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Optimal quantum adversary lower bounds for ordered search

Andrew M. Childs∗ Troy Lee†

Abstract

The goal of the ordered search problem is to find a particular item in an ordered list ofn items.
Using the adversary method, Høyer, Neerbek, and Shi proved aquantum lower bound for this problem
of 1

π
lnn + Θ(1). Here, we find the exact value of the best possible quantum adversary lower bound

for a symmetrized version of ordered search (whose query complexity differs from that of the original
problem by at most1). Thus we show that the best lower bound for ordered search that can be proved by
the adversary method is1

π
lnn+O(1). Furthermore, we show that this remains true for the generalized

adversary method allowing negative weights.

1 Introduction

Search is a fundamental computational task. In a general search problem, one is looking for a distinguished
item in a set, which may or may not have some structure. At one extreme, in theunstructured search
problem, we assume the set has no additional structure whatsoever. In this setting, a classical search requires
Ω(n) queries in the worst case to find the distinguished item. Grover’s well-known search algorithm shows
that a quantum computer can find the distinguished item with high probability in onlyO(

√
n) queries [16].

A lower bound based on a precursor to the adversary method shows this is optimal up to a constant factor
[6].

At the other extreme of search problems, in theordered search problem, we assume our set comes
equipped with a total order, and we are able to make comparison queries, i.e., queries of the form ‘w ≤ z?’.
Classically, we can apply binary search to find the desired item in ⌈log2 n⌉ queries, and an information
theoretic argument shows this is tight.

Quantum computers can speed up the solution of the ordered search problem by a constant multi-
plicative factor. Farhi, Goldstone, Gutmann, and Sipser developed a class of translation-invariant ordered
search algorithms and showed that one such algorithm, applied recursively, gives an exact ordered search
algorithm using3 log52 n ≈ 0.526 log2 n quantum queries [14]. Brookes, Jacokes, and Landahl used
a gradient descent search to find an improved translation-invariant algorithm, giving an upper bound of
4 log550 n ≈ 0.439 log2 N queries [8]. Childs, Landahl, and Parrilo used numerical semidefinite optimiza-
tion to push this approach still further, improving the upper bound to4 log605 n ≈ 0.433 log2 n [11]. Ben-Or
and Hassidim gave an algorithm based on adaptive learning that performs ordered search with probability
of erroro(1) using only about0.32 log2 n queries [7].

In fact, the quantum speedup for ordered search is not more than a constant multiplicative factor. Using
the quantum adversary method [2], Høyer, Neerbek, and Shi showed a lower bound of1π (lnn − 1) ≈
0.221 log2 n queries [18], improving on several previous results [1, 9, 13]. However, the exact value of the
best possible speedup factor, a fundamental piece of information about the power of quantum computers,
remains undetermined.
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In this paper, we give some evidence that the asymptotic quantum query complexity of ordered search
is 1

π lnn + O(1). Specifically, we show that the best lower bound given by the adversary method, one of
the most powerful techniques available for showing lower bounds on quantum query complexity, is1π lnn+
O(1). We show this both for the standard adversary method [2] and the recent strengthening of this method
to allow negative weights [17]. In particular, we prove the following:

Theorem 1. Let ADV(f) be the optimal bound given by the adversary method for the function f , let
ADV±(f) be the optimal value of the adversary bound with negative weights, and letOSPn the ordered
search problem onn items (symmetrized as discussed in Section 4). Then

ADV(OSP2m) = 2
m−1
∑

i=0

(

(

2i
i

)

4i

)2

ADV(OSP2m+1) = 2
m−1
∑

i=0

(

(

2i
i

)

4i

)2

+

(

(

2m
m

)

4m

)2

.

Furthermore,
ADV±(OSPn) ≤ ADV(OSPn) +O(1).

The bounds described in Theorem 1 are asymptotically2
π lnn + O(1), but are always strictly larger

than the Høyer-Neerbek-Shi bound. Understanding the best possible adversary bound for smalln could be
useful, since the best exact algorithms for ordered serach have been found by discovering a good algorithm
for small values ofn and using this algorithm recursively. Furthermore, since the adversary quantity can
be viewed as a simplification of the quantum query complexity, we hope that our analytic understanding of
optimal adversary bounds will provide tools that are helpful for determining the quantum query complexity
of ordered search.

The remainder of this article is organized as follows. In Section 2, we briefly review the quantum
adversary method. In Section 3, we define the basic ordered search problem as well as a extended version
that is more symmetric, and hence easier to analyze. In Section 4, we apply the adversary method to the
symmetrized ordered search problem and present semidefinite programs characterizing it, both in primal and
dual formulations. In Section 5, we find the optimal non-negative adversary lower bound for ordered search
and compare it to the bound of [18]. Then we show in Section 6 that negative weights do not substantially
improve the bound. Finally, we conclude in Section 7 with a brief discussion of the results.

2 Adversary bound

The adversary method, along with the polynomial method [5],is one of the two main techniques for proving
lower bounds on quantum query complexity. The adversary method was originally developed by Ambainis
[2], with roots in the hybrid method of [6]. It has proven to bea versatile technique, with formulations given
by various authors in terms of spectral norms of matrices [4], weight schemes [3, 24], and Kolmogorov
complexity [20]. Špalek and Szegedy showed that all these versions of the adversary method are in fact
equivalent [23]. Recently, Høyer, Lee, andŠpalek developed a new version of the adversary method using
negative weights which is always at least as powerful as the standard adversary method, and can sometimes
give better lower bounds [17].

We will use the spectral formulation of the adversary bound,as this version best expresses the similarity
between the standard and negative adversary methods. In this formulation, the value of the adversary method
for a functionf is given by

ADV(f) := max
Γ≥0
Γ6=0

‖Γ‖
maxi ‖Γ ◦Di‖

,
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whereΓ is a square matrix with rows and columns indexed by the possible inputsx ∈ S ⊆ {0, 1}n,
constrained to satisfyΓ[x, y] = 0 if f(x) = f(y); Di is a zero/one matrix withDi[x, y] = 1 if xi 6= yi and
0 otherwise;A ◦ B denotes the Hadamard (i.e., entrywise) product of matricesA andB; andΓ ≥ 0 means
that the matrixΓ is entrywise non-negative. Note that the setS of possible inputs need not be the entire set
{0, 1}n of all n-bit strings—in other words,f might be a partial function, as is the case for ordered search.

The negative adversary method is of the same form, but removes the restriction to non-negative matrices
in the maximization. Thus the value of the negative adversary method for a functionf is given by

ADV±(f) := max
Γ6=0

‖Γ‖
maxi ‖Γ ◦Di‖

.

The relation of these adversary bounds to quantum query complexity is given by the following theorem.
LetQǫ(f) denote the minimum number of quantum queries tof needed to compute that function with error
at mostǫ. Then we have

Theorem 2([2,17]). LetS ⊆ {0, 1}n, and letΣ be a finite set. Then for any functionf : S → Σ,

Qǫ(f) ≥
1− 2

√

ǫ(1− ǫ)

2
ADV(f) and Qǫ(f) ≥

1− 2
√

ǫ(1− ǫ)− 2ǫ

2
ADV±(f).

In particular, Q0(f) ≥ 1
2 ADV

±(f) ≥ 1
2 ADV(f).

3 Ordered search problem

In the ordered search problem, we are looking for a marked elementw in a setZ equipped with a total order.
Let the members ofZ be z1 ≤ z2 ≤ · · · ≤ zn. We are looking for the marked elementw ∈ Z, and are
able to ask queries of the form ‘w ≤ z?’ for z ∈ Z. Notice that ifw is theith element in the list, then the
answer to this query will be ‘no’ forz = zj with j < i, and will be ‘yes’ otherwise. Thus we can model
this problem as finding the first occurence of a ‘1’ in a string x ∈ {0, 1}n wherexj = 0 for j < i and
xj = 1 otherwise. For example, forn = 4, the possible inputs for the ordered search problem are1111,
0111, 0011, and0001, corresponding to the marked item being first, second, third, or fourth in the ordered
set, respectively. Thus we have transformed the input into abinary string, and the queries are to the bits
of this input. The goal is to determine which input we have—inother words, the function takes a different
value on each input.

In general, when trying to determine the query complexity ofa functionf , it is helpful to consider its
symmetries, as expressed by itsautomorphism group. We say thatπ ∈ Sn, a permutation of then bits of
the input, is an automorphism of the functionf provided it maps inputs to inputs, andf(x) = f(y) ⇔
f(π(x)) = f(π(y)). The set of automorphisms of any function onn-bit inputs is a subgroup ofSn, called
the automorphsim group of that function.

The ordered search problem as formulated above has a trivialautomorphism group, because any nontriv-
ial permutation maps some input to a non-input. However, we can obtain a more symmetric function, with
only a small change to the query complexity, by putting the input on a circle [14]. Now let the inputs have
2n bits, and consist of those strings obtained by cyclically permuting the string ofn 1’s followed byn 0’s.
For example, withn = 4, the inputs are11110000, 01111000, 00111100, 00011110, 00001111, 10000111,
11000011, 11100001. Again, we try to identify the input, so the functionOSPn takes a different value on
each of the2n inputs. The automorphism group ofOSPn is isomorphic toZ2n, a fact that we will exploit
in our analysis.

The query compexity of this extended function is closely related to that of the original function. Given
ann-bit inputx, we can simulate a2n-bit input by simply queryingx for the firstn bits, and the complement
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of x for the secondn bits. In the other direction, to simulate ann-bit input using a2n-bit input, first query
thenth bit of the2n-bit input. If it is 1, then we use the first half of the2n-bit input; otherwise we use the
second half (or, equivalently, the complement of the first half). Thus the query complexity of the extended
function is at least that of the original function, and at most one more than that of the original function, a
difference that is asymptotically negligible.

4 Adversary bounds for ordered search

Finding the value of the adversary method is as an optimization problem. To analyze the adversary bound
for ordered search, we will use symmetry to simplify this problem. The same simplification applies to both
the standard and negative adversary bounds, so we treat the two cases simultaneously.

Suppose we are trying to design a good adversary matrixΓ, and are deciding what weight to assign the
(x, y) entry. Intuitively, it seems that if(x, y) and(x′, y′) are related by an automorphism, then they should
look the same to an adversary, and hence should be given the same weight. Theautomorphism principle
states that there is an optimal adversary matrix with this property. Although this principle does not provide
any advice about what weight to give a particular pair(x, y), it can vastly reduce the optimization space by
indicating that the adversary matrix should possess certain symmetries.

Theorem 3 (Automorphism principle [17]). Let G be the automorphism group off . Then there is an
optimal adversary matrixΓ satisfyingΓ[x, y] = Γ[π(x), π(y)] for all π ∈ G and all pairs of inputsx, y.
Furthermore, ifG acts transitively on the inputs (i.e., if for everyx, y there is an automorphism takingx to
y), then the uniform vector (i.e., the vector with each component equal to1) is a principal eigenvector ofΓ.

The automorphism group for the ordered search problem on a list of sizen, extended to a circle of size
2n as discussed in the previous section, is isomorphic toZ2n, generated by the element(1 2 3 . . . 2n) that
cyclically permutes the list. This group acts transitivelyon the inputs, so by the automorphism principle,
the uniform vector is a principal eigenvector of the adversary matrix. In addition, any pairs(x, y) and
(x′, y′) that have the same Hamming distance are related by an automorphism. Thus we may assume that
the adversary matrix has at mostn distinct entries, and that the(x, y) entry depends only on the Hamming
distance betweenx andy. As all strings have the same Hamming weight, the Hamming distance between
any pair is even. We letΓ[x, y] = γi whenx, y have Hamming distance2i. For example, withn = 4, we
have

1
1
1
1
0
0
0
0

0
1
1
1
1
0
0
0

0
0
1
1
1
1
0
0

0
0
0
1
1
1
1
0

0
0
0
0
1
1
1
1

1
0
0
0
0
1
1
1

1
1
0
0
0
0
1
1

1
1
1
0
0
0
0
1

Γ =

























0 γ1 γ2 γ3 γ4 γ3 γ2 γ1
γ1 0 γ1 γ2 γ3 γ4 γ3 γ2
γ2 γ1 0 γ1 γ2 γ3 γ4 γ3
γ3 γ2 γ1 0 γ1 γ2 γ3 γ4
γ4 γ3 γ2 γ1 0 γ1 γ2 γ3
γ3 γ4 γ3 γ2 γ1 0 γ1 γ2
γ2 γ3 γ4 γ3 γ2 γ1 0 γ1
γ1 γ2 γ3 γ4 γ3 γ2 γ1 0

























11110000

01111000

00111100

00011110

00001111

10000111

11000011

11100001

Since all rows have the same sum, the uniform vector is indeedan eigenvector, corresponding to the eigen-
valueγn + 2

∑n−1
i=1 γi.

Transitivity of the automorphism group also implies that all matricesΓ ◦Di have the same norm, so it
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is sufficient to considerΓ ◦D2n. Again considering the example ofn = 4, we have

Γ ◦D2n =

























0 0 0 0 γ4 γ3 γ2 γ1
0 0 0 0 γ3 γ4 γ3 γ2
0 0 0 0 γ2 γ3 γ4 γ3
0 0 0 0 γ1 γ2 γ3 γ4
γ4 γ3 γ2 γ1 0 0 0 0
γ3 γ4 γ3 γ2 0 0 0 0
γ2 γ3 γ4 γ3 0 0 0 0
γ1 γ2 γ3 γ4 0 0 0 0

























.

This matrix consists of two disjoint, identical blocks, so its spectral norm is simply the spectral norm of one
of those blocks. In general,Γ◦D2n consists of two disjoint blocks, where each block is ann×n symmetric
Toeplitz matrix with first row equal to(γn, γn−1, . . . , γ1), denotedToeplitz(γn, γn−1, . . . , γ1). Thus via
the automorphism principle we have reduced the adversary bound to the semidefinite program

max γn + 2

n−1
∑

i=1

γi subject to ‖Toeplitz(γn, γn−1, . . . , γ1)‖ ≤ 1, γi ≥ 0 (P)

in the case of non-negative weights, and

max γn + 2

n−1
∑

i=1

γi subject to ‖Toeplitz(γn, γn−1, . . . , γ1)‖ ≤ 1 (P±)

in the case of the negative adversary method. We emphasize that the automorphism principle ensures there
is no loss of generality in considering adversary matrices of this form—this program has the same optimal
value as the best possible adversary bound.

We will also use the duals of these semidefinite programs to show upper bounds on the values of the
adversary methods. Straightforward dualization shows that the dual of (P) is

minTr(P ) subject to P � 0, Tri(P ) ≥ 1 for i = 0, . . . , n− 1, (D)

and that the dual of (P±) is

minTr(P +Q) subject to P,Q � 0, Tri(P −Q) = 1 for i = 0, . . . , n− 1 (D±)

whereP � 0 means that the matrixP is positive semidefinite.
In general, by asolutionof a semidefinite program, we mean a choice of the variables that satisfies the

constraints, but that does not necessarily extremize the objective function. If a solution achieves the optimal
value of the objective function, we refer to it as anoptimal solution.

5 Non-negative adversary

In this section, we consider the standard adversary bound. We first present the lower bound of Høyer,
Neerbek, Shi as applied to the symmetrized version of ordered search. Then we construct an improved
adversary matrix, giving a solution of (P) that achieves thebound stated in Theorem 1. Finally, we exhibit a
solution to (D) with the same value, showing that our construction is optimal.
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5.1 Høyer, Neerbek, Shi construction

Within the framework described above, the lower bound of [18] can be given very simply. Setγi = 0 if
i > ⌊n/2⌋ andγi = 1/(πi) otherwise. This gives an objective function of

2

π

⌊n/2⌋
∑

i=1

1

i
∼ 2

π
lnn.

Continuing our example withn = 4, consider the matrixΓ ◦D2n under this choice of weights:

Γ ◦D2n =
1

π

























0 0 0 0 0 0 1/2 1
0 0 0 0 0 0 0 1/2
0 0 0 0 1/2 0 0 0
0 0 0 0 1 1/2 0 0
0 0 1/2 1 0 0 0 0
0 0 0 1/2 0 0 0 0
1/2 0 0 0 0 0 0 0
1 1/2 0 0 0 0 0 0

























.

This matrix consists of four disjoint blocks, so its spectral norm is equal to the largest spectral norm of these
blocks. In general, we have four disjoint nonzero blocks (and in the case ofn odd, two additional2 × 2
zero blocks). Each nonzero block is equivalent up to permutation to1/π timesZ⌊n/2⌋, whereZm is thehalf
Hilbert matrix of sizem×m, namely the Hankel matrix

Zm :=

















1 1
2

1
3 · · · 1

m
1
2

1
3 · · · 1

m 0

1
3

... . .. 0 0
... 1

m
. .

.
. .

. ...
1
m 0 0 · · · 0

















.

This may be compared with the usual Hilbert matrix, whose(i, j) entry is1/(i+ j − 1). The spectral norm
of any finite Hilbert matrix is at mostπ, so as the half Hilbert matrix is non-negative and entrywiseless than
the Hilbert matrix, its spectral norm is also at mostπ. (See the delightful article of Choi for this and other
interesting facts about the Hilbert matrix [12].) This shows that the spectral norm of each matrixΓ ◦Di is
at most1, giving a bound on the zero-error quantum query complexity of ordered search of approximately
1
π lnn.

5.2 Optimal non-negative construction

It turns out that one can do slightly better than the Hilbert weight scheme described above. Here we construct
the optimal solution to the adversary bound forOSPn with non-negative weights.

A key role in our construction will be played by the sequence{ξi}, where

ξi :=

(2i
i

)

4i
. (1)

This sequence has many interesting properties. First, it ismonotonically decreasing. Consider the ratio

ξi+1

ξi
=

(

2(i+1)
i+1

)

4i
(

2i
i

)

4i+1
=

2(i+ 1)(2i + 1)

4(i + 1)2
=

i+ 1/2

i+ 1
< 1.
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Indeed, this shows that{ξi} is a hypergeometric sequence with the generating function

g(z) :=
∞
∑

i=0

ξiz
i = 1F0(

1
2 ; z) =

1√
1− z

.

These observations lead us to the next interesting propertyof our sequence.

Proposition 4. For anyj,
j
∑

i=0

ξiξj−i = 1.

Proof. The productg(z)2 is the generating function for the convolution appearing onthe left hand side. But
g(z)2 = (1− z)−1, which has all coefficients equal to1, as claimed. (For an alternative proof, using the fact
thatξi = (−1)i

(

−1/2
i

)

, see [15, p. 187].)

This proposition shows that the sequence{ξi} behaves nicely under convolution. We will also consider
the behavior of{ξi} under correlation. Define

Am(j) :=

m−j−1
∑

i=0

ξiξi+j.

As {ξi} is a monotonically decreasing sequence, it follows thatAm(j) is a monotonically decreasing func-
tion of j. With these definitions in hand, we are now ready to constructour adversary matrix.

Proof of Theorem 1 (lower bound on non-negative adversary).We first consider the case wheren = 2m is
even. In (P), let

γi = Am(i− 1)−Am(i).

As Am(j) is a monotonically decreasing function ofj, we haveγi ≥ 0. Also note thatAm(i) = 0 for
i ≥ m, soToeplitz(γn, . . . , γ1) is bipartite.

The objective function is a telescoping series, so the valueof the semidefinite program is

2Am(0) = 2

m−1
∑

i=0

ξ2i ,

as claimed. Thus it suffices to show that‖Toeplitz(γn, . . . , γ1)‖ ≤ 1.
We will show that, in fact,‖Toeplitz(γn, . . . , γ1)‖ = 1. We do this by exhibiting an eigenvectoru with

eigenvalue1, and with strictly positive entries. This will finish the proof by the following argument: As
Toeplitz(γn, . . . , γ1) is a non-negative, symmetric matrix, its spectral norm is equal to its largest eigenvalue.
By the Perron-Frobenius theorem, it has a principal eigenvector with non-negative entries. As the eigenvec-
tors of a symmetric matrix corresponding to distinct eigenvalues are orthogonal, and no non-negative vector
can be orthogonal tou, we conclude that the largest eigenvalue must agree with theeigenvalue ofu, and so
is 1.

The relevant eigenvector ofToeplitz(γn, . . . , γ1) is

u := (ξ0, ξ1, . . . , ξm−1, ξm−1, . . . , ξ1, ξ0). (2)

ComputingToeplitz(gn, . . . , g1)u, we see thatu is an eigenvector with eigenvalue1 provided

m−j−1
∑

i=0

(

Am(i+ j)−Am(i+ j + 1)
)

ξi = ξj (3)

7



for eachj = 0, 1, . . . ,m− 1.
We give two proofs of (3). In the first proof, we use generatingfunctions. Define a complementary

function tog(z), namely the polynomial

h(z) := ξm−1 + ξm−2z + . . . + ξ0z
m−1,

and consider the productg(z)h(z). Fori = 0, . . . ,m−1, the coefficient ofzi in this series isAm(m−i−1),
so the coefficent ofzi in (1− z)g(z)h(z) isAm(m− i− 1)−Am(m− i). Thus the coefficient ofzm−j−1

in (1 − z)g(z)h(z)g(z) = h(z) is the left hand side of (3). But the coefficient ofzm−j−1 in h(z) is the
coefficient ofzj in g(z), which is simplyξj, the right hand side of (3).

Alternatively, we can explicitly expand the left hand side of (3), giving

m−j−1
∑

i=0

(

Am(i+ j)−Am(i+ j + 1)
)

ξi =

m−j−1
∑

i=0

(m−(i+j)−1
∑

k=0

ξkξk+i+jξi −
m−(i+j)−2
∑

k=0

ξkξk+i+j+1ξi

)

=

2m−j−1
∑

s=0

s
∑

i=0

ξs−iξiξs+j −
2m−j−2
∑

s=0

s
∑

i=0

ξs−iξiξs+j+1

= ξj,

where in the last step we have used Proposition 4. This completes the proof whenn is even.
Forn = 2m+ 1 odd, let

γi =
1

2

(

Am+1(i− 1)−Am+1(i) +Am(i− 1)−Am(i)
)

.

Then the objective function is

Am+1(0) +Am(0) = 2
m−1
∑

i=0

ξ2i + ξ2m

as claimed. Now it suffices to show that

u := (ξ0, ξ1, . . . , ξm−1, ξm, ξm−1, . . . , ξ1, ξ0) (4)

is an eigenvector ofToeplitz(γn, . . . , γ1) with eigenvalue1. (Note that forn odd,Toeplitz(γn, . . . , γ1)
is irreducible, sou is actually the unique principal eigenvector.) For all but the middle component of the
vectorToeplitz(γn, . . . , γ1)u, the required condition is simply the average of (3) and the same equation
with m replaced bym+1. For the middle component, we requireAm+1(m)ξ0 = ξm, which holds because
Am+1(m) = ξ0ξm andξ0 = 1.

In the bound of Høyer, Neerbeck, and Shi, the weight given to apair(x, y) is inversely proportional to the
Hamming distance betweenx andy. This follows the intuition that pairs which are easier for an adversary
to distinguish should be given less weight. It is interesting to note that the optimal weight scheme does
not have this property—indeed, at large Hamming distances the weights actually increase with increasing
Hamming distance, as shown in Figure 1.

5.3 Dual

We now show that this bound is optimal by giving a matching solution to the dual semidefinite program (D).
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i
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i

0 2 4 6 8 10 12 14 16
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1. Comparison of the weightsγi with n = 16 for various adversary bounds: the bound of Høyer, Neerbek, and
Shi (circles), the optimal non-negative adversary (squares), and the optimal negative adversary (triangles).

Proof of Theorem 1 (upper bound on non-negative adversary).Fix n, and letu be the vector of lengthn
defined by (2) ifn is even, or by (4) ifn is odd. Notice that in either case,ui = un−i+1. Let P = uuT , a
rank one matrix. This matrix is positive semidefinite, and its trace is‖u‖2, which matches the value of our
solution to the primal problem in the previous section. Thusit suffices to verify thatTri(P ) ≥ 1. We have

Tri(P ) =

n−i
∑

j=1

P [j, i + j] =

n−i
∑

j=1

ujui+j =

n−i
∑

j=1

ujun−i−j+1.

Since{ξi} is monotonically decreasing ini, we haveuj ≥ ξj−1, with equality holding whenj ≤ ⌈n/2⌉.
Thus

Tri(P ) ≥
n−i
∑

j=1

ξj−1ξn−i−j = 1

by Proposition 4. Wheni > ⌊n/2⌋, this inequality holds with equality.

Having established the optimal adversary bound forOSPn, let us examine its asymptotic behavior.

Corollary 5.

ADV(OSPn) =
2

π
(lnn+ γ + ln 8) +O(1/n)

whereγ ≈ 0.577 is the Euler-Mascheroni constant.

Proof. The generating function for the sequence{ξ2i } is 2F1(
1
2 ,

1
2 ; 1; z) = 2

πK(z), whereK(z) is the
complete elliptic integral of the first kind. Thus the generating function for{ADV(OSP2m)}, which is
twice themth partial sum of{ξ2i }, is 4

πK(z)/(1 − z). The functionK(z) is analytic for|z| < 1, and can
be analytically continued to the rest of the complex plane, with the only singularities consisting of branch
points atz = 1 andz = ∞ [21, Sec. 5.9.1]. In particular, the logarithmic singularity at z = 1 has the
expansion [10, Eq. 900.05]

K(z) = ln
4√
1− z

+
1

4
(1− z)

(

ln
4√
1− z

− 1

)

+O

(

(1− z)2 ln
1

1− z

)

.
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n
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0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 2. Comparison of adversary lower bounds for ordered search: the bound of Høyer, Neerbek, and Shi (circles),
the optimal non-negative adversary (squares), and the optimal negative adversary (triangles). The lower curve shows
the asymptotic approximation2

π
(lnn + γ − ln 2) of the Høyer-Neerbek-Shi bound, and the upper curve shows the

asymptotic approximation2
π
(lnn+ γ + ln 8) of the non-negative adversary.

Now let [zm]f(z) denote the coefficient ofzm in f(z). According to Darboux’s method (see for example
[21, Sec. 8.9]), we have

ADV(OSP2m) = [zm]
4

π
· K(z)

1− z

= [zm]
4

π

(

1

1− z
· 1
2
ln

1

1− z
+

ln 4

1− z

)

+O(1/m)

=
2

π
(lnm+ γ + ln 16) +O(1/m),

where we have used [19]

[zm]
1

1− z
ln

1

1− z
= lnm+ γ +O(1/m)

and the facts that[zm](1 − z)−1 = 1 and[zm] ln 1
1−z = 1/m. This proves the corollary forn = 2m even.

For n = 2m + 1 odd, we haveADV(OSP2m+1) = ADV(OSP2m) + ξ2m, and it suffices to observe that
ξ2m = O(1/m) by Stirling’s approximation.

For comparison, the bound of Høyer, Neerbek, and Shi forOSPn is 2
πH⌊n/2⌋ = 2

π (ln n + γ − ln 2) +

O(1/n), whereHn :=
∑n

i=1
1
i is thenth harmonic number. (Note that for the original, unsymmetrized

ordered search problem treated in [18], the bound is2
π (Hn − 1).) Indeed, the optimal value of the non-

negative adversary is considerably better for small valuesof n, as shown in Figure 2.

6 Negative adversary

We now turn to the negative adversary method, and give an upper bound onADV±(OSPn) by exhibiting a
solution to (D±).
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Notice that if we find a symmetric matrixR such thatTri(R) = 1 for i = 0, . . . , n− 1, we can translate
this into a solution to (D±) by decomposingR = P − Q as the difference of two positive semidefinite
matrices with disjoint support, lettingP be the projection ofR onto its positive eigenspace and lettingQ be
the projection ofR onto its negative eigenspace. In this case,Tr(P + Q) is simply‖R‖Tr, the sum of the
absolute values of the eigenvalues ofR.

In looking for a matrixR satisfyingTri(R) = 1 for all i, a natural starting point is our solution to the
non-negative dual (D). Recall that in this construction, for i > ⌈n/2⌉, the conditionTri(P ) = 1 held with
equality. We imitate that construction by letting

R[i, j] =

{

ξiξn−j+1 i ≤ j

ξn−i+1ξj i > j.

Above the diagonal,R looks like a rank one matrix, but it is symmetrized below the diagonal. By the
convolution property of theξi’s we see thatTri(R) = 1 for i = 0, . . . , n− 1.

To upper bound the trace norm ofR, the following lemma will be helpful:

Lemma 6. LetM be ann× n matrix with entries

M [i, j] =

{

viwj i ≤ j

vjwi i > j
(5)

where the vectorsv,w ∈ R
n have positive components, and satisfyvivi+1

> wi

wi+1
for i = 1, . . . , n− 1. Then

M has one positive eigenvalue andn− 1 negative eigenvalues, and its trace norm satisfies

2‖v‖‖w‖ − v · w ≤ ‖M‖Tr ≤ 2‖v‖‖w‖ + v · w.

Proof. Sylvester’s law of inertia states that the triple of the number of positive, zero, and negative eigenval-
ues of a matrixM and that of a matrixSMST are the same, providedS is non-singular. We apply this law
with S given by then× n upper tridiagonal matrix with entries

S[i, j] =











1 i = j

−vi/vj i = j − 1

0 otherwise.

Then a straightforward calculation shows thatSMST is diagonal, with entries

(SMST )[i, i] =

{

vi
vi+1

(vi+1wi − viwi+1) i = 1, . . . , n− 1

vnwn i = n.

By the assumptions of the lemma, the firstn− 1 diagonal entries are negative, and the last is positive; thus
M has one positive eigenvalue andn− 1 negative eigenvalues.

As M is a symmetric, non-negative matrix, its positive eigenvalue is equal to‖M‖, so ‖M‖Tr +
Tr(M) = 2‖M‖. Notice thatTr(M) = v · w. BecauseM is non-negative and entrywise larger than
the rank one matrixvwT , we have‖M‖ ≥ ‖vwT ‖ = ‖v‖‖w‖. Furthermore, becauseM is entrywise
smaller than the rank two matrixA = vwT + wvT , we have‖M‖ ≤ ‖vwT + wvT ‖. Using the facts that
Tr(A) = λ1(A) + λ2(A) = 2v · w and thatTr(A2) = λ1(A)

2 + λ2(A)
2 = 2(‖v‖2‖w‖2 + (v · w)2), we

see that the eigenvalues ofA arev · w ± ‖v‖‖w‖. Thus we conclude that‖M‖ ≤ ‖v‖‖w‖ + v · w, and the
lemma follows.

Now we are ready to finish the proof of Theorem 1.
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Theorem 1 (upper bound on negative adversary).The matrixR defined above is of the form (5) withv =
(ξ0, ξ1, . . . , ξn−1) andw = (ξn−1, ξn−2, . . . , ξ0), the reversal ofv. By Proposition 4,Tri(R) = 1 for
i = 0, . . . , n − 1, soR is a solution of (D±). Sincev is monotonically increasing andw is monotonically
decreasing, the conditions of Lemma 6 are satisfied, and thus‖R‖Tr ≤ 2‖v‖2 + 1 = ADV(OSP2n) + 1.

Finally, using Corollary 5 we find

ADV(OSP2n)−ADV(OSPn) ≤
2

π
ln 2 +O(1/n),

so

ADV±(OSPn) ≤ ADV(OSPn) + 1 +
2

π
ln 2 +O(1/n).

Note that the solution of (D±) given above is not the optimal one. For fixedn, we can find the optimal
solution using a numerical semidefinite program solver. Figure 1 shows the optimal weights forn = 16,
and Figure 2 shows the value of the optimal negative adversary bound forn = 2 through32. Empirically,
we have found that in the optimal solution,P −Q is a rank two matrix in whichP,Q are of the form

P = ppT , Q = qqT with pi = ri cos θi , qi = ri sin θi,

where

θi =
π

2n− 1

(

n+ 1

2
− i

)

and

r2i ≈
{

1
n+1 csc

1
(n+1)ξ2

i−1

i = 1, . . . , ⌈n/2⌉
r2n−i+1 i = ⌈n/2⌉+ 1, . . . , n.

However, we do not know the exact form ofr or the optimal negative adversary value.

7 Conclusion

We have given upper bounds on the lower bounds provable by thequantum adversary method for the or-
dered search problem, showing that both the standard and negative adversary values are2π lnn + O(1).
In particular, we have shown that establishing the quantum query complexity of ordered search will either
require a lower bound proved by a different technique, or an improved upper bound. On the lower bound
side, one could investigate the bounds given by the polynomial method [5], or by the recently developed
multiplicative adversary technique ofŠpalek [22]. However, we feel that it is more likely that the1

π lnn
lower bound is in fact tight, and that further improvement will come from algorithms. As the current best
upper bounds are ad hoc, based on numerical searches, they can almost certainly be improved.

The disagreeable reader may argue that upper bounds on lowerbounds are only meta-interesting. We
counter this objection as follows. Barnum, Saks, and Szegedy have exactly characterized quantum query
complexity in terms of a semidefinite program [4]. The adversary method can be viewed as a relaxation of
this program, removing some constraints and focusing only on the output condition. Thus, our results can
be viewed as solving a simplification of the quantum query complexity semidefinite program, which might
provide insight into the solution of the full program. Indeed, we hope that the results presented here will be
a useful step toward determining the quantum query complexity of ordered search.
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