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Abstract. For a given graph G and integers b, f ≥ 0, let S be a subset
of vertices of G of size b+1 such that the subgraph of G induced by S is
connected and S can be separated from other vertices of G by removing f

vertices. We prove that every graph on n vertices contains at most n
`

b+f

b

´

such vertex subsets. This result from extremal combinatorics appears to
be very useful in the design of several enumeration and exact algorithms.
In particular, we use it to provide algorithms that for a given n-vertex
graph G

– compute the treewidth of G in time O(1.7549n) by making use of
exponential space and in time O(2.6151n) and polynomial space;

– decide in time O(( 2n+k+1

3
)k+1 · kn6) if the treewidth of G is at most

k;
– list all minimal separators of G in time O(1.6181n) and all potential

maximal cliques of G in time O(1.7549n).
This significantly improves previous algorithms for these problems.

1 Introduction

The aim of exact algorithms is to optimally solve hard problems exponentially
faster than brute-force search. The first papers in the area date back to the
sixties and seventies [18, 26]. For the last two decades the amount of literature
devoted to this topic has been tremendous and it is impossible to give here a list
of representative references without missing significant results. Recent surveys
[14, 20, 25, 28] provide a comprehensive information on exact algorithms. It is
very natural to assume the existence of strong links between the area of exact
algorithms and some areas of extremal combinatorics, especially the part of
extremal combinatorics which studies the maximum (minimum) cardinalities of
a system of subsets of some set satisfying certain properties. Strangely enough,
there are not so many examples of such links in the literature, and the majority of
exact algorithms are based on the so-called branching (backtracking) technique
which traces back to the works of Davis, Putnam, Logemann, and Loveland [11,
12].

In this paper, we prove a combinatorial lemma which appears to be very
useful in the analysis of certain enumeration and exact algorithms. For a vertex
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v of a graph G and integers b, f ≥ 0, let t(b, f) be the maximum number of
connected induced subgraphs of G of size b + 1 such that the intersection of all
these subgraphs is nonempty and each such a subgraph has exactly f neighbors
(a neighbor of a subgraph H is a vertex of G \H which is adjacent to a vertex
of H). Then the combinatorial lemma states that t(b, f) ≤

(

b+f
b

)

(and it is easy
to check that this bound is tight). This can be seen as a variation of Bollobáss
Theorem [7], which is one of the corner-stones in extremal set theory. (See Section
9.2.2 of [21] for detailed discussions on Bollobáss Theorem and its variants.)

We use this combinatorial result to obtain faster algorithm for a number of
problems related to the treewidth of a graph. The treewidth is a fundamental
graph parameter from Graph Minors Theory by Robertson and Seymour [24] and
it has numerous algorithmic applications, see the surveys [4, 6]. The problems to
compute the treewidth is known to be NP-hard [1] and the best known approx-
imation algorithm for treewidth has a factor

√
logOPT [13]. It is an old open

question whether the treewidth can be approximated within a constant factor.
Treewidth is known to be fixed parameter tractable. Moreover, for any fixed k,
there is a linear time algorithm due to Bodlaender [3] computing the treewidth
of graphs of treewidth at most k. Unfortunately, huge hidden constants in the
running time of Bodlaender’s algorithm is a serious obstacle to its implemen-
tation. For small values of k, the classical algorithm of Arnborg, Corneil and
Proskurowski [1] from 1987 which runs in time O(nk+2) can be used to decide
if the treewidth of a graph is at most k. The first exact algorithm computing
the treewidth of an n-vertex graph is due to Fomin et al. [15] and has running
time O(1.9601n). Later these results were improved in [16, 27] to O(1.8899n).
Both algorithms use exponential space. The fastest polynomial space algorithm
for treewidth prior to this work is due to Bodlaender et al. [5] and runs in time
O(2.9512n).

Our results. We introduce a new (exponential space) algorithm computing
the treewidth of a graph G on n vertices in time O(1.7549n) and a polyno-
mial space algorithm computing the treewidth in time O(2.6151n). We also
show that if the treewidth of G is at most k, then it can be computed in time
O((2n+k+1

3 )k+1 · kn6). This is a refinement of the classical result of Arnborg et
al. Running times of all these algorithms strongly depend on possibilities of fast
enumeration of specific structures in a graph, namely, potential maximal cliques,
and minimal separators [5, 8, 9, 15, 27]. The new combinatorial lemma is crucial
in obtaining new combinatorial bounds and enumeration algorithms for mini-
mal separators and potential maximal cliques, which, in turn, provides faster
algorithms for treewidth.

Similar improvements in running times from O(1.8899n) to O(1.7549n) can
be obtained for a number of results in the literature on problems related to
treewidth (we skip definitions here). For example, by combining the ideas from
[15] it is possible to compute the fill-in of a graph in time O(1.7549n). Another
example are the treelength and the Chordal Sandwich problem [23] which also
can be solved in time O(1.7549n) by making use of our technique.
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The remaining part of the paper is organized as follows. In the next section
we provide definitions and preliminary results. In Section 3, we prove our main
combinatorial tool. By making use of this tool, in Section 4, we prove combi-
natorial bounds on the number of minimal separators and potential maximal
cliques and obtain algorithm enumerating these structures. These results form
the basis for all our algorithms computing the treewidth of a graph presented in
Sections 5, 6, and 7.

2 Preliminaries

We denote by G = (V,E) a finite, undirected and simple graph with |V | = n
vertices and |E| = m edges. For any non-empty subset W ⊆ V , the subgraph
of G induced by W is denoted by G[W ]. We say that a vertex set S ⊆ V is
connected if G[S] is connected.

The neighborhood of a vertex v is N(v) = {u ∈ V : {u, v} ∈ E} and for a
vertex set S ⊆ V we set N(S) =

⋃

v∈S N(v) \ S. A clique C of a graph G is a
subset of V such that all the vertices of C are pairwise adjacent.

Minimal separators. Let u and v be two non adjacent vertices of a graph
G = (V,E). A set of vertices S ⊆ V is an u, v-separator if u and v are in
different connected components of the graph G[V \ S]. A connected component
C of G[V \ S] is a full component associated to S if N(C) = S. S is a minimal
u, v-separator of G if no proper subset of S is an u, v-separator. We say that S
is a minimal separator of G if there are two vertices u and v such that S is a
minimal u, v-separator. Notice that a minimal separator can be strictly included
in another one. We denote by ∆G the set of all minimal separators of G.

We need the following result due to Berry et al. [2] (see also Kloks et al. [22])

Proposition 1 ([2]). There is an algorithm listing all minimal separators of
an input graph G in O(n3|∆G|) time.

The following proposition is an exercise in [17].

Proposition 2 (Folklore). A set S of vertices of G is a minimal a, b-separator
if and only if a and b are in different full components associated to S. In partic-
ular, S is a minimal separator if and only if there are at least two distinct full
components associated to S.

Potential maximal cliques. A graph H is chordal (or triangulated) if every
cycle of length at least four has a chord, i.e. an edge between two non-consecutive
vertices of the cycle. A triangulation of a graph G = (V,E) is a chordal graph
H = (V,E′) such that E ⊆ E′. H is a minimal triangulation if for any set E′′

with E ⊆ E′′ ⊂ E′, the graph F = (V,E′′) is not chordal.
A set of vertices Ω ⊆ V of a graph G is called a potential maximal clique if

there is a minimal triangulation H of G such that Ω is a maximal clique of H .
We denote by ΠG the set of all potential maximal cliques of G.

The following result on the structure of potential maximal cliques is due to
Bouchitté and Todinca.
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Proposition 3 ([8]). Let K ⊆ V be a set of vertices of the graph G = (V,E).
Let C(K) = {C1(K), . . . , Cp(K)} be the set of the connected components of G[V \
K] and let S(K) = {S1(K), S2(K), . . . , Sp(K)} where Si(K), i ∈ {1, 2, . . . , p},
is the set of those vertices of K which are adjacent to at least one vertex of the
component Ci(K). Then K is a potential maximal clique of G if and only if:

1. G[V \K] has no full component associated to K, and
2. the graph on the vertex set K obtained from G[K] by completing each Si ∈

S(K) into a clique, is a complete graph.

The following result is also due to Bouchitté and Todinca.

Proposition 4 ([8]). There is an algorithm that, given a graph G = (V,E) and
a set of vertices K ⊆ V , verifies if K is a potential maximal clique of G. The
time complexity of the algorithm is O(nm).

Treewidth. A tree decomposition of a graph G = (V,E) is a pair (χ, T ) in
which T = (VT , ET ) is a tree and χ = {χi|i ∈ VT } is a family of subsets of V
such that: (1)

⋃

i∈VT
χi = V ; (2) for each edge e = {u, v} ∈ E there exists an

i ∈ VT such that both u and v belong to χi; and (3) for all v ∈ V , the set of
nodes {i ∈ VT |v ∈ χi} forms a connected subtree of T . To distinguish between
vertices of the original graph G and vertices of T , we call vertices of T nodes and
their corresponding χi’s bags. The maximum size of a bag minus one is called
the width of the tree decomposition. The treewidth of a graph G, tw(G), is the
minimum width over all possible tree decompositions of G.

An alternative definition of treewidth is via minimal triangulations. The
treewidth of a graph G is the minimum of ω(H) − 1 taken over all triangula-
tions H of G. (By ω(H) we denote the maximum clique-size of a graph H .)

Our algorithm for treewidth is based on the following result.

Proposition 5 ([15]). There is an algorithm that, given a graph G together
with the list of its minimal separators ∆G and the list of its potential maximal
cliques ΠG, computes the treewidth of G in O(n3 (|ΠG|+ |∆G|) time. Moreover,
the algorithm constructs an optimal triangulation for the treewidth.

3 Combinatorial Lemma

The following lemma is our main combinatorial tool.

Lemma 1 (Main Lemma). Let G = (V,E) be a graph. For every v ∈ V , and
b, f ≥ 0, the number of connected vertex subsets B ⊆ V such that

(i) v ∈ B,
(ii) |B| = b+ 1, and
(iii) |N(B)| = f

is at most
(

b+f
b

)

.
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Proof. Let v be a vertex of a graph G = (V,E). For b + f = 0 Lemma trivially
holds. We proceed by induction assuming that for some k > 0 and every b and
f such that b + f ≤ k − 1, Lemma holds. For b and f such that b + f = k we
define B as the set of sets B satisfying (i), (ii), (iii). We claim that

|B| ≤
(

b+ f

b

)

.

Since the claim always holds for b = 0, let us assume that b > 0.
Let N(v) = {v1, v2, . . . , vp}. For 1 ≤ i ≤ p, we define Bi as the set of all

connected subsets B such that

– Vertices v, vi ∈ B,
– For every j < i, vj 6∈ B,
– |B| = b+ 1,
– |N(B)| = f .

Let us note, that every set B satisfying the conditions of the lemma is in some
set Bi for some i, and that for i 6= j, Bi ∩ Bj = ∅. Therefore,

|B| =
p

∑

i=1

|Bi|. (1)

For every i > f + 1, |Bi| = 0 (this is because for every B ∈ Bi, the set N(B)
contains vertices v1, . . . , vi−1 and thus is of size at least f + 1.) Thus (1) can be
rewritten as follows

|B| =
f+1
∑

i=1

|Bi|. (2)

Let Gi be the graph obtained from G by contracting edge {v, vi} (removing
the loop, reduce double edges to single edges, and calling the new vertex by v)
and removing vertices v1, . . . , vi−1. Then the cardinality of Bi is equal to the
number of the connected vertex subsets B of Gi such that

– v ∈ B,
– |B| = b,
– |N(B)| = f − i+ 1.

By the induction assumption, this number is at most
(

f+b−i
b−1

)

and (2) yields that

|B| =
f+1
∑

i=1

|Bi| ≤
f+1
∑

i=1

(

f + b− i

b− 1

)

=

(

b+ f

b

)

.

⊓⊔
The inductive proof of the Main Lemma can be easily turned into a recursive

polynomial space enumeration algorithm (we skip the proof here).

Lemma 2. All vertex sets of size b + 1 with f neighbors in a graph G can be
enumerated in time O(n

(

b+f
b

)

) by making use of polynomial space.
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4 Combinatorial bounds

In this section we provide combinatorial bounds on the number of minimal sep-
arators and potential maximal cliques in a graph. Both bounds are obtained by
applying the Main Lemma on the respectice problems.

4.1 Minimal separators

Theorem 1. Let ∆G be the set of all minimal separators in a graph G on n
vertices. Then |∆G| = O(1.6181n).

Proof. For 1 ≤ i ≤ n, let f(i) be the number of all minimal separators in G of
size i. Then

|∆G| =
n
∑

1

f(i). (3)

Let S be a minimal separator of size αn, where 0 < α < 1. By Proposition 2,
there exists two full components C1 and C2 associated to S. Let us assume that
|C1| ≤ |C2|. Then |C1| ≤ (1−α)n/2. From the definition of a full component C1

associated to S, we have that N(C1) = S. Thus, f(αn) is at most the number
of connected vertex sets C of size at most (1−α)n/2 with neighborhoods of size
|N(C)| = αn. Hence, to bound f(αn) we can use the Main Lemma for every
vertex of G.

By Lemma 1, we have that for every vertex v, the number of full components
of size b+ 1 = (1− α)n/2 containing v and with neighborhoods of size αn is at
most

(

b+ αn

b

)

≤
(

(1 + α)n/2

b

)

.

Therefore

f(αn) ≤ n ·
(1−α)n/2

∑

i=1

(

i + αn

i

)

< n ·
(1−α)n/2

∑

i=1

(

(1 + α)n/2

i

)

. (4)

For α ≤ 1/3, we have

(1−α)n/2
∑

i=1

(

(1 + α)n/2

i

)

< 2(1+α)n/2 < 22n/3 < 1.59n,

and thus

n/3
∑

i=1

f(i) = O(1.59n). (5)

For α ≥ 1/3, one can use the well known fact that the sum
∑⌊j/2⌋

k=1

(

j−k
k

)

is
equal to the (j + 1)-st Fibonacci number to show that
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(1−α)n/2
∑

i=1

(

(1 + α)n/2

i

)

< n · ϕn,

where ϕ = (1 +
√
5)/2 < 1.6181n is the golden ratio.

Therefore,

n
∑

i=n/3

f(i) = O(1.6181n). (6)

Finally, the theorem follows from the formulas (3),(5) and (6). ⊓⊔

4.2 Potential maximal cliques

Definition 1 ([8]). Let Ω be a potential maximal clique of a graph G and let
S ⊂ Ω be a minimal separator of G. We say that S is an active separator for Ω,
if Ω is not a clique in the graph obtained from G by completing all the minimal
separators contained in Ω, except S. A potential maximal clique Ω containing
an active separator (for Ω) is called a nice potential maximal clique.

We need the following result by Bouchitté and Todinca.

Proposition 6 ([9]). Let Ω be a potential maximal clique of G = (V,E), let u
be a vertex of G, and let G′ = G[V \ {u}]. Then one of the following holds:

1. Either Ω, or Ω \ {u} is a potential maximal clique of G′;
2. Ω = S ∪ {u}, where S is a minimal separator of G;
3. Ω is a nice potential maximal clique.

Let Πn be the maximum number of nice potential maximal cliques that can
be contained in a graph on n vertices. Proposition 6 is useful to bound the number
of potential maximal cliques in a graph by the number of minimal separators
∆G and Πn.

Lemma 3. For any graph G = (V,E), |ΠG| ≤ n(n|∆G|+Πn).

Proof. Let v1, v2, ..., vn be an ordering of V and let Vi =
⋃i

j=1 vj . The proof
of the lemma follows from the following claim ΠG[Vi+1] ≤ ΠG[Vi] + n|∆G|+Πn

which can be proved by making inductive use of Proposition 6. ⊓⊔

Definition 2. Let Ω ∈ ΠG, v ∈ Ω, and Cv be the connected component of
G[V \ (Ω \ {v})] containing v. We call the pair (Cv, v) by vertex representation
of Ω.

Lemma 4. Let (Cv, v) be a vertex representation of Ω. Then Ω = N(Cv)∪{v}.
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Proof. By Proposition 3, every vertex u ∈ Ω \ {v}, is either adjacent to v, or
there exists a connected component C of G[V \Ω] such that u, v ∈ N(C). Since
C ⊂ Cv, we have that Ω \ {v} ⊆ N(Cv). Every connected component C of
G[V \ Ω] that contains v ∈ N(C) is contained in Cv and N(C) ⊂ Ω for every
C, therefore Ω \ {v} = N(Cv). ⊓⊔

We need also the following result from [27].

Proposition 7 ([27]). Let Ω be a nice potential maximal clique of size αn in
a graph G. There exists a vertex representation (Cv, v) of Ω such that |Cv| ≤
⌈ 2(1−α)n

3 ⌉.
Now everything is settled to apply Main Lemma.

Lemma 5. The number of nice potential maximal cliques in a graph G = (V,E)
is O(1.7549n).

Proof. By Proposition 7, for every nice potential maximal clique Ω of cardinality
αn, there exists a vertex representation (Cv, v) of Ω such that |Cv| ≤ ⌈2n(1 −
α)/3⌉. Let b+ 1 be the number of vertices in Cv. By Lemma 1, for every vertex
v, the number of such pairs (Cv, v) is at most

2(1−α)n/3
∑

i=1

(

(2 + α)n/3

i

)

.

As in the proof of Theorem 1, for α ≤ 2/5 the above sum is O(1.7549n). For

α ≥ 2/5, by making use of the fact that
∑⌊j/2⌋

k=1

(

j−k
2k

)

is equal to the (j + 1)-st
number of the sequence {ai}∞i=0 such that ai = 2ai−1−ai−2+ai−3, with a0 = 0,
a1 = 1, and a2 = 2, it is possible to show that the value of the above sum, and
thus the number of nice potential maximal cliques, is O(1.7549n). ⊓⊔

By combining Lemma 3, 5 and Theorem 1 we arrive at the main result of
this subsection.

Theorem 2. For any graph G, |ΠG| = O(1.7549n).

5 Exponential space exact algorithm for treewidth

Our algorithm computing the treewidth of a graph is based on Proposition 5.
By making use of Proposition 5 we need to know how to list minimal separators
and potential maximal cliques. By Proposition 1 and Theorem 1, all minimal
separators can be listed in time O(1.6181n). The proof of the following lemma
is postponed till the full version of this paper.

Lemma 6. For any graph G on n vertices, the set of potential maximal cliques
can be listed in O(1.7549n) time.

As an immediate corollary of Proposition 1 and Lemma 6, we have the fol-
lowing result.

Theorem 3. The treewidth of a graph on n vertices can be computed in time
O(1.7549n).
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6 Computing treewidth at most k

In this section we show how the lemma bounding the number of connected
components can be used to refine the classical result of Arnborg et al. [1].

By Proposition 5, the treewidth of a graph can be computed in O(n3 (|ΠG|+
|∆G|)) time if the list of all minimal separators ∆G and the list of all potential
maximal cliques ΠG of G are given. Actually, the results of Proposition 5 can
be strengthened (with almost the same proof as in [16]) as follows. Let ∆G[k]
be the set of minimal separators and let ΠG[k] be the set of potential maximal
cliques of size at most k.

Lemma 7. Given a graph G with sets ∆G[k] and ΠG[k+1], it can be decided in
time O(n3 (|ΠG[k+1]|+ |∆G[k]|)) if the treewidth of G is at most k. Moreover, if
the treewidth of G is at most k, an optimal tree decomposition can be constructed
within the same time.

By Lemma 2 and Equation (4),

|∆G[k]| ≤ kn ·
(n−k)/2
∑

i=1

(

(n+ k)/2

i

)

≤ kn2 ·
(

(n+ k)/2

k

)

, (7)

and it is possible to list all vertex subsets containing all separators from ∆G[k]

in time O(kn2 ·
(

(n+k)/2
k

)

)). For each such a subset one can check in time O(n2)
if it is a minimal separator or not, and thus all minimal separators of size at
most k can be listed in time O(kn4 ·

(

(n+k)/2
k

)

).
Let Πn[k] be the maximum number of nice potential maximal cliques of size

at most k that can be in a graph on n vertices. By Proposition 7,

|Πn[k]| ≤ kn ·
(n−k)2/3
∑

i=1

(

(2n+ k)/3

i

)

≤ kn2 ·
(

(2n+ k)/3

k

)

,

and by making use of Proposition 4, all nice potential maximal cliques of size at
most k can be listed in time O(kn5 ·

(

(2n+k)/3
k

)

).
Finally, we use nice potential maximal cliques and minimal separators of size

k to generate all potential maximal cliques of size at most k.

Lemma 8. For every graph G on n vertices, |ΠG[k]| ≤ n(|∆G[k]| + Πn[k])
and all potential maximal cliques of G of size at most k can be listed in time
O(kn6 ·

(

(2n+k)/3
k

)

).

Proof. Let v1, v2, ..., vn be an ordering of V and let Vi =
⋃i

j=1 vj . By Propo-
sition 6 and Lemma 3, every potential maximal clique of G[Vi] either is a nice
potential maximal clique of G[Vi], or is a potential maximal clique of G[Vi−1], or
is obtained by adding vi to a minimal separator or a potential maximal clique
of G[Vi−1]. This yields that |ΠG[k]| ≤ n(|∆G[k]| +Πn[k]). To list all potential
maximal cliques, for each i, 1 ≤ i ≤ n, we list all minimal separators and nice
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potential maximal cliques in G[Vi]. This can be done in time O(kn6 ·
(

(2n+k)/3
k

)

).

The total number of all such structures is at most kn3 ·
(

(2n+k)/3
k

)

. By making
use of dynamic programing, one can check if adding vi to a minimal separator or
potential maximal clique of G[Vi−1] creates a potential maximal clique in G[Vi],
which by Proposition 4 can be done in time O(n3). Thus, dynamic programming

can be done in O(kn6 ·
(

(2n+k)/3
k

)

) steps. ⊓⊔

Now putting Lemma 7, Lemma 8 and Equation (7) together, we obtain the
main result of this section.

Theorem 4. There exists an algorithm that for a given graph G and integer
k ≥ 0, either computes a tree decomposition of G of the minimum width, or
correctly concludes that the treewidth of G is at least k+1. The running time of
this algorithm is O(kn6 ·

(

(2n+k+1)/3
k+1

)

) = O(kn6 · (2n+k+1
3 )k+1) .

Proof. By the previous discussions in this section we can list all the minimal
separators and potential maximal cliques of size at most k+1 in O∗(

(

(2n+k)/3
k

)

)
time. These minimal separators and potential maximal cliques are then used as
input to the dynamic programming algorithm of [15]. ⊓⊔

7 Polynomial space exact algorithm for treewidth

The algorithm used in Proposition 1 requires exponential space because it is
based on dynamic programming which keeps a table with all potential maximal
cliques. As a consequence our O(1.7549n) time algorithm for computing the
treewidth also uses O(1.7549n) space.

When restricting to polynomial space, we cannot store all the minimal sep-
arators and all the potential maximal cliques. The idea used to avoid this is to
search for a “central” potential maximal clique or a minimal separator in the
graph which can safely be completed into a clique. A similar idea is used in [5],
however the improvement in the running time of our algorithm, is due to the
following lemma and the technique used for listing minimal separators. Both
results are, again, based on the Main Lemma.

Lemma 9. For a given graph G = (V,E) and 0 < α < 1, one can list in time
O(mn2 · 2n(1−α)) and polynomial space all potential maximal cliques of G such
that for every potential maximal clique Ω from this list, there is a connected
component of G[V \Ω] of size at least αn.

Proof. Let Ω be a potential maximal clique satisfying the conditions of the
lemma, and let C be the connected component of size at least αn. By Proposition
3, N(C) is a minimal separator contained in Ω and Ω \N(C) 6= ∅. Let (Cu, u)
be a vertex representation of Ω, where u ∈ Ω \N(C). Since u is not adjacent to
any vertex in C, we have that Cu ∩ C = ∅. To find Ω, we try to find its vertex
representation by a connected vertex set such that the closed neighborhood of
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this set is of size at most n(1 − α). By the Main Lemma, the number of such
sets is at most

n ·
n(1−α)
∑

i=1

(

n(1− α)

i

)

= n · 2n(1−α),

and by Lemma 2, all these sets can be listed in O(n · 2n(1−α)) steps and within
polynomial space. Finally, for each set we use Lemma 4 and Proposition 4 to
check in time O(mn) if the set is a potential maximal clique. ⊓⊔

We also use the following result which is a slight modification of the result
from [5], where it is stated in terms of elimination orderings.

Proposition 8 ([5]). For a given graph G = (V,E) and a clique K ⊂ V , there
exists a polynomial space algorithm, that computes the optimum tree decomposi-
tion (χ, T ) of G, subject to the condition that the vertices of K form a bag which
is a leaf of T . This algorithm runs in time O∗(4n−|K|).

Theorem 5. The treewidth of a graph G = (V,E) can be computed in O(2.6151n)
time and polynomial space.

Proof. It is well known (and follows from the properties of clique trees of chordal
graphs), that there is an optimal tree decomposition (χ, T ), {χi : i ∈ VT }, T =
(VT , ET ), of G, where every bag is a potential maximal clique [8, 10, 19]. Among
all the bags of χ, let χi be a bag such that the largest connected component of
G[V \ χi] is of minimum size, i.e. χi is a bag with the minimum value of

max{|C| : C is a connected component of G[V \ χi]},

where minimum is taken over all bags of χ. Let Ci be the connected component
of G− χi of maximum size.

Our further strategy depends on the size of |Ci|. Let us assume first that
|Ci| < 0.38685n. In this case, by Lemma 9, the set of potential maximal cliques
S such that for every Ω ∈ S the maximum size of a component of G[V \Ω] is |Ci|,
can be listed in time O(mn2 · 2n−|Ci|) and polynomial space. Since χi ∈ S, we
have that there is a potential maximal clique Ω ∈ S such that tw(GΩ) = tw(G),
where GΩ is obtained from G by turning Ω into a clique. The treewidth of GΩ is
equal to the maximum of minimum width of decompositions of GΩ [C ∪Ω] with
Ω forming a leaf bag, where C is a connected component of GΩ[V \ Ω]. Let us
remind that the size of each such component is at most |Ci|.

By Proposition 8, the optimum width of GΩ[C ∪ Ω] for every connected
component C of GΩ[C ∪ Ω] (and with Ω forming a leaf bag) can be computed
in O∗(4|C|) = O∗(4|Ci|), time and thus the treewidth of G can be found in time

O∗(2n−|Ci| · 4|Ci|) = O∗(2(1−0.38685)n · 40.38685n) = O(2.6151n).

Thus if |Ci| < 0.38685n, we compute the treewidth of G, and the running time
of this polynomial space procedure is O(2.6151n).
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Let us consider the case |Ci| ≥ 0.38685n. For each connected component
C of G[V \ χi], there exists a bag χi′ ⊂ N(C) ∪ C and a minimal separator
S = χi ∩ χi′ in χi that separates C from the rest of the graph. Let S = χi ∩ χj

be the separator in χi that separates Ci from the rest of the graph. Let GS be
the graph obtained from G by turning S into a clique. Then tw(GS) = tw(G). To
compute the treewidth of GS we compute the minimum width of decompositions
of GS [C ∪ S] with S forming a leaf bag, where C is a connected component of
GS [V \ S], and then take the maximum of these values.

By the definition of χi, there exists a connected component Cj of G[V \ χj ],
such that |Cj | ≥ |Ci|. By Proposition 3, χj 6⊆ χi. Thus χj \ χi 6= ∅, and the size
of every connected component in G[Ci \ χj ] is at most |Ci| − 1. Furthermore,
since S = χi∩χj , we have that every connected component of G[Ci \χj] is also a
connected component of G[V \χj]. This yields that Cj∩Ci = ∅ and that both Ci

and Cj are full connected components assosiated to S. Thus |Cj |+ |Ci| ≤ n−|S|.
Every connected component of G[V \ S], except Ci, is a connected component
of G[V \ χj ]. Because |Ci| ≤ |Cj |, this implies that Cj is the largest component
of G[V \ S]. Both Ci and Cj contain at least 0.38685n vertices, thus the size of
S is at most n(1 − 2 · 0.38685) = 0.2263n. By the algorithmic version of Main
Lemma, all sets of such size (and which form the neighborhood of a set of size
|Ci|) can be listed in polynomial space and time

O(nm ·
0.2263n
∑

p=1

(|Ci|+ p

p

)

).

By Proposition 8, we can compute the minimum width of decompositions of
GS [C ∪ S] with S forming a leaf bag, where C is a connected component of
GS [V \ S], in time

O∗(4|C|) = O∗(4|Cj |)

and polynomial space. Because |Cj | ≤ n− |S| − |Ci|, we have that for |S| = p,

O∗(4|Cj|) = O∗(4n−|Ci|−p).

Thus to compute the treewidth of GS (and the treewidth of G), we list all
sets S and for each such a set we use Proposition 8 for all graphs GS [C ∪ S].
The running time of this procedure is

O∗(

0.2263n
∑

p=1

(|Ci|+ p

p

)

· 4n−|Ci|−p).

By Vandermonde’s identity, we have that

(|Ci|+ p

p

)

=

p
∑

k=0

(

0.38685n+ p

k

)(|Ci| − 0.38685n

k

)

<

p
∑

k=0

(

0.38685n+ p

k

)

2|Ci|−0.38685n.
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Thus

0.2263n
∑

p=1

(|Ci|+ p

p

)

· 4n−|Ci|−p <
0.2263n
∑

p=1

p
∑

k=0

(

0.38685n+ p

k

)

2|Ci|−0.38685n · 4n−|Ci|−p

≤
0.2263n
∑

p=1

p

(

0.38685n+ p

p

)

· 22((1−0.38685)n−p) = O(2.6151n)

To conclude, if |Ci| ≥ 0.38685n, we compute the treewidth of G in polynomial
space within O(2.6151n) steps. ⊓⊔
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