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Nominal Logic is a version of first-order logic with equality, name-binding, renaming via name-
swapping and freshness of names. Contrarily to higher-order logic, bindable names, called atoms,
and instantiable variables are considered as distinct entities. Moreover, atoms are capturable by
instantiations, breaking a fundamental principle of lambda-calculus. Despite these differences,
nominal unification can be seen from a higher-order perspective. From this view, we show that
nominal unification can be reduced to a particular fragment of higher-order unification problems:
Higher-Order Pattern Unification. This reduction proves that nominal unification can be decided
in quadratic deterministic time, using the linear algorithm for Higher-Order Pattern Unification.
We also prove that the translation preserves most generality of unifiers.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Lambda Calculus and Related Systems

General Terms: Lambda Calculus, Nominal Logic, Automated Theorem Proving, Term Rewriting

Additional Key Words and Phrases: Higher-Order Pattern Unification, Nominal Unification

1. INTRODUCTION

Nominal Logic is a version of first-order many-sorted logic with equality and prim-
itives for renaming via name-swapping, name-binding, and freshness of names. It
is characterized by a syntactic distinction between atoms (that roughly correspond
to the notion of bound variable) and variables (that would correspond to free vari-
ables). Therefore, binders can only bind atoms, we can only instantiate variables,
and atoms are not instantiable even if they are not bounded. It also provides
a new-quantifier [Gabbay and Pitts 1999], to model name generation and local-
ity. Nominal logic was introduced at the beginning of this decade by Gabbay and
Pitts [Gabbay and Pitts 1999; Pitts 2001; Gabbay and Pitts 2001; Pitts 2003].
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2 · J. Levy and M. Villaret

These first works have inspired a sequel of papers where bindings and freshness
are introduced in other areas, like nominal algebra [Gabbay and Mathijssen 2006;
2007; 2009], equational logic [Clouston and Pitts 2007], rewriting [Fernández and
Gabbay 2005; 2007], unification [Urban et al. 2003; 2004], and Prolog [Cheney and
Urban 2004; Urban and Cheney 2005].

This paper is concerned with Nominal Unification, the problem of deciding if
two nominal terms can be made α-equivalent by instantiating their variables by
nominal terms. In this instantiation, variables are allowed to capture atoms. Ur-
ban, Pitts and Gabbay [Urban et al. 2003; 2004] describe a sound and complete,
but inefficient (exponential), algorithm for nominal unification. Fernández and
Gabbay [Fernández and Gabbay 2005] extend this algorithm to deal with the new-
quantifier and locality. Nominal Logic’s equivariance property suggested to Ch-
eney [Cheney 2005a] a stronger form of unification called equivariant unification.
He proves that equivariant unification and matching are NP-hard problems. An-
other variant of nominal unification is permissive unification, defined by Dowek,
Gabbay and Mulligan [Dowek et al. 2009; 2010], that is also reducible to Higher-
Order Pattern Unification. Calvès and Fernández describe in [Calvès and Fernández
2007] a direct but exponential implementation of a nominal unification algorithm
in Maude, and in [Calvès and Fernández 2008] a polynomial implementation, based
on the use of a graph representation of terms, and a lazy propagation of swappings.
In [Levy and Villaret 2008] we prove that Nominal Unification can be decided in
quadratic time by reduction to Higher-Order Pattern Unification. The present pa-
per is an extension of this preliminary paper, where we have simplified the reduction
by removing freshness equations, and we have included the proof of some important
properties of pattern unifiers. In particular, we prove that most general higher-order
pattern unifiers can be written without using other bound-variable names than the
ones used in the presentation of the unification problem. Moreover, we establish
a precise correspondence between most general nominal unifiers and most general
pattern unifiers. Sections 4, 6 and 8 are completely new in this extended version.
Recently, Calvès and Fernández [Calvès 2010], and ourself [Levy and Villaret 2010]
have independently found direct quadratic nominal unification algorithms based on
the Paterson and Wegman’s linear first-order unification algorithm [Paterson and
Wegman 1978].

The use of α-equivalence and binders in nominal logic immediately suggests to
look at nominal unification from a higher-order perspective, the one that we adopt
in this paper. Some intuitions about this relation were already roughly described
by Urban, Pitts and Gabbay in [Urban et al. 2004]. Cheney [Cheney 2005b] reduces
higher-order pattern unification to nominal unification (here we prove the opposite
reduction).

The main benefit of nominal logic, compared to higher-order logic, is that it allows
the use of binding and α-equivalence without the other difficulties associated with
the λ-calculus. In particular, with respect to unification, we have that nominal
unification is unitary (most general unifiers are unique) and decidable [Urban et al.
2003; 2004], whereas higher-order unification is undecidable and infinitary [Lucchesi
1972; Goldfarb 1981; Levy 1998; Levy and Veanes 2000]. In this paper we fully
develop the study of nominal unification from the higher-order logics’ view. We
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Nominal Unification from a Higher-Order Perspective · 3

show that full higher-order unification is not needed, and Higher-order Pattern
Unification suffices to encode Nominal Unification. This subclass of problems was
introduced by Miller [Miller 1991]. Contrarily to general higher-order unification,
higher-order pattern unification is decidable and unitary [Miller 1991; Nipkow 1993].
Moreover, unifiability can be decided in linear time [Qian 1996]. All this will lead
us to show how to reduce nominal unification to higher-order pattern unification,
and to conclude its decidability in quadratic deterministic time.
From a higher-order perspective, nominal unification can be seen as a variant of

higher-order unification where:

(1) variables are all first-order typed, and constants are of order at most three,

(2) unification is performed modulo α-equivalence, instead of the usual α and β-
equivalence,

(3) instances of variables are allowed to capture atoms, contrarily to the standard
higher-order definition, and

(4) apart from the usual equality predicate, we use a freshness predicate a# t with
the intended meaning: atom a does not occur free in t.

The third point is the key that makes nominal unification an interesting subject
of research. Variable capture is always a trouble spot. Roughly speaking, the main
idea of this paper is to translate atoms into bound variables, and variables into
free variables with the list of atoms that they can capture as arguments. The first
point will ensure that, since variables do not have parameters, after translation, the
only arguments of free variables will be list of pairwise distinct bound variables,
hence higher-order patterns. Moreover, since bound variables will be first-order
typed, and constants third-order typed, the translated problems will be second-
order patterns. The second point is not a difficulty. Since all nominal variables
are first-order typed, their instantiation does not introduce β-redexes. Finally, the
fourth point can also be overcome by translating freshness equations into equality
equations, as described in Section 4.
The remainder of the paper proceeds as follows. After some preliminaries in

Section 2, in Section 3 we illustrate by examples the main ideas of the reduction at
the same time that we show the main features of nominal unification. In Section 4,
we prove that freshness equations can be linearly translated into equality equa-
tions. In Section 5, we show how to translate a nominal unification problem into
a higher-order patterns unification problem. Then, after proving some properties
of Higher-Order Pattern Unification in Section 6, we prove that this translation
is effectively a quadratic time reduction, in Section 7. In Section 8, we establish
a correspondence between nominal unifiers and pattern unifiers of the translated
problems. In particular, we prove that the translation function and its inverse are
monotone w.r.t. the more general relation, and both translate most general unifiers
into most general unifiers. We conclude in Section 9.

2. PRELIMINARIES

In this section we present some basic definitions of Nominal Unification and Higher-
Order Pattern Unification. We will use two distinct typographic fonts to represent
nominal terms and λ-terms along this paper.
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2.1 Nominal Unification

Nominal terms contain variables and atoms. Only variables may be instantiated,
and only atoms may be bounded. They roughly correspond to the notions of free
and bound variables in λ-calculus, respectively, but are considered as completely
different entities. However, atoms are not necessarily bounded, and when they
occur free, they are not instantiable.
In nominal signatures we have sorts of atoms (typically ν) and sorts of data

(typically δ) as disjoint sets. Atoms (typically a, b, . . .) have one of the sorts of
atoms. Variables, also called unknowns, (typically X,Y, . . .) have a sort of atom
or sort of data, i.e. of the form ν | δ. Nominal function symbols (typically f, g, . . .)
have an arity of the form τ1 × · · · × τn → δ, where δ is a sort of data and τi are
sorts given by the grammar τ ::= ν | δ | 〈ν〉τ . Abstractions have sorts of the form
〈ν〉τ .
Nominal terms (typically t, u, . . .) are given by the grammar:

t ::= f(t1, . . . , tn) | a | a.t |π ·X

where f is a n-ary function symbol, a is an atom, π is a permutation (finite list
of swappings), and X is a variable. They are called respectively application, atom,
abstraction and suspension. The set of variables of a term t is denoted by Vars(t).
A swapping (a b) is a pair of atoms of the same sort. The effect of a swapping

over an atom is defined by (a b) · a = b and (a b) ·b = a and (a b) · c = c, when
c 6= a, b. For the rest of terms the extension is straightforward, in particular,
(a b) ·(c.t) =

(

(a b) ·c
)

.
(

(a b) · t
)

. A permutation is a (possibly empty) sequence of

swappings. Its effect is defined by (a1 b1) . . . (an bn)·t = (a1 b1)·
(

(a2 b2) . . . (an bn)·t
)

.
Notice that every permutation π naturally defines a bijective function from the set
of atoms to the sets of atoms, that we will also represent as π. Suspensions are uses
of variables with a permutation of atoms waiting to be applied once the variable
is instantiated. Occurrences of an atom a are said to be bound if they are in the
scope of an abstraction of a, otherwise are said to be free.
Substitutions are finite sets of pairs [X1 7→ t1, . . . ,Xn 7→ tn] where Xi and ti have

the same sort, and the Xi’s are pairwise distinct variables. They can be extended to
sort-respecting functions between terms, and behave like in first-order logic, hence
allowing atom capture. For instance [X 7→ a]a.X = a.a. Remember that when
applying a substitution to a suspension, the permutation is immediately applied,
for instance

[X 7→ g(a)]f
(

(a b)·X,X
)

= f
(

(a b)·g(a), g(a)
)

= f
(

g((a b)·a), g(a)
)

= f
(

g(b), g(a)
)

The domain of a substitution σ = [X1 7→ t1, . . . ,Xn 7→ tn] is Dom(σ) = {X1, . . . ,Xn}.
For convenience we consider Dom([X 7→ X]) = {X} 6= {Y} = Dom([Y 7→ Y]),
although both substitutions have the same effect when applied to any term.1

Composition of substitutions is defined by σ1 ◦ σ2 = [X 7→ σ1(σ2(X)) | X ∈
Dom(σ1) ∪ Dom(σ2)]. The restriction of a substitution σ to a set of variables
V, written σ|V, is defined as σ|V = [X 7→ σ(X) | X ∈ V].
A freshness environment (typically ∇) is a list of freshness constraints a#X

stating that the instantiation of X cannot contain free occurrences of a.

1We have adopted this definition motivated by Remark 5.9.
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The notion of α-equivalence between terms, noted ≈, is defined by means of the
following theory:

∇ ⊢ a ≈ a
(≈-atom)

a#X ∈ ∇ for all a such that π ·a 6= π′ ·a

∇ ⊢ π · X ≈ π′ · X
(≈-susp.)

∇ ⊢ t1 ≈ t′1 · · · ∇ ⊢ tn ≈ t′n
∇ ⊢ f(t1, . . . , tn) ≈ f(t′1, . . . , t

′
n)

(≈-application)

∇ ⊢ t ≈ t′

∇ ⊢ a.t ≈ a.t′
(≈-abst-1)

a 6= a′ ∇ ⊢ t ≈ (a a′)·t′ ∇ ⊢ a#t′

∇ ⊢ a.t ≈ a′.t′
(≈-abst-2)

where the freshness predicate # is defined by:

a 6= a′

∇ ⊢ a#a′
(#-atom)

(π−1 ·a#X) ∈ ∇

∇ ⊢ a#π · X
(#-susp.)

∇ ⊢ a#t1 · · · ∇ ⊢ a#tn
∇ ⊢ a#f(t1, . . . , tn)

(#-application)

∇ ⊢ a#a.t
(#-abst-1)

a 6= a′ ∇ ⊢ a#t

∇ ⊢ a#a′.t
(#-abst-2)

Their intended meanings are:

—∇ ⊢ a# t holds if, for every substitution σ respecting the freshness environment
∇ (i.e. avoiding the atom captures forbidden by ∇), a is not free in σ(t);

—∇ ⊢ t ≈ u holds if, for every substitution σ respecting the freshness environment
∇, t and u are α-equivalent.

A nominal unification problem (typically P) is a set of equations of the form t
?

≈ u,
or of the form a# ?t, called equality equations and freshness equations, respectively.
A solution or unifier of a nominal problem P is a pair 〈∇, σ〉 satisfying ∇ ⊢

a#σ(t), for all freshness equations a# ?t ∈ P, and ∇ ⊢ σ(t) ≈ σ(u), for all equality

equations t
?

≈ u ∈ P. Later, in Section 5, we will also require solutions to satisfy
Dom(σ) = Vars(P). In Remark 5.9 we justify why this does not affect to solvability
of nominal problems.
Given two substitutions σ1 and σ2, and two freshness environments ∇1 and ∇2,

we say that ∇2 ⊢ σ1(∇1), if ∇2 ⊢ a#σ1(X) holds for each a#X ∈ ∇1; and we say
that ∇1 ⊢ σ1 ≈ σ2, if ∇1 ⊢ σ1(X) ≈ σ2(X) holds for all X ∈ Dom(σ1) ∪ Dom(σ2).
Given a nominal unification problem P, we say that a solution 〈∇1, σ1〉 is more
general than another solution 〈∇2, σ2〉, if there exists a substitution σ′ satisfying
∇2 ⊢ σ′(∇1) and ∇2 ⊢ σ′◦σ1|Dom(σ1)∪Dom(σ2) ≈ σ2. As usual, we say that a solution
σ is most general if, for any other solution σ′ more general than σ, we have also
that σ is also more general than σ′. Most general nominal unifiers are unique, in
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6 · J. Levy and M. Villaret

the usual sense: if σ1 and σ2 are both most general, then σ1 is more general than
σ2, and vice versa.

Example 2.1. The solutions of the equation a.X
?

≈ b.Y can not instantiate X
with terms containing free occurrences of the atom b, for instance if we apply the
substitution [X 7→ b] to both sides of the equation we get [X 7→ b](a.X) = a.b, for
the left hand side, and [X 7→ b](b.Y) = b.Y, for the right hand side, and obviously

a.b
?

≈ b.Y is unsolvable.
A most general solution of this equation is 〈{b#X},Y 7→ (a b)·X]〉. Another most

general solution is 〈{a#Y}, [X 7→ (a b) ·Y]〉. Notice that the first unifier is equal
to the second composed with σ′ = [Y 7→ (a b) · X], hence the second one is more
general than the first one. Similarly, the first one is more general that the second
one. Hence, both are equivalent.

2.2 Higher-Order Pattern Unification

In higher-order signatures we have types constructed from a set of basic types (typ-
ically δ, ν, . . .) using the grammar τ ::= δ | ν | τ → τ , where → is associative to the
right. Variables (typically X,Y, Z, x, y, z, a, b, . . .) and constants (typically f, c, . . .)
have an assigned type.
λ-terms are built using the grammar

t ::= x | c |λx.t | t1 t2

where x is a variable and c is a constant, and are typed as usual. For convenience,
terms of the form (. . . (a t1) . . . tn), where a is a constant or a variable, will be written
as a(t1, . . . , tn), and terms of the form λx1. · · · .λxn.t as λx1, . . . , xn.t. We use ~x as a
short-hand for x1, . . . , xn. If nothing is said, terms are assumed to be written in η-
long β-normal form. Therefore, all terms have the form λx1. . . . .λxn.h(t1, . . . , tm),
where m,n ≥ 0, h is either a constant or a variable, t1, . . . , tm have also this form,
and the term h(t1, . . . , tm) has a basic type.
Other standard notions of the simply typed λ-calculus, like bound and free oc-

currences of variables, α-conversion, β-reduction, η-long β-normal form, etc. are
defined as usual (see [Dowek 2001]). We will notate free occurrences of variables
with capital letters X,Y, . . ., for the sake of readability. The set of free variables of
a term t is denoted by Vars(t). When we write an equality between two λ-terms,
we mean that they are equivalent modulo α, β and η equivalence. When we write
an equality =α, we mean that they are α-equivalent.
Substitutions are finite sets of pairs σ = [X1 7→ t1, . . . , Xn 7→ tn] where Xi and

ti have the same type and the Xi’s are pairwise distinct variables. They can be
extended to type preserving function from terms to terms as usual. The domain
is Dom(σ) = {X1, . . . , Xn}. We say that a substitution σ1 is more general than
another substitution σ2, if there exists a substitution σ′ satisfying σ′ ◦ σ1(X) =
σ2(X), for all X ∈ Dom(σ1) ∪ Dom(σ2). We say that a variable X occurs in a
substitution σ, if X ∈ Vars(σ(Y )), for some Y ∈ Dom(σ).
A higher-order unification problem is a finite set of equations P = {t1

?=
u1, . . . , tn

?= un}, where ti and ui have the same type. A solution or unifier of
a unification problem P is a substitution σ satisfying σ(t) = σ(u), for all equations
t ?= u ∈ P . We say that a unifier σ is most general if, for any other unifier σ′ more

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



Nominal Unification from a Higher-Order Perspective · 7

general than σ, we have σ is also more general than σ′.
A higher-order pattern is a λ-term where, when written in βη-normal form, all

free variable occurrences are applied to lists of pairwise distinct bound variables.
For instance, λx.f(X(x), Y ), f(c, λx.x) and λx, y.X(λz.x(z), y) are patterns, while
λx.f(X(X(x)), Y ), f(X(c), c) and λx.λy.X(x, x) are not. Notice that, since λz.x(z)
is equivalent to x, the parameters of X(λz.x(z), y) are considered a list of pairwise
distinct bound variables.
Higher-order pattern unification is the problem of deciding if there exists a unifier

for a set of equations between higher-order patterns. Like in nominal unification,
most general pattern unifiers are unique. Moreover, most general unifiers instantiate
variables by higher-order patterns.
The following is a set of rules defining Nipkow’s algorithm [Nipkow 1993] that

computes, when it exists, the most general unifier of a pattern unification problem.

λx . s ?= λx . t → 〈{s ?= t}, [ ]〉

a(t1, . . . , tn)
?= a(u1, . . . , un) → 〈{t1

?= u1, . . . , tn
?= un}, [ ]〉

where a is a constant or bound variable

Y (~x) ?= a(u1, . . . , um) → 〈 {Y1(~x)
?= u1, . . . , Ym(~x) ?= um},

[Y 7→ λ~x.a(Y1(~x), . . . , Ym(~x))] 〉
where Y 6∈ FV(u1, . . . , um)
and a is a constant or a ∈ {~x}

X(~x) ?= X(~y) → 〈∅, [X 7→ λ~x.Z(~z)]〉
where {~z} = {xi |xi = yi}

X(~x) ?= Y (~y) → 〈∅, [X 7→ λ~x.Z(~z), Y 7→ λ~y . Z(~z)]〉
where X 6= Y and {~z} = {~x} ∩ {~y}

The rules transform any equation into a pair 〈set of equations, substitution〉.
The algorithm proceeds by replacing the equation on the left of the rule by the set
of equations on the right. The substitution is applied to the new set of equations,
and used to, step by step, construct the unifier. Therefore, any rule of the form
t ?= u → 〈E, ρ〉 produces a transformation of the form

〈P ∪ {t ?= u}, σ〉 ⇒ 〈ρ(P ) ∪ E, ρ ◦ σ〉

The algorithm starts with the pair 〈P, Id〉 and, if P is solvable, finishes with 〈∅, σ〉,
where σ with domain restricted to FV(P ) is the most general unifier [Nipkow 1993,
Theorem 3.1].
In the first rule the binder can be removed because, in Nipkow’s presentation,

free and bound variable names are assume to be from distinct sets, and can be
distinguished. The equations on the right of the second rule may not be normalized,
i.e. the term λ~x.Yi(x1, . . . , xn) may require a η-expansion when ui is not base typed.
There is an algorithm that finds higher-order pattern unifiers, if exist, in linear

time [Qian 1996].

3. FOUR EXAMPLES

In order to describe the reduction of nominal unification to higher-order pattern
unification, we will use the unification problems proposed in [Urban et al. 2003;
2004] as a quiz.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Example 3.1. The nominal equation

a.b.f(X1, b)
?

≈ b.a.f(a,X1)

has no nominal unifiers. Notice that, although unification is performed modulo
α-equivalence, as far as we allow atom capture, we can not α-convert terms before
instantiating them. Therefore, this problem is not equivalent to

a.b.f(X1, b)
?

≈ a.b.f(b,X1)

which is solvable, and must be α-converted as

a.b.f(X1, b)
?

≈ a.b.f(b, (a b)·X1)

Recall that (a b)·X1 means that, after instantiating X1 with a term that possibly
contain a or b, we have to exchange these variables.
According to the ideas exposed in the introduction, we have to replace every

occurrence of X1 by X1(a, b), since 〈a, b〉 is the list of atoms (bound variables a, b)
that can be captured. We get:

λa.λb.f(X1(a, b), b)
?= λb.λa.f(a,X1(a, b))

Since this is a higher-order unification problem, we can α-convert one of the sides
of the equation and get:

λa.λb.f(X1(a, b), b)
?= λa.λb.f(b,X1(b, a))

which is unsolvable, like the original nominal equation.

Example 3.2. The nominal equation

a.b.f(X2, b)
?

≈ b.a.f(a,X3)

is solvable. Its translation is

λa.λb.f(X2(a, b), b)
?= λb.λa.f(a,X3(a, b))

The most general unifier of this higher-order pattern unification problem is

X2 7→ λx.λy.y
X3 7→ λx.λy.x

Now, taking into account that the first argument corresponds to the atom a, and
the second one to b, we can reconstruct the most general nominal unifier as:

X2 7→ b
X3 7→ a

Example 3.3. In some cases, there are interrelationships between the instances
of variables that make reconstruction of unifiers more difficult. This is shown with
the following example:

a.b.f(b,X4)
?

≈ b.a.f(a,X5)

that is solvable. Its translation results on:

λa.λb.f(b,X4(a, b))
?= λb.λa.f(a,X5(a, b))

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



Nominal Unification from a Higher-Order Perspective · 9

and its most general unifier is:2

X4 7→ λx.λy.X5(y, x)

This higher-order unifier can be used to reconstruct the nominal unifier

X4 7→ (a b)·X5

The swapping (a b) comes from the fact that the arguments of X5 and the lambda
abstractions in front have a different order.

Example 3.4. The solution of a nominal unification problem is not just a substi-
tution, but a pair 〈∇, σ〉 where σ is a substitution and ∇ is a freshness environment
imposing some restrictions on the atoms that can occur free in the fresh variables
introduced by σ. The nominal equation

a.b.f(b,X6)
?

≈ a.a.f(a,X7)

has as solution

σ = [X6 7→ (b a)·X7]
∇ = {b#X7}

where the freshness environment is not empty and requires instances of X7 to not
contain (free) occurrences of b. Let us see how this is reflected when we translate the
problem into a higher-order unification problem. The translation of the equation
using the translation algorithm results on:

λa.λb.f(b,X6(a, b))
?= λa.λa.f(a,X7(a, b)) (1)

After a convenient α-conversion we get

λa.λc.f(c,X6(a, c))
?= λa.λc.f(c,X7(c, b))

The most general unifier is again unique:

X6 7→ λx.λy.X8(y, b)
X7 7→ λx.λy.X8(x, y)

Nevertheless, in this case we cannot reconstruct the nominal unifier. Moreover,
by instantiating the free variable b, we get other (non-most general) higher-order
unifier without nominal counterpart. The translation does not work in this case be-
cause b occurs free in the right hand side of (1). We translate both atoms and nom-
inal variables as higher-order variables. Occurrences of nominal variables become
free occurrences of variables, and occurrences of atoms, if are bounded, become
bound occurrences of variables. Therefore, in most cases, after the translation the
distinction atom/variable become a distinction free/bound variable. However, if
atoms are not bounded, as in this case, they are translated as free variables, hence
are instantiable, whereas atoms are not instantiable.
To avoid this problem, we have to ensure that any occurrence of an atom is

translated as a bound variable occurrence. This is easily achievable if we add

2The unifier X5 7→ λx.λy.X4(y, x) is equivalent modulo variable renaming. In this case we obtain
the also equivalent nominal unifier X5 7→ (a b)·X4.
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10 · J. Levy and M. Villaret

binders in front of both sides of the equation. Therefore, the correct translation of
this problem is:

λa.λb.λa.λb.f(b,X6(a, b))
?= λa.λb.λa.λa.f(a,X7(a, b))

where two new binder λa.λb have been introduced in front of both sides of the
equation. The most general unifier is now:

X6 7→ λx.λy.X8(y)
X7 7→ λx.λy.X8(x)

This can be used to reconstruct the nominal substitution:

X6 7→ (a b)·X8

X7 7→ X8

As far as X8(x) is translated back as X8, and X8(x) does not uses the second
argument (the one corresponding to b), we have to add a supplementary condition
ensuring that X8 does not contain free occurrences of b. This results on the freshness
environment {b#X8}. Then, X8(y) is translated back as (a b)·X8.

4. REMOVING FRESHNESS EQUATIONS

In this section we show that freshness equations do not contribute to make nominal
unification more expressive. We prove that nominal unification can be linearly-
reduced to nominal unification without freshness equations. We call this restriction
of nominal unification equational nominal unification. In next sections we will
describe a quadratic reduction of equational nominal unification to higher-order
pattern unification. The absence of freshness equations makes the reduction to
higher-order pattern unification simpler, compared with the reduction described in
the preliminary version of this paper [Levy and Villaret 2008].

Definition 4.1. We define the translation of nominal unification problems into
equational nominal unification problems inductively as follows:

Eq({a# ?t} ∪ P) = {a.b.t
?

≈ b.b.t} ∪ Eq(P) for some b 6= a

Eq({t
?

≈ u} ∪ P) = {t
?

≈ u} ∪ Eq(P)

Lemma 4.2. Given a nominal unification problem P, its translation into equa-
tional nominal unification Eq(P) can be calculated in linear time. Hence, Eq(P)
has linear-size on the size of P.

Lemma 4.3. The pair 〈∇, σ〉 solves P, if, and only if, 〈∇, σ〉 solves Eq(P).

Proof. We first prove that 〈a#t, Id〉 is a solution of {a.b.t
?

≈ b.b.t} when b 6= a

....
t ≈ t

a#t.... (lemma 2.7)

b#(a b)·t

b.t ≈ a.(a b)·t
(≈-abst-2)

a#t

a#b.t
(#-abst-2)

a.b.t ≈ b.b.t
(≈-abst-2)
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Nominal Unification from a Higher-Order Perspective · 11

In this proof we prove t ≈ t from an empty set of assumptions. We can prove
that this is always possible, for any term t, by structural induction on t. We also
prove b#(a b)·t from a#t, using Lemma 2.7 of [Urban et al. 2004].
Lemma 2.14 of [Urban et al. 2004] states that ∇′ ⊢ σ(∇) and ∇ ⊢ t ≈ t′ implies

∇′ ⊢ σ(t) ≈ σ(t′). In particular, ∇ ⊢ σ(a#t) and a#t ⊢ a.b.t ≈ b.b.t implies ∇ ⊢

σ(a.b.t) ≈ σ(b.b.t). Therefore, if 〈∇, σ〉 solves a#?t, then 〈∇, σ〉 solves a.b.t
?

≈ b.b.t.
Second, analyzing the previous proof, we see that the inference rules applied in

each situation were the only applicable rules. Therefore, any solution 〈∇, σ〉 solving

a.b.t
?

≈ b.b.t, also solves a#?t, because any proof of σ(a.b.t) ≈ σ(b.b.t) contains a
proof of a#σ(t) as a sub-proof.

From, these two facts we conclude that a# ?t and a.b.t
?

≈ b.b.t have the same

set of solutions, for any b 6= a. Therefore, {a# ?t} ∪ P and {a.b.t
?

≈ b.b.t} ∪ P, also
have the same set of solutions, for any nominal unification problem P. From this
we conclude that P and Eq(P) have the same set of solutions.

Corollary 4.4. Nominal unification can be linearly-reduced to equational nom-
inal unification.

5. THE TRANSLATION ALGORITHM

In this section we formalize the translation algorithm. We transform equational
nominal unification problems into higher-order unification problems. Both kinds of
problems are expressed using distinct kinds of signatures. In nominal unification
we have sorts of atoms and sorts of data. In higher-order this distinction is no
longer necessary, and we will have a base type for every sort of atoms ν or sort of
data δ. We give a sort to types translation function that allows us to translate any
sort into a type.

Definition 5.1. The translation function is defined on sorts inductively as fol-
lows.

JδK = δ
JνK = ν
Jτ1 × · · · × τn → τK = Jτ1K → · · · → JτnK → JτK
J〈ν〉τK = ν → JτK

where δ and ν are base types.

Remark 5.2. The translation function for terms depends on all the atoms oc-
curring in the nominal unification problem. We assume that there exists a fixed,
finite and ordered list of distinct atoms 〈a1, . . . , an〉 used in the problem. This
seems to contradict the assumption of a countably infinite set of atoms for every
sort. However, this does not imply a loss of generality as far as every nominal
unification problem only contains a finite set of atoms, and its solutions can be
expressed without adding new atoms (this is a consequence of Lemma 6.11). Notice
also that the nominal unification algorithm in [Urban et al. 2004] generates unifiers
that do not introduce new atoms, because, in all transformation rules, the set of
atoms in the right-hand side are a subset of the set of atoms in the left-hand side.
From now on, we will consider this list given and fixed.
In [Dowek et al. 2009; 2010] they solve this problem using a permission set for

every variable. They roughly correspond to the set of atoms capturable by this
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12 · J. Levy and M. Villaret

variable. However, in their case, this set is infinite and co-infinite. In our case, we
prove that solutions can be expressed using the same finite set of atoms occurring
in the problem, and the set of capturable atoms of a variable is finite and co-finite.

