient of friction of 0, 0.1 and 0.2. Experimentally measured hyperelastic material properties of the lungs are applied in the model with different degrees of compressibility using Poisson’s ratio (ν) of 0.35, 0.4, 0.45 and 0.499. The analytical results are compared to actual measurements of the bifurcation of the vessels and bronchi in the lungs and tissues. The least absolute average error of 0.21(±0.04) cm is reached when frictionless contact surfaces with hyperelastic material and Poisson’s ratio of 0.35 and 0.4 are applied. The error slightly changes in contact models as the coefficient of friction and Poisson’s ratio increases. However, Poisson’s ratio has more effect in models without contact surfaces where the average error changes from 0.33(±0.11) cm to 0.26(±0.07) cm as the Poisson’s ratio increased from 0.35 to 0.499.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McInerney, T., Tersopoulos, D.: Deformable models in medical image analysis: a survey. Med. Image Anal., 191–108 (1996)

    Google Scholar 

  2. Rietzel, E., Chen, G.T.Y., Choi, N.C., Willet, C.G.: Four dimensional image-based treatment planning: target, volume segmintation and dose calculation in the presence of respiratory motion. Int. J.Radiation Oncology Biol. Phys. 61, 1535–1550 (2005)

    Google Scholar 

  3. Brock, K.K.: Image registration in intensity-modulated radiation therapy, image-guided radiation therapy and stereotactic body radiation therapy. Front. Radiat. Ther. Oncol. 40, 94–115 (2007)

    Article  Google Scholar 

  4. Yan, D., Jaffray, D.A., Wang, J.W.: A model to accumulate fractionated dose in a deforming organ. Int. J. Radiation Oncology Biol. Phys. 44, 665–675 (1999)

    Article  Google Scholar 

  5. Bharath, A., Hirose, M., Hata, N., Warfield, S.K., Ferrant, M., Zou, K.H., Suarez-Santana, E., Ruis-Alzola, J., Kikinis, R., Jolesz, F.A., Tempany, C.M.C.: Evaluation of three-dimensional finite element-based deformable registration of pre- and intraoperative prostate imaging. Med. Phys. 28, 2551–2560 (2001)

    Article  Google Scholar 

  6. Brock, K.K., Sharpe, M.B., Dawson, L.A., Kim, S.M., Jaffray, D.A.: Accuracy of finite element model-based multi-organ deformable image registration. Med. Phys. 32, 1647–1659 (2005)

    Article  Google Scholar 

  7. Brock, K.K., Dawson, L.A., Sharpe, M.B., Moseley, D.J., Jaffray, D.A.: Feasibility of a novel deformable image registration technique to facilitate classification, targeting, and monitoring of tumor and normal tissue. Int. J. Radiation Oncology Biol. Phys. 64, 1245–1254 (2006)

    Google Scholar 

  8. Mead, J., Takishima, T., Leith, D.: Stress distribution in lungs: a model of pulmonary elasticity. J. Appl. Physiol. 28, 596–608 (1970)

    Google Scholar 

  9. West, J.B., Matthews, F.L.: Stresses, strains, and surface pressures in the lung caused by its weight. J. Appl. Physiol. 32, 332–345 (1972)

    Google Scholar 

  10. Sundaram, S.H., Feng, C.C.: Finite element analysis of the human thorax. J. Biomech. 10, 505–516 (1977)

    Article  Google Scholar 

  11. Zeng, Y.J., Yager, D., Fung, Y.C.: Measurement of the mechanical properties of the human lung tissue. J. Biomech. Eng. 109, 169–174 (1987)

    Article  Google Scholar 

  12. De Wilde, R., Clement, J., Hellemans, J.M., Decramer, M., Demedts, M., Boving, R., Van DeWoestijne, K.P.: Model of elasticity of the human lung. J. Appl. Physiol. 51, 254–261 (1981)

    Google Scholar 

  13. Villard, P., Beuve, M., Shariat, B., Baudet, V., Jaillet, F.: Simulation of lung behaviour with finite elements: Influence of bio-mechanical parameters. In: Proceedings of the 3rd International Conference on Medical Information Visualisation-BioMedical Visualisation, pp. 9–14 (2005)

    Google Scholar 

  14. Loring, S.E., Brown, R.E., Gouldstone, A., Butler, J.P.: Lubrication regimes in mesothelial sliding. Journal of Biomechanics 38, 2390–2396 (2005)

    Article  Google Scholar 

  15. Zhang, T., Orton, N.P., Rockwell Mackie, T., Paliwal, B.R.: Technical note: A novel boundary condition using contact elements for finite element based deformable image registration. Med. Phys. 31, 2412–2415 (2004)

    Article  Google Scholar 

  16. Al-Mayah, A., Moseley, J., Brock, K.K.: Contact surface and material nonlinearity modeling of human lungs. Phys. Med. Biol. 53, 305–317 (2008)

    Article  Google Scholar 

  17. Widmaier, E.P., Raff, H., Strang, K.T.: Vander’s human physiology: the mechanisms of human body function, 10th edn. McGraw-Hill, New York (2006)

    Google Scholar 

  18. ABAQUS 6.7 Manual, Hibbitt, Karlsson & Sorensen, Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fernando Bello P. J. Eddie Edwards

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Al-Mayah, A., Moseley, J., Velec, M., Brock, K. (2008). Effect of Friction and Material Compressibility on Deformable Modeling of Human Lung. In: Bello, F., Edwards, P.J.E. (eds) Biomedical Simulation. ISBMS 2008. Lecture Notes in Computer Science, vol 5104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70521-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70521-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70520-8

  • Online ISBN: 978-3-540-70521-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics