Skip to main content

Exploring Parallel Algorithms for Volumetric Mass-Spring-Damper Models in CUDA

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5104))

Abstract

Since the advent of programmable graphics processors (GPUs) their computational powers have been utilized for general purpose computation. Initially by “exploiting” graphics APIs and recently through dedicated parallel computation frameworks such as the Compute Unified Device Architecture (CUDA) from Nvidia. This paper investigates multiple implementations of volumetric Mass-Spring-Damper systems in CUDA. The obtained performance is compared to previous implementations utilizing the GPU through the OpenGL graphics API. We find that both performance and optimization strategies differ widely between the OpenGL and CUDA implementations. Specifically, the previous recommendation of using implicitly connected particles is replaced by a recommendation that supports unstructured meshes and run-time topological changes with an insignificant performance reduction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liu, A., Tendick, F., Cleary, K., Kaufmann, C.: A survey of surgical simulation: applications, technology, and education. Presence: Teleoper. Virtual Environ. 12(6), 599–614 (2003)

    Article  Google Scholar 

  2. Miller, K., Joldes, G., Lance, D., Wittek, A.: Total lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Communications in Numerical Methods in Engineering 23, 121–134 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Irving, G., Teran, J., Fedkiw, R.: Invertible finite elements for robust simulation of large deformation. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation, pp. 131–140 (2004)

    Google Scholar 

  4. Bro-Nielsen, M., Cotin, S.: Real-time volumetric deformable models for surgery simulation using finite elements and condensation  15, 57–66 (1996)

    Google Scholar 

  5. Delingette, H., Cotin, S., Ayache, N.: A hybrid elastic model allowing real-time cutting deformations and force feedback for surgery training and simulation. In: Proceedings of the Computer Animation, May 1999, pp. 70–81 (1999)

    Google Scholar 

  6. Sørensen, T.S., Mosegaard, J.: An introduction to gpu accelerated surgical simulation. In: Harders, M., Székely, G. (eds.) ISBMS 2006. LNCS, vol. 4072, pp. 93–104. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Mosegaard, J., Sørensen, T.S.: Gpu accelerated surgical simulators for complex morphology. Proceedings of Virtual Reality 323, 147–154 (2005)

    Google Scholar 

  8. Taylor, Z., Cheng, M., Ourselin, S.: High-speed nonlinerar finite element analysis for surgical simulation using graphics processing units. IEEE Transactions on Medical Imaging (in Press, 2008)

    Google Scholar 

  9. NVIDIA: CUDA Programming Guide v. 1.1

    Google Scholar 

  10. Jakobsen, T.: Advanced character physics. In: Game Developers Conference (2001)

    Google Scholar 

  11. Sørensen, T., Stawiakski, J., Mosegaard, J.: Virtual open heart surgery: Obtaining models suitable for surgical simulation. Stud Health Technol. Inform. 125, 445–447 (2007)

    Google Scholar 

  12. Mosegaard, J., Sørensen, T.S.: Real-time deformation of detailed geometry based on mappings to a less detailed physical simulation on the gpu. In: Proceedings of Eurographics Workshop on Virtual Environments, vol. 11, pp. 105–111. Eurographics Association (2005)

    Google Scholar 

  13. Sørensen, T.S., Mosegaard, J.: Haptic feedback for the GPU-based surgical simulator. Proceedings of Medicine Meets Virtual Reality 14. Studies in Health Technology and Informatics 119, 523–528 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fernando Bello P. J. Eddie Edwards

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rasmusson, A., Mosegaard, J., S∅rensen, T.S. (2008). Exploring Parallel Algorithms for Volumetric Mass-Spring-Damper Models in CUDA. In: Bello, F., Edwards, P.J.E. (eds) Biomedical Simulation. ISBMS 2008. Lecture Notes in Computer Science, vol 5104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70521-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70521-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70520-8

  • Online ISBN: 978-3-540-70521-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics