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Abstract. One of the major challenges of designing heterogeneous re-
configurable systems is to obtain the maximum system performance with
efficient utilization of the reconfigurable logic resources. To accomplish
this, it is essential to perform design space exploration (DSE) at the
early design stages. System-level simulation is used to estimate the per-
formance of the system and to make early decisions of various design
parameters in order to obtain an optimal system that satisfies the given
constraints. Towards this goal, in this paper, we develop a model, which
can assist designers at the system-level DSE stage to explore the utiliza-
tion of the reconfigurable resources and evaluate the relative impact of
certain design choices. A case study of a real application shows that the
model can be used to explore various design parameters by evaluating the
system performance for different application-to-architecture mappings.

1 Introduction and Related Work

In recent years, reconfigurable architectures have received ever increasing at-
tention due to their adaptability and short design time. The main advantage
of reconfigurable computing is its ability to increase performance with acceler-
ated hardware execution, while possessing the flexibility of a software solution.
Reconfigurable systems can speed up the application’s execution time by map-
ping selected application kernels onto reconfigurable hardware. In the context
of heterogeneous reconfigurable systems, to make early design decisions such as
mapping of an application onto reconfigurable hardware, it is essential to perform
Design Space Exploration(DSE). DSE environments assist designers in rapid per-
formance evaluation of various parameters such as: architectural characteristics,
application-to-architecture mappings, scheduling policies and hardware/software
partitioning. This enables a designer to identify design candidates that satisfy
functional and non-functional design constraints, e.g: performance, chip area,
power consumption etc. DSE environments and methodologies help traversing
(typically) huge design spaces efficiently, thus performing DSE at a high level of
abstraction facilitates design decisions to be made at very early design stages,
which can significantly reduce the overall design time of a system.
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Though system-level DSE modeling and simulation of reconfigurable system
has been touted for quite some time, there are not many tools and models
available for system-level DSE for reconfigurable systems. Authors in [1] have
presented a modeling methodology for dynamic scheduling of run-time reconfig-
urable architectures based on discrete event systems. Papers [2] and [3] present
a system-level modeling framework for performance evaluation and rapid explo-
ration of different reconfiguration alternatives. Similarly, authors in [4] present
an approach for simulating and estimating the performance of reconfigurable
architectures based on SystemC. However, these tools and methods are quite
limited in number and their level of maturity is not yet very high. Typically,
either such tools are not generic enough to be used for every kind of reconfig-
urable architectures, or they have a restricted focus and therefore cannot exploit
simultaneously all the potential aspects of dynamic reconfiguration (such as area
usage, reconfiguration overheads and obtainable speedup). In order to fill this
gap, in this paper, we present a model for system-level DSE for reconfigurable
systems, which can simulate and estimate performance for reconfigurable archi-
tectures at a higher abstraction level. For this, we use the Sesame framework
[5] as a modeling and simulation platform and the Molen architecture [6] as an
example of a reconfigurable architecture. The main contributions of this paper
are as follows:
– Extension of the Sesame framework to support partially dynamic reconfig-
urable architectures.
– Construction of a Sesame model for Molen, which captures the most important
behavioral aspects of the architecture and can assist a designer to evaluate the
performance of the Molen architecture at the early stage of system-level DSE.
– Initial experimental validation of DSE for a real application - which shows
various kinds of explorations and validations that can be performed with the
proposed model.

2 The Molen Architecture
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Fig. 1. Molen Architecture

The Molen polymorphic processor is established
on the basis of the tightly coupled co-processor
architectural paradigm [6][7]. It consists of two
different kinds of processors: the core processor,
which is a general-purpose processor (GPP), and
the Reconfigurable Processor (RP). The recon-
figurable processor is further subdivided into the
ρμ-code unit and custom configured unit (CCU)
(see Figure 1). These two processors are con-
nected to one arbiter. The arbiter controls the
co-ordination of the GPP and RP by directing instructions to either of these
processors. In order to speed up the program by running on reconfigurable hard-
ware, parts of the program code running on a GPP can be implemented on the
CCU. The code to be mapped onto the RP is annotated with special pragma
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directives. When the arbiter receives the pragma instruction for RP, it initiates
an operation in the reconfigurable unit, gives the data memory control to the
RP and drives the GPP into a wait state. When the arbiter receives an end
signal from the RP, it releases the data memory control back to the GPP, which
can then resume its execution. An operation executed by the RP is divided into
two distinct phases: set and execute. In the set phase, the CCU is configured to
perform the required operation and in the execute phase the actual execution of
the operation is performed.

3 Sesame Modeling Approach

The Sesame modeling and simulation environment [5] is geared towards fast
and efficient exploration of embedded multimedia architectures, typically those
implemented as heterogeneous MPSoCs. Sesame adheres to a transparent simu-
lation methodology where the concerns of application and architecture modeling
are separated. An application model describes the functional behavior of an
application and an architecture model defines the architectural resources and
constraints. For application modeling, Sesame uses the Kahn Process Network
(KPN) model of computation [8], which consists of concurrent processes that
communicate data using blocking read/non-blocking write synchronization over
unbounded FIFO channels.

The processes contain functional application code together with annotations
that generate events describing the actions of the process. Communication events
Read (R) and Write (W) describe FIFO channel communication and the Exe-
cute (EX) event describes computation performed by a Kahn process (typically
a function). These events are collected into event traces that are mapped, using
an intermediate mapping layer, onto an architecture model (see Figure 2; note
that the mapping layer is not shown in detail). Unlike the application model,
which is un-timed, the mapping and architecture layers are modeled together
in a timed simulation domain. The mapping layer consists of Virtual Processors
(VPs) and bounded size FIFO channel components which are connected using
the same network topology as the application model. The main purpose of the
mapping layer is to forward the event traces to components in the architecture
model (application processes onto processors and communication channels onto
communication structures) according to a user-specified mapping. The compo-
nents in the mapping layer simulate synchronization of communication events
in such a way that forwarded events are “safe” meaning they do not cause
any deadlock due to unmet data dependencies when mapped onto shared re-
sources.

In the architecture model, the architectural timing consequences of the events
are modeled. Interconnection and memory components model the utilization and
the contention caused by communication events. Processor components model
processor utilization using a lookup table that relate computational (EX) events
to an execution latency. These latency values may be obtained from literature,
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hardware measurements, rough estimates or from more detailed simulators such
as described in [9].

4 The Molen Model with Sesame

In this section, the Sesame model for the Molen architecture will be described in
detail. To create a model with correct Molen reconfiguration behavior, we need
to add three extra synchronization mechanisms: one at each Sesame layer, i.e.
application, mapping and architecture. In the following sections we describe how
these synchronizations are modeled in the different Sesame layers.

4.1 Application Modeling

The Molen architecture exhibits a tightly coupled co-processor paradigm and
allows CCUs to run as a co-processor, which adds control dependencies between
the GPP and CCUs. Moreover, in Molen, due to its reconfigurable nature, there
can be extra dependencies between the tasks mapped to CCUs due to the re-
source constraints imposed by the FPGA. In some cases, these added depen-
dencies can lead to a deadlock situation in the architecture model. To avoid
this deadlock, we have restricted the KPN graphs in the application layer to
be static and acyclic. Additionally, to make sure only safe events are forwarded
from the mapping layer to the architecture models, we modified the application
by adding a Kahn channel from the application’s output (or sink) node to its
source node(s). Furthermore, we also added a token channel between each pair
of communicating processes (see the dashed arrows in the application layer of
Figure 2). Unlike the other channels in the Kahn network (which communicate
data), these channels only carry a token that needs to be read by the source node
before each iteration. For a streaming application, such as depicted in Figure 2,
this means that after node A has written data to node B, A has to wait for the
token from sink-node F before it can write a new data item to the stream. To
achieve this, Kahn processes code has been slightly adapted to read and write
the token channels, which adds special read(RT ) and write (WT ) events to the
application trace.

This way the pipeline parallelism is removed from the application which avoids
two data-dependent tasks to be active simultaneously on the architecture model.
This will prevent the deadlock situation in the Molen model that might occur
due to the co-processor behavior and the resource constraints. It is important
to note that the sink-to-source channel does not remove all the parallelism in
the application, particularly “fork-and-join” parallelism still remains available
between tasks that are not data dependent such as between the task pairs (C,D)
and (E,D). To enable reconfigurability in the architecture model, one additional
change to the application model is required. At the end of each iteration of a
task, we add a special execute(pragma) event. Similar to the pragma directive in
Molen, this event indicates that if the task is mapped onto FPGA, the FPGA
can be reconfigured to execute another task after its completion. We use the
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KPN graphs generated by PN-gen tool[10], for which an iteration is defined as
a set of read (R), execute (EX) and write (W) events for a particular task.

4.2 Mapping Layer

The mapping layer forwards the events (read, execute and write) from the ap-
plication model as soon as their dependencies are met. To avoid the deadlock
mentioned earlier, we also need to perform an additional synchronization in the
mapping layer. This synchronization will guarantee that events for a certain
task will only be forwarded once all its input data is available. To this end, the
virtual processors(VP) in the mapping layer are extended such that a VP first
checks the availability of all its input data by checking a special token chan-
nel for all of its inputs. When all data is available, it proceeds as normal and
forwards R,W and EX events to the architecture. Finally, it writes a token to
all of its output token channels to signal to all subsequent nodes that data is
available. Since VPs have no knowledge of the structure of an application, they
cannot autonomously determine when all input is available or when to signal
“output available” to other nodes. Therefore reading and writing of token chan-
nels is managed explicitly by the application model and the events created by
the special reads(RT ) and writes(WT ) are used by the VPs in the mapping
layer to perform the extra synchronization in the timed simulation domain.
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Fig. 2. Three layers in Sesame’s infrastruc-
ture for Molen

Note that these synchronization events
are not forwarded to the architecture
model: only timing consequences of
normal R,W or EX events are mod-
eled there. The modifications to the
application model essentially allow the
mapping layer to dynamically deter-
mine a valid, deadlock-free schedule
for application events, which is needed
to successfully drive the underlying
Molen architecture model. However,
these modifications limit the class of
Kahn process networks that can be
run, because not all Kahn networks
can be extended easily with the re-
quired token channels. This is another
reason why currently we restrict the
KPN graphs to be static and acyclic.
In the future, the model can be refined
and these restrictions can be relaxed.

4.3 Architecture Modeling

Architecture models in Sesame are constructed from generic building blocks
provided by a library, which contains templates for processors, memories, buses,
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on-chip networks and so on. We created a model for the Molen architecture using
these components and by instantiating processor components with different pa-
rameters to model the respective properties of the GPP and the RP (i.e. CCUs).
In addition to the general behavior of a processor, CCUs have been given some
extra parameters such as area occupancy and reconfiguration delay. In Figure
2, this architecture is shown together with the mapping of an application. In
the following sections we describe the GPP/FPGA synchronization mechanism
to model co-processor behavior and the modeling of reconfigurable hardware.
These are the components that would cause the simulation to deadlock, without
the modifications described above.

Modeling the Arbiter

As mentioned before, the Molen pragma directive has been modeled as a spe-
cial execution event in the application layer which is passed to the architec-
ture model. The arbiter has been modeled as a component in the architec-
ture layer which controls the execution of the GPP and CCUs (see Figure 2).

GPP CCU1 Arbiter

T0
Request Lock()

Grant Lock()

CCU2

Request Lock()

Reply()

T1

UnLock()

Grant Lock()

Request Lock()

Grant Lock()
T3

UnLock()

Reply()
UnLock()

Reply()

T4

T5

T2

Fig. 3. GPP/CCU, Arbiter Interaction

When a processor (GPP
or CCU) receives the
special pragma event, it
requests a lock from the
arbiter. The arbiter co-
ordinates the co-processor
behavior by granting ex-
clusive control to either
the GPP or the CCUs.
To illustrate the interac-
tion between the GPP,
CCUs and the arbiter,
consider Figure 3. The fig-
ure shows these interac-
tions in the case where
GPP and CCUs want to
execute at the same time.
In this particular case,
GPP gets the lock to ex-
ecute at T0. At time T1,
CCU1 requests execution. Since the GPP is still executing, CCU1 goes to a
wait mode. When the GPP finishes its execution, it returns the lock at time
T2 and execution is granted to CCU1. At time T3, CCU2 requests execution.
Since CCU1 and CCU2 both execute in parallel on the FPGA, CCU2 also gets
the lock and can start execution. At time T4, CCU1 finishes its execution, but
CCU2 is still executing on the FPGA and only finishes its execution at time T5.
At time T4, if the GPP was to request the lock for execution, then it has to wait
until time T5. In this way, the arbiter guarantees that all the CCUs finish their
execution before it releases the lock.
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Modeling Reconfiguration

The Molen architecture supports dynamically reconfigurable FPGAs with partial
reconfiguration capability. By reconfiguring part of the FPGA while other parts
continue execution normally, it is possible to significantly reduce the impact of
the (large) reconfiguration overhead on the total execution time. To capture this
behavior in our model we model reconfiguration as follows. A CCU component
represents the implementation of a Kahn process in hardware, which means that
there are as many CCUs as the number of processes mapped onto the FPGA.
Each CCU has an associated reconfiguration delay to configure the task and the
percentage of area it occupies. In the current version of our model, we assume
a static mapping which means we know in advance which tasks are mapped
onto the CCUs. The CCUs are synchronized by a reconfiguration manager (see
Fig. 2). The reconfiguration manager is responsible for configuring and releasing
CCUs based on the availability of the area on the FPGA. When a CCU wants
to execute a task, it sends a request to the reconfiguration manager to be config-
ured; the manager checks for the availability of area on the FPGA and decides
whether or not to configure a particular CCU. If there is enough area available
immediately, then the CCU will be configured, otherwise it will be blocked until
sufficient area is available. Once the necessary area is available and the CCU is
configured, the CCU will be blocked to model its reconfiguration delay before it
starts the real execution of the events. In this way, the effects of the reconfig-
uration delay on the system performance is modeled. The interaction between
CCUs and the reconfiguration manager is shown in Figure 4 where Fschd is the

CCU4

unconfigure()

CCU2CCU3 FschdCUU1

unconfigure()

reply()

configure(area1)

area1<=Available_Area]

configure(area3)

[area2<=Available_Area]
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reply(OK)

CCU4 = first_fit()

configure(area4)

[area4>Available_Area]

reply()

CCU3 = first_fit()

unconfigure()

reply()

reply()

unconfigure()

configureON()

reply(WAIT)

configure(area2)

reply (OK)

configureON()

reply(WAIT)

Fig. 4. Interaction between CCUs and Reconfiguration Manager
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reconfiguration manager. For experimental purposes, in this paper, we have im-
plemented a simple first fit placement algorithm. In our first fit algorithm, the
first CCU which fits onto the available FPGA area will be scheduled first. How-
ever, any kind of task placement and scheduling algorithm for the reconfigurable
hardware can be implemented as a plugin to the reconfiguration manager.

5 Case Study and Preliminary Results

VideoIn VideoOut

Init

DCT

VLE

Q1 1

DCT Q2 2

DCT Q3 3

DCT Q4 4

Fig. 5. Application model

In this section, we will describe a case study
using the previously described Molen model
and we will discuss our preliminary results.
Our aim is to show what kind of experiments
and results can be obtained from the model
and what conclusions can be drawn from it.
We do not discuss the accuracy of the model,
since model validation and calibration is left
as future work. In this case study, we use a
data parallel Motion-JPEG encoder application which is mapped onto the Molen
architecture. Figure 5 shows that the DCT and Quantizer tasks of the Motion-
JPEG application are divided into 4 parallel streams (synchronization channels
are not shown in this figure). We instantiate the Molen model with 8 CCU
units. This allows us to make optimal use of the parallelism available in the
application by mapping each of the DCT and Q tasks onto a CCU. Also, note
that as discussed in Section 4.3, a CCU is represented as an implementation of a
Kahn process. The computational latency values that the GPP model component
associates with the computational events, are initialized using estimated (but
non-Molen specific) values. For the CCUs, we use the same values divided by
10, implying that the same computational event would execute 10 times faster
on the reconfigurable hardware than on the GPP. We realize that in reality
the latency of the CCU is different and does not show any dependency with
the latency of the GPP. We use this simplified assumption here for illustration
purposes. Similarly, we assume an estimated value for the reconfiguration delay
and area for each CCU.

