Skip to main content

Biquadratic and Quadratic Springs for Modeling St Venant Kirchhoff Materials

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5104))

Abstract

This paper provides a formal connexion between springs and continuum mechanics in the context of two-dimensional and three dimensional hyperelasticity. First, we establish the equivalence between surface and volumetric St Venant-Kirchhoff materials defined on linear triangles and tetrahedra with tensile, bending and volumetric biquadratics springs. Those springs depend on the variation of square edge length while traditional or quadratic springs depend on the change in edge length. However, we establish that for small deformations, biquadratic springs can be approximated with quadratic springs with different stiffnesses. This work leads to an efficient implementation of St Venant-Kirchhoff materials that can cope with compressible strains. It also provides expressions to compute spring stiffnesses on triangular and tetrahedral meshes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbič, J., James, D.L.: Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM TOG (SIGGRAPH 2005) 24(3), 982–990 (2005)

    Article  Google Scholar 

  2. Bianchi, G., Solenthaler, B., Székely, G., Harders, M.: Simultaneous topology and stiffness identification for mass-spring models based on fem reference deformations. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 293–301. Springer, Heidelberg (2004)

    Google Scholar 

  3. Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. The Visual Computer 16(8), 437–452 (2000)

    Article  MATH  Google Scholar 

  4. Delingette, H.: Triangular springs for modeling nonlinear membranes. IEEE Transactions on Visualization and Computer Graphics 14(2), 329–341 (2008)

    Article  Google Scholar 

  5. Irving, G., Teran, J., Fedkiw, R.: Tetrahedral and hexahedral invertible finite elements. Graph. Models 68(2), 66–89 (2006)

    Article  MATH  Google Scholar 

  6. Lloyd, B., Szekely, G., Harders, M.: Identification of spring parameters for deformable object simulation. IEEE Transactions on Visualization and Computer Graphics 13(5), 1081–1094 (2007)

    Article  Google Scholar 

  7. Nealen, A., Muller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. Technical report, Eurographics State of the Art, Dublin, Ireland (September 2005)

    Google Scholar 

  8. Nesme, M., Payan, Y., Faure, F.: Efficient, physically plausible finite elements. In: Dingliana, J., Ganovelli, F. (eds.) Eurographics (short papers) (august 2005)

    Google Scholar 

  9. Picinbono, G., Delingette, H., Ayache, N.: Non-Linear Anisotropic Elasticity for Real-Time Surgery Simulation. Graphical Models 65(5), 305–321 (2003)

    Article  MATH  Google Scholar 

  10. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: Computer Graphics (SIGGRAPH 1987), vol. 21, pp. 205–214 (1987)

    Google Scholar 

  11. Van Gelder, A.: Approximate simulation of elastic membranes by triangulated spring meshes. Journal of Graphics Tools: JGT 3(2), 21–41 (1998)

    MathSciNet  Google Scholar 

  12. Waters, K., Terzopoulos, D.: Modeling and animating faces using scanned data. The Journal of Visualization and Computer Animation 2, 129–131 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fernando Bello P. J. Eddie Edwards

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delingette, H. (2008). Biquadratic and Quadratic Springs for Modeling St Venant Kirchhoff Materials. In: Bello, F., Edwards, P.J.E. (eds) Biomedical Simulation. ISBMS 2008. Lecture Notes in Computer Science, vol 5104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70521-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70521-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70520-8

  • Online ISBN: 978-3-540-70521-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics