Florent Jacquemard
Michael Rusinowitch

Closure of Hedge-Automata
Languages by Hedge Rewriting

Research Report LSV-08-05

February 2008

R boratoire
écification
arification

Ecole Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex France

Closure of Hedge-Automata Languages
by Hedge Rewriting

Florent Jacquemard!' and Michael Rusinowitch?

L INRIA Futurs & LSV, UMR CNRS, ENS Cachan, France
florent. jacquemard@lsv.ens-cachan.fr

2 LORIA & INRIA Lorraine, UMR 7503, rusi@loria.fr

Abstract. We consider rewriting systems for unranked ordered terms,
i.e. trees where the number of successors of a node is not determined by
its label, and is not a priori bounded. The rewriting systems are defined
such that variables in the rewrite rules can be substituted by hedges
(sequences of terms) instead of just terms. Consequently, this notion of
rewriting subsumes both standard term rewriting and word rewriting.
We investigate some preservation properties for two classes of languages
of unranked ordered terms under this generalization of term rewriting.
The considered classes include languages of hedge automata (HA) and
some extension (called CF-HA) with context-free languages in transi-
tions, instead of regular languages.

In particular, we show that the set of unranked terms reachable from a
given HA language, using a so called inverse context-free rewrite system,
is a HA language. The proof, based on a HA completion procedure, reuses
and combines known techniques with non-trivial adaptations. Moreover,
we prove, with different techniques, that the closure of CF-HA languages
with respect to restricted context-free rewrite systems, the symmetric
case of the above rewrite systems, is a CF-HA language. As a conse-
quence, the problems of ground reachability and regular hedge model
checking are decidable in both cases. We give several counter examples
showing that we cannot relax the restrictions.

1 Introduction

In many applications the system states can be modeled by words or trees, sets
of configurations by word or tree languages and the transitions of the system
can be represented by rewrite rules. In this setting verifying whether a system
can enter a set of unsafe states can be expressed as a reachability problem. This
approach to the analysis of infinite-state systems requires the computation of the
closure of languages under rewrite rules or at least an over-approximation of this
closure. Since the usually considered languages are regular the approach is called
reqular model checking [2,1]. Regular model checking has been quite successful
in protocol and hardware verification. For increasing the scope of regular model
checking it is therefore important to be able to derive new classes of languages
and rewrite systems such that the rewrite closure is computable.

Unranked trees as well as ordered sequences of unranked trees called
hedges [13,14,5] are flexible structures that are quite appealing to represent
XML documents where the number of nodes can be modified, for instance when
these nodes correspond to database records. Unranked trees have also been
employed to model multithreaded recursive program configurations where the
number of parallel processes is unbounded [3,18]. Hedge-automata (HA) are
considered now as the natural model of automata for unranked trees. A hedge
automaton is a variation of tree automata for hedges. Given a hedge, a hedge
automaton assigns some state to a node whenever the sequence of states of the
siblings belong to some specified word language (sometimes called horizontal
language).

Although regular model checking with languages for words and ranked trees
(where function symbols have fixed arity) has been widely investigated, very few
results are available for unranked trees and almost none exists on the computation
of exact reachability sets for HA languages.

In this paper we tackle the problem above by proving (Theorem 1) that we
can compute a HA for recognizing the rewrite closure of a language defined by a
given HA, for the class of rewrite systems with inverse context-free rules, which
are rules whose right-hand side is of type f(x) where x is a variable. Hence in
that case we can compute the exact reachability set from the initial one. The
rewriting notion that we consider here for unranked terms generalizes ranked
term rewriting and is close to the one that has been introduced by [22]. The idea
is that the variables in the rewrite rules can be substituted by hedges (sequences
of terms) instead of just terms. Moreover our results cannot be derived from
related ones on ranked terms (e.g. [15]) using encodings of unranked terms into
ranked ones (such as the First-Child-Next-Sibling encoding or the encoding used
in stepwise automata [4]). Relaxing the condition in the definition in the above
class of rewrite systems leads to counterexamples (Propositions 3-6).

We have also considered a more general class of automata for unranked or-
dered trees, called CF-HA, where word context-free languages are used instead
of regular ones at the horizontal level. We show (Theorem 2) that CF-HA are
preserved by rewrite closure using context-free rewrite rules. Context-free rewrite
rules are the symmetric case of inverse context-free rules, i.e. rules with left-hand-
side of the form f(z). Some additional restrictions are assumed for this result,
they cannot be relaxed as shown by the counter examples in Proposition 7-10.

Related works. Whether the rewrite closure of regular ranked trees languages
is regular too is a problem that has been addressed in [19,7,9,15,21,20,6].
An important breakthrough of the proof in [15] (against former results) is that
it works for TRS which are not left-linear. H. Ohsaki introduces equational
tree automata for associative and commutative theories in [16] and study their
closure properties for Boolean operations. T. Touili has studied the regular model
checking problem for HA [22]. She shows how to compute the image of a HA
language in one step of rewriting by a right-linear rewrite system. She also gives
a procedure to compute an over-approximation of the rewrite closure of a HA.

We rather compute exactly this closure for a class of non-linear rewrite systems.
Our first main result (Theorem 1) can be viewed as a non trivial generalization
of both [15] and [22], with proof techniques extending both former constructions.

C. Loding and A. Spelten [11] compute exact rewrite closure of HA for exten-
sions of ground term rewriting and prefix word rewriting. These results cannot
be compared to ours since in our case variables (that can be substituted by
arbitrarily large hedges) allow non local hedge transformations.

There exists other rewriting notions like the top-down XML transforma-
tions [12] or the relabeling transducers of [18] but they do not cover our notion
since either they use specific hedge traversal strategies or they are structure-
preserving.

Layout of the paper. In Section 2 we introduce terms, hedges and the related
rewriting concepts. In particular we define hedge rewriting systems (HRS) and
context-free rewrite rules. In Section 3 we recall the hedge-automata classes HA
and CF-HA that we shall investigate. In Section 4 we show that the class of HA
languages, (i.e. recognized by HA) is preserved by rewrite closure for rewriting
systems containing rules that are inverse context-free. In Section 5 we show that
a class of context-free hedge rewrite systems preserves CF-HA languages. In both
Sections 4 and 5, we also exhibit some counter-examples obtained when trying
to relax the conditions on rules.

2 Hedge Rewriting

We consider a finite alphabet X and an infinite set of variables A'. The set of
terms over ¥ and X is T(X,X) := X U{f(h) | f € ¥,h € H(X,X)} and
the set H(X, X) of hedges over X and X is the set of finite (possibly empty)
sequences of terms of 7 (X, X'). When h is empty, f() will be simply written f.
We will sometimes consider a term as a hedge of length one, i.e. consider that
T(X,X) C H(X,X). The sets of ground terms (terms without variables) and
ground hedges are respectively denoted 7 (X) and H(X'). A hedge h € H(X, X)
is called linear if every variable of X occurs at most once in h.

The set of variables occurring in a term ¢ € 7(X, X) is denoted var(t). A
substitution o is a mapping from X to H(X, X) of finite domain. The application
of a substitution o to a hedge h € H(X, X), denoted ho, is the homomorphic
extension of o to H(X, X), defined, for ty,...,t, € T(X,X), with n > 0, by
(t1...th)o :=ti0...ty,o and f(h)o := f(ho).

The set of positions Pos(t) of a term t € T (X, X) is a set of sequences of
positive integers. The empty sequence, denoted ¢, is the root position of a term.
The subterm of ¢ at position p, denoted ¢t|,, is defined by f(t1...tn)|ip 1= ti|p if
i <n and, f(h)|c := f(h). The replacement in ¢ € T(X,X) of the subterm at
position p by t' € T (X, X) is denoted t[t'],. The depth of a term is the maximal
length of one of its positions.

A context is a linear hedge of H(X, {z}), denoted C[z]. The application of
a context Clx] to a hedge h is defined by C[h] := C{x — h}.

A hedge rewriting system (HRS) is a set of rewrite rules of the form ¢ — r
where £ € T(X, X)\ X and r € T(X, X) (¢ and r are respectively called lhs and
rhs of the rule). The rewrite relation —— of an HRS R is the binary relation
on H(X, X) defined by h —— h’ iff h = (t1...t,), there exists i < n, a position
p € Pos(t;), arule £ — r € R and a substitution o such that ¢;|, = ¢o and
h' = t1...ti—1ti[roltis1 .. . tn. The reflexive and transitive closure of —— is

R
denoted —7—*{—>

Ezample 1. With R = {g(z) — 2}, - associates to a term g(h) the hedge h of
its arguments. With R = {g(x) — g(axb)}, g(c) 5~ g(a”cb™) for every n > 0.

Given a set of terms L C 7(X) and an HRS R, we note R*(L) the set {t €
T(Y)|3s e L,s 5 t}. We restrict to terms (instead of hedges) because we are
mainly interested in term languages below.

A rewrite rule £ — 7 is called left-linear (resp. right-linear, linear) if £ (resp.
r, both) is linear, left-ground (resp. right-ground) if £ € T(X) (resp. r € T (X)),
collapsing if r € wvar(€), it is called context-free if £ = f(x) with z € X (it
is not required that x € wvar(r) however) and inverse context-free if r — £ is
context-free, prefix (rvesp. postfiz) if r = g(to...tnx) (resp. r = g(zty...1,))
with € wvar(¢) and no variable of ¢ occurs in the terms to,...,t,. A rewrite
system is said to have one of the above properties if all its rules have this property.

Ezample 2. We give a few applications of our rewrite rules in the vein of [22].
A context-free rule doc(z) — doc(aza) can be employed to introduce tags
in an XML document. An inverse context-free rule can be used to elimi-
nate comments doc(z comment y comment) — doc(z). Non left-linear in-
verse context-free rules are quite useful for processing list of items as in:
doc(todo = todo y done x done) — doc(y).

Note that hedge rewriting cannot be reduced to term rewriting through en-
coding of unranked trees into ranked trees like the First-Child/Next-Sibling en-
coding, or the encoding used in stepwise automata. Consider for instance the
hedge rewrite rule f(axa) — f(z). For every n > 0, f(ab™a) reduces in one step
to f(b™), however there is no finite term rewrite system that can simulate such
reductions in one step. Given a term ¢ let us define inductively: C{ = ¢ and
Cr = b(L,Cp). Then f(ab™a) (vesp. f(b™)) is encoded by First-Child/Next-
Sibling to f(a(L,C%), L) (resp. f(C",L1)). Applying a term rewrite system to
fla(L,C™), 1), for n large enough, an instance of a variable of a left-hand side of
an applicable rule should contain some subterm C}"*, with m > 0. This variable
should also occur in the right-hand side to preserve the balance of b symbols.
But then a should occur in the right-hand side too, contradiction.

3 Hedge-Automata, Context-Free Hedge-Automata

We recall now the definition of hedge-automata [13] (denoted HA) and the less
known class of context-free hedge automata (denoted CF-HA) introduced in [17]

and where they are shown to recognize the closure of regular (ranked) tree lan-
guages modulo associativity.

A hedge automaton (resp. context-free hedge automaton) is a tuple A =
(Q, X, Qf, A) where Q is a finite set of states, ¥ is an unranked alphabet, Qf C Q
is a set of final states, and A is a set of transitions of the form f(L) — ¢ where
f € X qge @ and L C QF is a regular word language (resp. a context-free
word language). When X is clear from the context it is omitted in the tuple
specifying A.

We define the move relation between ground hedges in 7 (X U Q) as follows:
for every terms ¢, ¢’ we have t — ' if there exists a context C'[x] and a transition
f(L) — g in A such that t = C[f(q1..-qn)], q1--.gn € L and ¢’ = C[q]. The
relation —- is the transitive closure of ——. Following [22], we extend —- to
terms of 7 (X U2%") as follows: C[f(L1...Ln)|] = Clg] if there exists a rule
f(L) — ¢ in A such that Ly...L, C L (in this definition, a lone state ¢ is
considered as a singleton set {q}).

The language denoted by L(A, q) is the set of ground terms ¢ € 7 (X) such
that ¢ % q. A term is accepted by A if there is ¢ € Qf such that t € L(A, q).
The language denoted by L(.A) is the set of terms accepted by A.

It is know that for both classes of automata [13,17] membership and empti-
ness problems are decidable. Moreover HA are closed under Boolean operations.

We call a HA or CF-HA A = (Q,Qf, A) normalized if for every f € X
and every ¢ € @Q, there is at most one transition rule f(Ly,) — ¢ in A. Every
HA (resp. CF-HA) can be transformed into a normalized HA (resp. CF-HA)
in polynomial time by replacing every two rules f(L;) — ¢ and f(L2) — ¢ by
f(L1U Lg) — q.

A HA A= (Q,Qf, A) is called deterministic iff for all two transitions rules
f(L1) — ¢ and f(L3) — q2 in A, either Ly N Ly = 0 or ¢1 = ¢o. It is called
complete if for all f € ¥ and and w € Q*, there exists at least one rule f(L) —
q € A such that w € L. When A is deterministic (resp. complete), for all ¢ €
T (X)), there exists at most (resp. at least) one state ¢ € Q such that t € L(A, q).

Every HA can be completed by adding a sink state (and using the closure
properties of regular languages). A determinization procedure (with a subset con-
struction) which preserves completeness is described in Section 4.1 (see also [4]).

3.1 Epsilon- and Collapsing Transitions

We can extend HA and CF-HA with e-transitions of the form ¢ — ¢, where
g and ¢’ are states, without augmenting the respective expressiveness of these
classes. We also consider the extensions of HA (resp. CF-HA), with collapsing
transitions of the form L — ¢ where L is a regular (resp. CF) language and ¢
is a state. The move relation for the extended set of transitions is defined as for
HA and CF-HA for standard transition and by Clq1 ...qx] - Clg] if L — ¢ is
a collapsing transition of A and ¢ ... qr € L. Note that the collapsing transition
L — ¢ is never applied at the root position (i.e. the above context C' cannot be
a variable) because HA and CF-HA are limited to the recognition of terms only
(and not hedges).

Unlike e-transitions, collapsing transitions strictly extend HA in expressive-
ness. However, we show that they can be eliminated for CF-HA.

Proposition 1. For every extended HA or CF-HA with collapsing transitions
A, there exists a CF-HA A" (without collapsing transitions) such that L(A") =
L(A).

Proof. Assume that L — ¢ is a collapsing transition of A. Then we get a CF-HA
A’ such that L(A") = L(A) by replacing every transition f(Li) — g1 by the
transition f(L2) — ¢1 where Lo is the context-free word language generated by
the grammar G5 as follows. We consider a context-free grammar G for L (resp.
G1 for L) with axiom X (resp. X1). The axiom of G5 is X; and the set of
productions in Gy contains i) Glg — X, U Gilg — X,] i.e. the terminal ¢ is
replaced by a non terminal X, and ii) we add to these rules the production: X, :=
q | X. We can iterate this construction to eliminate all collapsing transitions. O

Proposition 2. There exists an extended HA with collapsing transitions whose
language is not a HA language.

Proof. Consider the extended HA A = ({q, ¢a, @, g¢}, {9, a, b, ¢}, {g}, A) where

A={c—q, a = qa, b= @, 9(¢) = &, Gamw — q}

Its recognized language is {g(a™cb™) | n > 0} and this is not a HA language. O

3.2 Decision Problems

The problem of ground reachability and ground joinability are to decide that,
given two ground terms s,t € 7 (X) and a HRS R, whether, s % t, respectively,
S —%—> o <—% t.

Regular hedge model checking is the problem to decide, given two HA lan-
guages Lipit and Le, and a HRS R whether R*(Linit) contains a term of Ley.
Ground reachability is reducible to regular hedge model-checking. Indeed, given
s, t and R, s = t iff R*({s}) N {t} # 0. Note also that if ground-reachability
(hence regular hedge model-checking) is undecidable for a class of HRS, then
R*(L) is not recursive in general when R is in this class and L is a HA or
CF-HA. Indeed, by definition s —— ¢ iff t € R*({s}).

4 Closure of Regular Hedge Automata Languages

In this section, we prove one result of preservation of HA language for a class
of HRS, and give several counter example showing that the restrictions defining
this class of HRS are necessary.

4.1 Inverse Context-Free Rewrite Rules

Theorem 1. The closure R*(L) of a HA language L C T (X)) under rewriting
by an inverse context-free HRS R is a HA language.

Proof. Let A = (Q,Qf, A) be a complete and normalized HA recognizing L.

We shall construct below a finite sequence of HA (A) 0<i<h whose last element

recognizes R*(L). Our construction uses elements of [15] and [22], but it is
not a simple combination of both. Indeed, on one side we generalize [22] to an
unbounded number of rewriting steps, and on the other side we generalize [15]
to unranked tree languages. Both generalizations are non-trivial and require new
constructions and new conditions.

For each f € ¥, q € Q, we note Ly , the language in the transition (assumed
unique) f(Lysq) — g € A. We construct first from A a deterministic, complete
and normalized HA A4 = (Qq, Qf, A4) recognizing L. The HA Ay is obtained by
a subset construction, see e.g. [4], with Qq := 29, Qf := {s € Q4 | s N Qf # 0}
and Aq := {f(Lss) = s| f € X,s CQ} where Ly, := (ﬂqu Sf,q)\(Uqgs Stq)
and Sy, = {s1...5, € Q ‘ g1 €51, ,qn € Sny 1. Gn € Ly g}?

Next, following the approach of [22], we define first the set of languages of
@} that will be used in the transitions of the A;’s constructed below. However,
we must consider here a bigger set than [22] in order to deal with non linear
variables in lhs of rules. Let £ be the smallest set of subsets of @} such that

i. all Ly s (for f € X and s € Qq) and Qd are in L,
ii. if L € £ and u,v € Q}, then u=* Lv~! € £, where

u Lot = {w e Q| vwv € L},

343, if Ly, Ly € L then Li N Ly € L,
. if Ly, Ly € L then Ll\Lg e L.

Note that the condition @} € £ in 7 together with 7% and v imply that £ is also
closed under union (if Ly, Ly € £ then Ly U Ly € L), by De Morgan’s Law.

Let us show that £ is finite and that all its members are regular languages.
First, let us note that L1, the smallest set satisfying ¢ and iz above, is a finite
set of regular languages of @}, since every Ly, is regular by hypothesis. The
closure Lo of £ under ii¢ and then iv is also a finite set of regular languages.
The following lemma shows that Lo fulfills 47, i.e. that Lo = L.

Lemma 1. For all L1,Ly C Q}, u1,u2,v1,v2,u,v € Q*, we have
uuy Loyt Nnugt Lovy) vt = (wpu) Tt Ly (vv) 70 (ugu) T Ly (vog) 7,
uH(uy Ly oyt \uyt Ly vy) o™t = (wgw) Tt Ly (vor) 7\ (ugu) T Ly (vog) 7L

Proof. The set in the left-hand-side of the first identity in Lemma 1 is A =
{ﬂ | wbv € {0/ | uil'vy € Ly and ugl'vy € Lg}}, and the set in its right hand
side is B = {ﬂ | uyulvry € Ly and ugubvvg € Lg}. If ¢ € A, then uyubvv, € Ly

3 Note that Sy, and Ly s are indeed regular languages, see [4].

and usulvvy € Lo, hence ¢ € B. Conversely, if £ € B, then ulv € ul_l Ly vl_l N
Uy 'L, vy ! hence ¢ € A. The proof is very similar for the identity with the
complementation. a

Let us now construct the HA Ay, ..., A, as announced. The set of states and
final states of each of these HA are respectively QQq and QL. We give below an
iterative construction of the respective transition sets A;, 0 < ¢ < h.

Let Ag = Aq. Assume that A; has been constructed and contains one transition
f(Lif)S) — s for every f € X and s € Qq; A;41 is obtained from A; as follows:
choose (non deterministically) an inverse context-free rewrite rule £ — g(z) € R,
and a substitution 7 : var()U{x} — {L' € L|Vs1...s5 € L',Vj <k, L(A;,s;) #
(0}, such that ¢7 %1) s’ € Qq. Let L’ = z7 (note that if the variable = does not
occur in 4, then L’ is an arbitrary language of £ of sequences of states reachable
by A;); Ait1 is obtained as follows: for each s € Qq,

1. replace the rule g(L;S) — s by g(L;S NL') — sUs and g(L;S \L') —s

2. after this operation, normalize the set of transition rules with the operation
described in Section 3 (page 5). (Note that if s’ C s then the normalization
merges the 2 rules and regenerate g(L;S) — s.)

The idea behind this construction is that if s’ is reachable from a lhs ¢7 of
rewrite rule, then the states in s’ must also be reachable from the corresponding
rhs g(z7). Note that for all transitions g(L) — s produced by the algorithm, we
have L € L (even after normalization), according to the closure properties of this
set. Since £ and the set of states s is finite (no new state is added) this shows
that the construction terminates say with a HA Aj; that will be denoted A*.

We can also show the following invariant: every A; constructed in the algo-
rithm is deterministic, complete and normalized. Indeed, assume that A; has
these properties. If s C s no transition is added and the invariant is trivially
preserved; hence we can assume now s’ ¢ s. If another rule g(L) —sUs
was in A4; it is merged with g(Li sNL') — sUs by normalization produc-
ing the rule g((L{, N L") U L

i
g,sUs’

) — s U s’. Hence there is at most one

g,sUs’
Lt = (Li N L) UL, ., such that g(Lif L) — sUs € Ay Note
also that there is at most one Litl = L [\ L' such that g(L{H!) — s € Ay

It is easy to see (from the fact that A is deterministic and normalized) that
L;J;IUS,, L;*'Sl, and ng*sl,,, for all s” ¢ {s,s'}, are pairwise dlSJOlIlt, hence A”l is
deterministic. From the facts that A; is complete and that Ly ;N L" and Ly \ L'

form a partition of Lq ¢, we deduce that A;;; is also complete.

We show now that L(A*) = R*(L).
The proof of the direction L(A*) C R*(L) relies on the following lifting lemma.

Lemma 2. Foralli>0,te€ T (X, X), 0:var(t) — H(X) and 0 : var(t) — Q}
such that for all x € var(t), xo and x6 have the same length, if t0 %) S0 € Qd,
and for all x € var(t), all components (x0)|; of x0 (state of Qq4) and q € (x0)|; ,
there exists u € L(A;, q) such that u = (x0)|;, then for all ¢’ € so, there exists
ve L(Ai,q¢') s t. v = to.

Proof. We make an induction on 3.

Base case (i = 0). We have Ay = Ay and since to ;—d> 8o, by construction of
Aqg, for all g € s0, to = qo.

Induction step (i + 1). We assume that the property is true for i and prove the
property for 7 + 1 by induction on the number n’ of applications of a rule of
A1\ 4; in the reduction 6 ﬁ» 50.

Base case (n’ = 0). If there are no rules of A;11 \ 4; in the above reduction,
then t6 AL) so and we apply the induction hypothesis (on).

Induction step (n' +1). Let p be a rule in A;41 \ 4A; applied at the position p
of t6 in the above reduction sequence. Let z ¢ var(t) be a fresh variable and let
o' = {z > to|,}. With this definition, to = t[z],0 U ¢’. We have the reduction
to ﬁ so described in the top line of Figure 1.

* *

o — to [za']p 7 t[g (81 .. Sn)]p _Az‘+—)1\Ai to[sUs'], Ao 50
A T,
to VU”L) " t[(@”}p ” t[S’]P

Fig. 1. Proof of Lemma 2, L(A*) C R*(L).

Assume that p = g((L{ ;N L)UL]) — sUs’ and that it has been added
using an inverse context-free rewrite rule £ — g(z) € R. Let 7 : var({) — L be
the substitution used for the construction of the above rule, such that /7 ALf
s’ e Qq.

By hypothesis on 7, to each y € var(¢) we can associate a hedge h which is
reduced by A; to a sequence of states of Q4 in the language of y7. This permits
to define two substitutions ¢’ : var(¢) — H(X) and 6" : var(¢) > y — 5 € yr,
making possible the reduction (with A;) at the bottom line of Figure 1 and
such that moreover t[fa”]p —— to. The latter reduction is obtained by letting
zo" = z0'|;.

By induction hypothesis, (on the number of applications of a rule of A; 1\ 4;
in £0" —— '), for all ¢’ € ', there exists v € L(A,¢’) such that v - Lo
Moreover, by hypothesis on the rule p, the sequence of states s; ... s, at position
pl in the reduction to AjT’ S0 (see Figure 1) belongs to L_f])s. Hence we have

a reduction zo’ %) s and by induction hypothesis, for all ¢ € s, there exists

u € L(A,q) such that u — zo’. Altogether, for all ¢ € s U ', there exists

u € L(A,q) such that u -~ z20’. Letting ¢’ = {z — s U s'}, we can apply
the induction hypothesis to to[z6'],, because there is at least one application of
Air1\ 4, less in to[z0'], ﬁ so than in ¢6), ﬁ so. Hence, for all g € s,
there exists u € L(A, q) such that u —— to.

The case where a rule p = g(L} , \ L') — s is added is simpler, because, in
order to apply the induction hypothesis, we only need to show that for all ¢ € s,
there exists u € L(A, q) such that u =~ zo’ in the first case This can be done
as before.

(end of the proof of Lemma 2) 0O

Now, for the particular case of Lemma 2 where ¢t € 7(X), we have that if
t ALf S0, for some ¢ and sg € Qg, for all ¢f € so, where ¢f is a final state of A,
there exists u € L(A,¢") C L(A) such that u —— t. This terminates the proof
of the direction L(A*) C R*(L).

For the direction L(A*) 2 R*(L), assume that ¢t € L(A) and that t — t'.
We show by induction on the length of this reduction sequence that ¢’ € L(A;)
for some <.

Base case (t =t'). It is immediate by construction of A,.
Induction step. Assume that the last step in ¢ —%—> t' involves an inverse context-

free rule £ — g(z) € R at a position p and with a ground substitution o :
var(f) — H(X), as described in the the top line of the diagram in Figure 2.

t— tloly —— tlg(ao)ly = ¢

R
tl[w]p t’[g(m@)]p
l A; (I.H.) l Aip1\A;
t/[sl]p t/[sll]p
l»Ai (I.H.) *JAH—l
f
S S1

Fig. 2. Proof of R*(L) C L(A").

By induction hypothesis, t'[¢o], € L(A;) for some i. Let us consider the
reduction of this term to a final state s of A; depicted in the second column
of the diagram in Figure 2. Since A; is deterministic, there exists a substitution
0 : var(f) — Qj such that '[o], —— t'[¢0], and '[¢6], —— t'[s'], —— s'. Since
A; is complete, there exists a substitution 7 : var(¢) — {L’ € L|Vs1...s; €
L',\Vj <k, L(A;,s;) # 0}, such that for all € var({), 0 € x7. By definition of

the relation —— extended to 7(X, L), b1 —— s

10

Hence this 7 is as in of the construction. It follows that a rule is added which

permits the reduction t'[g(x6)], A';H) s" where s = sU¢s’ (the case s = s is

not possible because 26 € x7). We have a reduction from ¢’ to a final state thank

to the following technical lemma which state the monotonicity of the relation

%» wrt state inclusion and context application.

Lemma 3. For all i > 0, all context C € T(X,{z}) and so, sy € Qq such that

so C s if Clso] —— s € Qa, then C[sp] 54— 8" 2's.

Proof. The proof is an induction on the structure of C.
Base case (C = z). In this case, the result is immediate by hypothesis.

Induction step (C' = f(C1...Cy)). We have Clso] —— f(s1...50) —— 5. By
induction hypothesis, for all j < n, Cj[sg] —— sj 2 s;. Since A; is deterministic
and complete, there exists a unique s’ such that f(s}...s]

that s’ C s by induction on i.

) —— s’. We show

Base case (i = 0). This case follows from the construction of Ay, with the
determinization procedure.

Induction step (i = k +1). If f(sy...s},) —x— ', then we can conclude by

induction hypothesis. If f(s}...s,) P Te Vv ', then let s’ be the state of

Qq such that sf...s), € LI;-7S//. This state exists and is unique because Ay is
deterministic and complete, and by induction hypothesis (on k), s C s”. An
analyze of the cases which may have permit the construction the transition
f(L’;J;/l) — 5" € Apy1 \ Ax used above shows that this rule replaces f(Lf) —
s" and that, s C s’. Hence s C s'. O
With Lemma 3, we have t AjT’ s1 with s; D sf. Hence t' € L(A;y1).

(end of the proof of Theorem 1) O

Corollary 1. Ground reachability, ground joinability and regular hedge model-
checking are decidable for inverse context-free HRS.

We present in the next subsections (4.2-4.4) some counter examples showing
that relaxing the assumption on R in Theorem 1 invalidate the result.

4.2 Collapsing Rewrite Rules

Collapsing rules preserve regularity of term languages [15] when the function
symbols are ranked. Indeed, in this case, if R is left-linear and collapsing, a tree
automaton (TA) recognizing L can be completed into a TA recognizing R*(L)
just by the iterated addition of e-transitions of the form z7 — ¢ when there is
¢ — x € R and a substitution 7 : var(¢) — @Q such that {7 > ¢. When R is
just collapsing (not left-linear), the construction requires determinism and hence
is more complicated but the idea is the same [15].

11

In the case of unranked terms and HA, if we want to follow the principles of
the construction of Section 4.1, we need to add collapsing transitions and not
just e-transitions. But the addition of collapsing transitions does not preserve
HA languages (Proposition 1). The following proposition shows that the above
construction is actually not possible for collapsing rewrite rules.

Proposition 3. R*(L) is not a HA language in general when L is a HA lan-
guage and R is a linear collapsing HRS.

Proof. We use the principle of the construction in the proof of Proposition 1.
Let X ={f,g,a,b,c}, let L be the language of the HA

A= ({q,q0: @v- a6}, {@}, {c = @0 = qa, b — qv. 9(qaqas) — q. f(a) — a})

and let R = {g(z) — z}. Assume that R*(L) is a HA language. Its intersection
with the HA language {f(a*cb*)} is {f(a™cb™)|n > 0}. It is not a HA language.
This contradicts the fact that HA languages are closed under intersection. O

Note that the completion of the above A, following the procedure in the proof
of Theorem 1, would add the collapsing transition q,qq, — g.

4.3 Flat Linear Rewrite Rules

In the case of ranked terms, it is known [15] that regularity of tree languages
is preserved under rewriting with systems with right-linear rules of the form
¢ — f(u1,...,u,) where f has arity n and each u; (i < n) is either a ground
term or a variable of var(¢). We call such a rule flat if its lhs and rhs both have
depth one. Note that this class of TRS is not captured by the HRS of Theorem 1
(when restricted to ranked terms). The above regularity preservation result is
no longer true for unranked terms.

Proposition 4. R*(L) is not a HA language in general when L is a a HA lan-
guage and R is a context-free, linear and flat HRS. Moreover, it can be assumed
that all the rules of R are prefiz or postfix.

Proof. Let us consider the context-free HRS R = {g(x) — g(azb)} of Example 1,
and the HA language L = {g(c)}. The language R*(L) = {g(a™cb™) | n > 0}
is not HA. We can transform the above R into R’ = {g(x) — ¢'(ax),¢'(y) —
g(yb)} whose rules are prefix or postfix (and linear) and which is such that
R*(LYNT({g,a,b}) = R*(L). O

Note that the language in the above proof is recognized by a CF-HA. We
shall show below (Theorem 2 in Section 5) that context-free HRS like the R
above preserve CF-HA languages.

We show now the stronger result that the closure of a HA language under
rewriting with a flat HRS, even linear, is neither HA, nor CF-HA and actually
not even recursive.

12

Proposition 5. R*(L) is not recursive in general when L is a HA language and
R is a linear and flat HRS whose rules contain at most two variables.

Proof. We reduce the blank accepting problem for TM to ground reachability
for an HRS. Let M be a TM with a tape alphabet I" and a state set S and let
Y =T'USU{g}. A configuration of M is represented by a term g(w) where w is
a word of "™ ST™* (the position of the state symbol indicates the position of the
head of M and the rest represents the contents of the tape). We assume, wlog
unique blank initial and final configurations, respectively ¢; and ¢s. We consider
a HRS R containing one rule for each transition of M. For instance, R contains
a rule f(xzasy) — f(xs'a’y) corresponding to a transition s,a — L,s’,a’ (with
s,s' € Sand a,d’ € I') and f(zasby) — f(xa'bs'y) to the transition s,a — R, s'.
The blank tape is accepted by M iff ¢; == ¢r. O

As a consequence, regular hedge model checking is undecidable for the HRS of
Proposition 5, according to the remarks in Section 3.2.

4.4 Rewrite Rules with Flat and One-Variable or Ground
Right-Hand-Sides

If we relax the inverse context-free condition, with only one variable allowed in
the rhs of rules, but possibly with two occurrences, both at depth 1, then the
result of Theorem 1, again, is not valid anymore.

Proposition 6. R*(L) is not recursive in general when L is a HA language and
R is a HRS whose rhs of rules are ground or of the form d(zz).

Proof. We reduce the blank accepting problem for a TM M with a tape alphabet
I" and a state set S. Let us consider an alphabet containing all the symbols in
I'ySand f, g,d, d, 0,1, 2 and #. Like in the proof of Proposition 5, we
represent a configuration of M by a term g(w) with w € I'*QI'*. We write
¢ g ¢ if the configuration ¢’ is a successor of ¢ following the transition table of
M. Tt is folklore knowledge that every such pair of configurations has the form
uajazazv Faq uajahaho for some u,v € I' and (aq,as,as,a},ab,as) € D,
where D is a subset of (I' U S)® which depends only on M.

A run of M is a sequence of configuration cg Faq ... Faq ¢p, starting with
co = g(¢ib) (¢ is an initial state and b € I' is the blank symbol), and ending
with a final configuration ¢, = g(ugfv) where ¢f is a final state and u,v € I'*.
We assume wlog that the length of every run is even. A sequence as above is
represented as a right comb f(co, f(c1,... f(cn,#))) (here f is used as a binary
symbol).

The following right-ground rewrite rules reduce a run both to 0 and 1. The
rules reducing to 0 check, for each 1 < i < % that co; 1 Faq c2i, and the rules
reducing to 1 check, for each 1 < i < % that cg; Faq c2i41, and moreover they
check the initial and final configurations ¢y and c,.

f(g(zarazasy) f(g(zaidyaby)#)) — 0
f(g(zarazasy) f(g(xalababy)0)) — 0 f(g(zq'y)#)) — 1
f(9(zarazasy) f(g(zajababy)l)) — 1 f(g(ginieb)1)) — 2

13

We consider also right-ground rewrite rules corresponding to the production
rules of a regular tree grammar G, with axiom (initial non-terminal) I, which
generates right-combs of the above form which are expected to be a run, and a
copy G’ of G, with a disjoint set of non-terminals, and axiom I’. Let R be the
set of all the above right-ground rules and the one-variable rule d(zz) — d'(zx).
We have that d(I1") - d’'(02) iff there exists a run of M starting with co. O

5 Closure of Context-Free Hedge Automata Languages

It has been observed [8] that in several cases, one class of word rewrite system
preserves regularity and its symmetric class preserves context-free languages. In
this section, we prove a similar result by showing that a restricted case of context-
free HRS, i.e. of the symmetric version of the systems considered in Section 4,
preserve CF-HA languages. We give next some counterexamples showing that
the restrictions are necessary for this result.

5.1 Linear Restricted Context-Free Rewrite Rules

We call a HRS R restricted context-free if it is context-free, and moreover, for
all rule f(xz) — r € R, z can occurs in r only at depth at most 1. Note that this
definition includes the case of collapsing rules f(z) — x.

Theorem 2. The closure R*(L) of a CF-HA language L under rewriting by a
linear restricted context-free HRS R is a CF-HA language.

Proof. Let Az, = (Q1,Q%, AL) be a normalized CF-HA recognizing L. We shall
construct an extended CF-HA A’ with collapsing transitions (see Section 3.1 for
the definition) recognizing R*(L). The result follows then from Proposition 1.

First, let us construct for each rule f(x) — g(ry...r,) € R and every sub-
term 7 # x amongst 1, ..., r, (let us denote rhs(R) the set of such subterms) a
CF-HA (with collapsing transitions) A, = (@, 0, A,) characterizing the set of
ground instances of r. We have in A, one state ¢, € @, for each non-variable
subterm u of r, and a universal state ¢y € @,. Below, for every subterm u of r,
we shall write ¢, to denote either the state ¢, if u is not a variable or gy other-
wise. The set of final states of A, is left unspecified. It is indeed not relevant to
our purpose since A, is only used as a part of the CF-HA A’ constructed below.
The transition set A, contains one rule f(qu, .- - Gu,) = Gf(u;...u,) for each sub-
term f(uy...up) of r (as specified above, ¢; is gy if u; is a variable and ¢; is a
state q,, otherwise). It contains moreover one collapsing transition ¢, — gv and
one transition rule f(g¥) — gv for each f € X. The states sets @, and @ are
assumed pairwise disjoint. Let A := (Q, Qf, A) with

Q=QLy |H QandA:=ALy [4 A,

rerhs(R) rerhs(R)

Foreach f € X, g € Q, let L, be the context-free language in the transition
(assumed unique) f(Lsq) — g € A, and let Gy g = (Q, Ny.q, Lf.q, Prq) be a CF

14

grammar generating Ly, with alphabet (set of terminal symbols) @, set of non
terminal symbols Ny 4, axiom Iy, € N4, and set of production rules Py 4. The
sets of non-terminals Ny , are assumed pairwise disjoint.

We complete the grammars Gy, with new non-terminals I% and some sets
PJ{} q of new production rules containing;:

z I%)q = Iy 4 for alllf €eX, qeq,
i Ly o = Gry - GQr, A}, G5y - s, for each rule f(x) — g(r1...7nxs1...8m) €

R, with n,m > 0, and = ¢ var(ri,..., n,81,..-,8m), and
iii. Iy . = qr,---qr, (With n > 0), or I} = := e (with n = 0), for each rule

f(@) = g(ri...m) € R with @ ¢ var(ry,...,m), if L(A,q) N f(H(X)) #0.

Note that in the cases i7 and 777 cover all the cases of linear restricted context-free
rewrite rules, except the collapsing rules.
Let N = U (NpqU{I},}) and P = U (PyqUP},).

feX,qeq feX,qeqQ
Let us clean up these sets: if the language generated by a CF grammar

(Q,N, I}»ﬁq,P) is empty then we remove I}yq from N and all the productions
of P which contain I } 4 We iterate this operation, until there is no remaining
non-terminals generating an empty language in N (note that the construction
stops since we only remove non-terminals and productions). Let us note N’ and
P’ the sets of non-terminals and productions obtained. For each f € X, g € Q,
let g}ﬁq = (Q, N’, I}yq, P’), and let L'fﬁq be its language.

Finally, A’ = (Q, Qf,, 4’) is obtained by the addition of collapsing transitions
corresponding to the collapsing rewrite rules in R

A ={f(L},) —aq|feXqgeQ, L, #0}U{L}, —ql f(x) =z €R}
We show that L(A’) = R*(L(A)).
Direction L(A’") C R*(L(A)). We show more generally that for all t € L(A’, qo),
qo € Q, there exists u € L(A, qo) such that u —5— t. The proof is by induction

on the number of applications of collapsing transitions other than ¢ — g¢v in
the reduction t — o.

Induction step. Let us prove first the induction step (we shall prove the base
case later). Assume that the reduction ¢ —— go has the form

t=Clh] — Clar .- an] —~ Cld] =~ @0

and that there exists a collapsing transition L, — ¢ with ¢1...¢, € L; . By
construction it means that R contains a collapsing rule f(z) — z. We have then

s = C[f(h)] == Clf(a1---qn)] = Cla) = a0

The reduction s 7?;—> qo applies one collapsing transition less than ¢ 7?;—> qo-
Hence, by induction hypothesis, there exists u € L(A,qo) such that u % s.
Moreover, u —— t because s - t with the rule f(z) — z.

15

Base case. Now for the base case (no collapsing transition applied, except
g% — gv), we make a second induction on the number of occurrences of non-
terminals of the form I} in all the derivations, by the grammars G , of the se-
quences of states ¢i ... ¢, € @* used in transitions of the form f(q;...qn) — ¢in
the reduction t 7?“;—> qo- Let us note F the relation of derivation using the rules of
P’, and F* its transitive closure. More precisely, we consider the number of occur-
rences of non terminals I} , occurring in derivations of the form Ij . g1 ...qn,
excluding the first occurrence of I, , (at the beginning of the derivation). Intu-
itively every such I}m corresponds to a rewrite step with a context-free rule of
R in the rewrite sequence u % t.

Base case (second induction). For the base case, the number occurrences of non-
terminals of the form I} is zero. It means that t = qo (every derivation starts
by I q " 1g,q, case i of the above construction), and we let u = t¢.

Induction step (second induction). Assume that the reduction ¢ 7?;—> qo has the
form

t=Clg(tr...te)] = Clolar .. a0)] — Clal = ao

*

where g(q1 ... qx) —— ¢ is the first transition such that the derivation of I !
q---qx by G, 1nv01ves one non-terminal of the form I . (other than the ﬁrst
occurrence of 1 (’] 4 at the beginning of the derivation).

Note that we can assume that for every i < k, t; 7?‘,—> q; because no collapsing
transition are used by hypothesis. Hence, together with the above hypothesis, it
implies that t; € L(A,¢;) for all i < k.

By construction, the derivation I ;7 ¢ " @1 ... qx starts with a production rule
of P’ added by one of the cases i or iii above.

Case ii. We have I’ Far . anIquSl ...qs,, F* q1...qx, and the first pro-
duction rule used in thls derlvatlon was added by the case ¢ of the construction
because there exists a rewrite rule g(z) — f(r1...mpxs1...8,) € R. It follows
that I% F* Gnt1- . Gntp, with p =4k —m —n, and that

s =C[f(tat1 - tnip)] == Clf (@ns1 - - tnsp)] — Cldl —5 do-

The above reduction sequence is strictly smaller than the above t 7?“,—> qo wrt the
number of non-terminals of the form I’ used in derivations. Hence, by induction
hypothesis, there exists u € L(A, go) such that u % s.

Moreover, ¢g1 = Gry, --+» @n = Gr, a0d @nipr1 = sy, -- -5 Gk = Gs,,- Recall
that by convention, the ¢,, and ¢s, can denote either a state g, associated to a
non-variable subterm wu of a right member of rule of R or ¢y. Therefore, since ¢; €

L(A,q;) for all i <k, t; is an instance of rq, ..., t, is an instance of 7, tptpt1
is an instance of s1, ..., t; is an instance of s,,. Therefore f(tp41...tn4p) =
g(t1...tx), and u = t.

16

Case t1i. We have [(’]7q F q1...q; and the production rule used was added by
the case #i¢ of the construction of P’ because there is a rewrite rule f(z) —
g(r1...1,) € R, with « ¢ var(ry,...,r,), and for all i < k, ¢; = ¢,, (again, it can
denote qv). Hence, for all ¢ < k, ¢; is an instance of r; by hypotheses. Because of
the condition in the case 4ii of the construction, there exists h € H(X) such that
f(h) € L(A,q). Hence s = C[f(h)] -~ Clg] —g~ qo- By induction hypothesis,
there exists u € L(A, qo) such that u = s, and u =5~ t because s —— t.
Direction L(A’) 2 R*(L(A)). We show that for all u € L(A), if u — ¢, then
t € L(A’), by induction on the length of the rewrite sequence.

Base case (0 rewrite steps). In this case, u = t € L(A). We can note that
L(A) C L(A’), because of the productions I} , := I, added by the case i of the
construction. Hence, t € L(A’).

Induction step (k + 1 rewrite steps). We have three cases.

Case i. The last rewrite step of the sequence involves a collapsing rewrite rule
flz) »zeR:

u— Cf(h)] - Clh] =t.

By induction hypothesis, C[f(h)] € L(A’). Hence there exists a reduction se-
quence: C[f(h)] %~ C[f(q1 ---qn)] =~ Cla] —~ a5 € QF, with g1 ... g, € L) .
By construction, A’ contains a collapsing transition rule L'f) q — ¢ Hence ¢t =
C[h] %ﬁ Clqr - - - qn] —~ Clq] %ﬁ g € QY ,ie t e L(A).

Case ii. The last rewrite step of the sequence involves a context-free rewrite rule
fx) = g(ri...rpxs1...8n) € R, with n,m >0

u —%—» C[f(h)] = Clg(ri...rnhsi...sm)o] =t
By induction hypothesis, C[f(h)] € L(A’), hence, there exists a reduction se-
quence: C[f(h)] =~ C[f(q1...qp)] =~ Cla] =~ ¢r € QF, with q1...q, € L,
ice. It F* qi...qp. By the case ii of the construction, we have I, , :=
Qry -+ Qo A} 4G5y -+ Gs,, € P (note that both Ij , and I}, are clean, i.e. mem-

9,q
bers of N'), hence qr, ... Gr,q1---pds, ---qs,, € Lj . If follows that t —p—

Clo(ar, - @roq1 - pGs, - --4s,,)) —— Cla] = @, je. te L(A).

Case 11i. The last rewrite step of the sequence involves a context-free rewrite
rule f(x) — g(r1...7,) € R with x ¢ var(ry...ry,)

u — C[f(h)] — Clg(ri...ry)o] =t.

By induction hypothesis, f(h) € L(A’). With the case i of the construction,
Iy, =G . qr, € P’ hence q, ...q, € L} ,. Since for all i <n, rijoc —— g,
te L(A,q). (end of the proof of Theorem 2) O

17

Corollary 2. Reachability and reqular hedge model-checking are decidable for
linear restricted context-free HRS.

Proof. The intersection of an CF-HA language and a HA languages is a CF-HA
language, and emptiness of CF-HA is decidable. a

It is shown in [17] that the languages of CF-HA are closures of regular tree
languages modulo associativity of one or several binary function symbols. There-
fore, the above results are also valid for these languages.

5.2 Linear Context-Free Rewrite Rules

Context-free HRS are named after context-free tree grammars, whose production
rules have the form N(z1,...,z,) — 7 where N is a non-terminal of arity n
(from a finite set N), z1,...,2, € X and r € T(ZUN, {z1,... ,xn}) Note that
our definition of context-free HRS is restricted to unary non-terminals. However,
even for this case of unary non-terminals and right-linear rewrite rules, the result
of Theorem 2 cannot be generalized to context-free HRS.

Proposition 7. R*(L) is not a CF-HA language in general when L is a CF-HA
language and R is a linear context-free HRS.

Proof. Let us consider the context-free HRS: R = {f(x) — ¢(f(ax))} and let
L ={f(c)}. The set R*(L) is {g(g(...g(f(a"c)))) | n € N}.
—_——

Using a pumping argument, we can show that it is not a CF-HA language.
Assume indeed that it is recognized by a CF-HA A with state set Q. In a term of
R*(L) with n > |Q|, there will two subterms u = g*(f(a"c)) and v = g7 (u), with
i,j > 0, both in L(A,q) for some ¢ € Q. The term g"~7(f(a"c)) is recognized
by A, and is not in R*(L). O

The above counter-example shows the importance for Theorem 2 of the condi-
tion, in the definition of restricted context-free HRS, that the variable = in a lhs
of rule occurs at a shallow position in the corresponding rhs.

5.3 Restricted Context-Free Rewrite Rules

If we keep the restricted context-free condition (the variable x in the lhs of a rule
occurs at a shallow position in the corresponding rhs) but we drop the linearity
condition, we also lose the CF-HA preservation result of Theorem 2.

Proposition 8. R*(L) is not a CF-HA language in general when L is a CF-HA
language and R is a restricted context-free HRS.

Proof. Let R = {f(z) — f(zx)} and L = {f(a)}. We have that R*(L) =
{f(a™) | n = 2¥,k > 0} which is not a CF-HA language. Assume indeed that
this language is recognized by a CF-HA (Q, Qf, A). It means that A contains a
transition f(L) — g where L is a context-free language of words of Q* of length

18

2%k > 0. The image of L under the strictly alphabetic homomorphism which
translates every state g € @ into a is context-free. As it is a one letter language,
it is also regular. But it is well known that this language {a" | n = 2*,k > 0} is
actually not regular. a

5.4 Mixing Inverse CF and Restricted CF Rewrite Rules

We show now that the results of Theorems 1 and 2 cannot be combined. In other
terms, for some HRS containing both linear inverse context-free and restricted
context-free rules, the set of descendants of a HA language is not a HA language,
neither a CF-HA language and even not recursive.

Proposition 9. R*(L) is not recursive in general when L is a HA language and
R is a HRS whose rules are either inverse context-free or restricted context-free
and contain only one variable.

Proof. We reduce the Post Correspondence Problem (PCP). Let us consider an
instance P = {(ui,vi> } 1< n,u;,v; € F*} of PCP on an finite alphabet I". The
problem is to find a sequence 41, ..., < n such that w;, ... w;, =vi, ... v,

Let R be an HRS containing a rule fo(x) — fo(u;zv;) for each pair (u;,v;) €
P (u; is the mirror image of ;), and two rules fo(axza) — f1(z) and fi(aza) —
fi(z) for each a € I'. We assume that fy, f1, and ¢ are symbols not in I'. We
have that fo(c) = fi(c) iff P has a solution. 0

Moreover, as we have shown that context-free HRS do not preserve HA lan-
guages (Proposition 4), the symmetric also holds for inverse-context-free HRS
and CF-HA languages.

Proposition 10. R*(L) is not recursive in general when L is a CF-HA lan-
guage and R is an inverse context-free HRS.

Proof. Let R1 be the subset of the context-free rewrite rules of the HRS of the
above proof of Proposition 9, and R5 be the subset of the other rules. Note that
R- is an inverse context-free HRS.

By Theorem 2, L = R} ({fo(c)}) is a CF-HA language. Like in the proof of
Proposition 9, we have that fi(c) € R5(L) iff the PCP has a solution. Hence,
because of the decidability of the membership problem for CF-HA, R3(L) cannot
be a CF-HA language. a

6 Conclusion

We have shown that HA and CF-HA languages are preserved by rewrite closure
for interesting classes of non ground hedge rewriting rules. These rules allow us
for instance to modify the structure of XML documents when processing them.
We plan to extend our results to non ordered unranked trees by considering
sheaves automata as in [5] or commutative hedge automata (see [3] for applica-
tion to process rewrite systems).

19

Regularity preservation has been studied in the case of ranked terms for
transducing term rewriting system, i.e. rewrite rules corresponding to trans-
ducers rules [20]. A generalization of such classes of TRS to hedge rewriting
seems conceptually close to XML transformations [12] and we plan to study the
preservation of HA or CF-HA languages w.r.t. to such HRS.

References

1. P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of regular model
checking. In Proc. of the 15th Int. Conf. on Concurrency Theory (CONCUR’04),
vol. 3170 of LNCS, pages 35—48. Springer, 2004.

2. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In
Proc. of the 12th Int. Conf. on Computer Aided Verification (CAV’00), vol. 1855
of LNCS, pages 403-418, 2000.

3. A. Bouajjani and T. Touili. On computing reachability sets of process rewrite
systems. In Proc. 16th Int. Conf. Term Rewriting and Applications (RTA’05), vol.
3467 of LNCS, pages 484-499. Springer, 2005.

4. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-1ille3.fr/tata. Last release October, 12th 2007.

5. S. Dal-Zilio and D. Lugiez. XML schema, tree logic and sheaves automata. In
Proc. 14th Int. Conf. Rewriting Techniques and Applications (RTA’03), vol. 2706
of LNCS, pages 246—263. Springer, 2003.

6. I. Durand and G. Sénizergues. Bottom-up rewriting is inverse recognizability pre-
serving. In Proc. 18th Int. Conf. Term Rewriting and Applications (RTA’07), vol.
4533 of LNCS, pages 107-121. Springer, 2007.

7. R. Gilleron and S. Tison. Regular tree languages and rewrite systems. Fundamenta
Informaticae, 24(1/2):157-176, 1995.

8. D. Hofbauer and J. Waldmann. Deleting string rewriting systems preserve regu-
larity. Theor. Comput. Sci., 327(3):301-317, 2004.

9. F. Jacquemard. Decidable approximations of term rewriting systems. In Proc. of
the 7th Int. Conf. on Rewriting Techniques and Applications (RTA’96), vol. 1103
of LNCS, pages 362-376. Springer Verlag, 1996.

10. F. Jacquemard and M. Rusinowitch. Rewrite closure of hedge-automata lan-
guages. Research Report LSV-08-05, Laboratoire Spécification et Vérification, ENS
Cachan, France, 2007. Available on: http://www.lsv.ens-cachan.fr/Publis

11. C. Loding and A. Spelten. Transition graphs of rewriting systems over unranked
trees. In Proc. 32nd Int. Symposium on Mathematical Foundations of Computer
Science (MFCS’07), vol. 4708 of LNCS, pages 67-77, 2007.

12. W. Martens and F. Neven. On the complexity of typechecking top-down XML
transformations. Theor. Comput. Sci. Vol 336, N. 1, 2005, pages 153—-180.

13. M. Murata. “Hedge Automata: a Formal Model for XML Schemata”.
http://www.horobi.com/Projects/RELAX/Archive/hedge_nice.html, 2000.

14. M. Murata, D. Lee, and M. Mani. Taxonomy of xml schema languages using formal
language theory. In In Extreme Markup Languages, 2001.

15. T. Nagaya and Y. Toyama. Decidability for left-linear growing term rewriting sys-
tems. In Proc. 10th Int. Conf. on Rewriting Techniques and Applications (RTA’99),
vol. 1631 of LNCS, pages 256-270. Springer Verlag, 1999.

20

16

17.

18.

19.

20.

21.

22.

H. Ohsaki. Beyond the regularity: Equational tree automata for associative and
commutative theories. In Proc. of CSL’01, vol. 2142 of LNCS. Springer, 2001.

H. Ohsaki, H. Seki, and T. Takai. Recognizing boolean closed A-tree languages
with membership conditional rewriting mechanism. In Proc. of the 14th Int. Conf.
on Rewriting Techniques and Applications (RTA’03), vol. 2706 of LNCS, pages
483-498. Springer Verlag, 2003.

J. d’Orso and T. Touili. Regular hedge model checking. In Proc. of the 4th IFIP
Int. Conf. on Theoretical Computer Science (T'CS’06). IFIP, 2006.

K. Salomaa. Deterministic Tree Pushdown Automata and Monadic Tree Rewriting
Systems. J. of Comp. and System Sci., vol. 37, pages 367-394, 1988.

H. Seki, T. Takai, Y. Fujinaka and Y. Kaji. Layered Transducing Term Rewriting
System and Its Recognizability Preserving Property. In Proc. of 13th Int. Conf.
on Rewriting Techniques and Applications (RTA’02), vol. 2378 of LNCS, pages
98-113, 2002.

T. Takai, Y. Kaji, and H. Seki. Right-linear finite path overlapping term rewriting
systems effectively preserve recognizability. In Proc. of 11th Int. Conf. on Rewriting
Techniques and Applications (RTA’00), vol. 1833 of LNCS, pages 246-260, 2000.
T. Touili. Computing transitive closures of hedge transformations. In In Proc. 1st
Int. Workshop on Verification and Evaluation of Computer and Communication
Systems (VEC0S’07), eWIC Series. British Computer Society, 2007.

21