In the first experiment, we look at the impact of different task mappings on
the total execution time in terms of simulated clock cycles. In this case, we as-
sume each task takes almost the whole area on a FPGA and we fix the size of
each CCU to 95%, thus forcing reconfiguration every time for each CCU. At
first, we map all the tasks to GPP and in each successive mapping we move
one task (either DCT or Q tasks) from GPP to CCUs. Figure 6 shows the re-
sults for these mappings. The mapping column lists the successive mappings(1st
mapping: all tasks are mapped to GPP, 2nd mapping: DCT1 to CCU and rest
to GPP, 3rd mapping: DCT1 & DCT2 to CCUs and rest to GPP and so on).
The “cycle time” column lists the total execution time for each mapping and the
last column lists the speedup for each mapping compared to the first mapping.
Because of the lower execution latency of CCUs as compared to the GPP, we
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No Mapping Cycle Time Speedup
1st First 371150560 1.000
2nd prev+DCT1 331948000 1.118
3rd prev+DCT2 292745440 1.267
4th prev+DCT3 253542880 1.463
5th prev+DCT4 217906240 1.703
6th prev+Q1 199425856 1.861
7th prev+Q2 200145472 1.854
8th prev+Q3 194465088 1.908
9th prev+Q4 188784704 1.965

Fig. 6. Results Experiment 1

Area Delay Slow Cycle Speedup
Reconf Time

95 25000 1792 188784704 1.965
75 18750 1792 175984704 2.108
50 12500 1536 137532992 2.698
30 7500 1280 140418784 2.643

Fig. 7. Results Experiment 2

might expect this to significantly increase the system performance. However, the
results show that in fact there is a non-linear trade-off. This is because, moving
the tasks to CCUs will add to the latency for reconfiguring the CCUs each time.

In the second experiment, we explore the impact of varying the CCU sizes.
Once again we simplify the model by assuming the area for DCT and Q is the
same. We scale the reconfiguration delay proportional with the CCU area, which
is true property of most current reconfigurable hardwares. As a reference map-
ping, we use the mapping that has all DCT and Q tasks on CCUs and all others
on the GPP. Figure 7 shows the results for different area and reconfiguration
delay values. It lists the cycle times and number of “slow reconfigurations”. This
is the number of times the CCU has been reconfigured when there is not enough
area for immediate execution. Moreover, it lists the speed-ups in each case when
the area varies. As it can be inferred from the results, there is a clear relation
between area and time. When CCUs occupy more area, less CCUs can be exe-
cuted simultaneously hence more reconfigurations are required implying longer
reconfiguration delay and thus longer execution time. At the same time, when
CCUs occupy less area, there are less reconfigurations and reconfiguration delay,
hence faster execution.

Finally we note that all the above system-level simulations (with the given
input consisting of 8 picture frames of 1282 pixels) can be executed in less than
0.5 second, thus allowing for extensive design space exploration.

6 Conclusion and Future Work

In this paper we have created a model for the Molen reconfigurable platform
using the Sesame framework. The case study in this paper has shown that various
design parameters such as area, reconfiguration delay and task mappings can be
explored with the current model. Due to fast execution times it can be used
to efficiently explore and evaluate different design choices of the reconfigurable
architecture. Moreover, the model is easily extensible and only few modifications
are required to the existing model for modeling various other design options.
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The current version of the model assumes static mapping (i.e. we know in
advance which tasks are mapped onto FPGA). In the future, we want to extend
the model to support dynamic (run-time) mapping of application tasks onto
reconfigurable and non-reconfigurable hardware. Additionally, we will validate
the current Molen model against a real Molen implementation to allow for final
calibration of the model in order to increase its accuracy.
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