For every function symbol f, we will use a constant with the same name f .
Every atom a is translated as a (bound) variable, with the same name a. For every
variable (unknown) X, we will use a (free) variable with the same nameX . Trivially,
atom abstractions a.t are translated as lambda abstractions λa.t, and applications
f(t1, . . . , tn) as applications f(t1, . . . , tn). The translation of suspensions π·X is more
complicated, as far as it gets rid of atom capture. Recall that in all cases we use
distinct character fonts for symbols of nominal logic and symbols of the higher-order
framework. The translation is parametric on a freshness environment. Notice that,
although we have removed freshness equations, nominal unifiers are composed by
a freshness environment and a substitution.

Definition 5.3. Let 〈a1, . . . , an〉 be a fixed ordered list of atoms. The transla-
tion function from nominal terms with a freshness environments ∇ into λ-terms is
defined inductively as follows.

JaK∇ = a
Jf(t1, . . . , tn)K∇ = f(Jt1K∇ , . . . , JtnK∇)
Ja.tK∇ = λa. JtK∇
Jπ ·XK∇ = X(Jπ ·b1K∇ , . . . , Jπ ·bmK∇) where 〈b1, . . . , bm〉 = 〈a ∈ 〈a1, . . . , an〉 | a#X 6∈ ∇〉

where, for any atom a : ν, a : JνK is the corresponding bound variable, for any
function symbol f : τ , f : JτK is the corresponding constant, and for any variable
X : τ , the list 〈b1, . . . , bm〉 is the sublist3 of 〈a1, . . . , an〉 composed by the atoms
satisfying a#X 6∈ ∇, and X : Jν1K → . . . → JνmK → JτK is the corresponding free
variable, where bj : νj.

4

Lemma 5.4. For every nominal term t of sort τ , and freshness environment ∇,
JtK∇ is a λ-term with type JτK.
Proof. The proof is simple by structural induction on t. The only point that

needs a more detailed explanation is the case of suspensions. Since ai : νi, X : τ ,
and X : Jνi1K → · · · → JνimK → JτK, we have JXK∇ = X (Jai1K∇ , . . . , JaimK∇) :
JτK. When X is affected by a swapping (aij aik) we also have

q
(aij aik)·X

y
∇

=

X
(

. . . ,
q
aij−1

y
∇
, JaikK∇ ,

q
aij+1

y
∇
, . . . ,

q
aik−1

y
∇
,
q
aij

y
∇
,
q
aik+1

y
∇
, . . .

)

: JτK because
the suspension is not a valid nominal term unless aij and aik belong to the same
sort. The same applies to arbitrary permutations.

Example 5.5. Given the nominal term t = a.b.c.(c a)(a b)·X, after applying the
substitution σ = [X 7→ f(a, b, c,Y)] we get σ(t) = a.b.c.f(b, c, a,Y). Let 〈a, b, c〉 be
the (ordered) list of atoms of our problem. The translation of the term t w.r.t. ∇1 =
∅ results into JtK∇1

= λa.λb.λc.X(b, c, a) and, the translation of the instantiation
σ(t) w.r.t. ∇2 = {a#Y} results into Jσ(t)K∇2

= λa.λb.λc.f(b, c, a, Y (c, a)). There is
a λ-substitution [X 7→ λa.λb.λc.f(a, b, c, Y (b, c))] (described in Definition 5.8) that

3Notice that we say sublist, not subset, to emphasize that the relative order between a’s is pre-
served.
4Notice that bj and π ·bj are of the same sort.
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when applied to JtK∇1
results into Jσ(t)K∇2

. Graphically this can be represented as
the commutation of the following diagram (proved in Lemma 5.11).

a.b.c.(c a)(a b)·X
[X 7→ f(a, b, c,Y)]

✲ a.b.c.f(b, c, a, (c a)(a b)·Y)

λa.λb.λc.X(b, c, a)

J K∅
❄ [X 7→ λa.λb.λc.f(a, b, c, Y (b, c))]

✲ λa.λb.λc.f(b, c, a, Y (c, a))

J K{a#Y }

❄

Definition 5.6. Let 〈a1, . . . , an〉 be an ordered list of atoms. The translation
function is defined on equational nominal problems inductively as follows

r
{t

?

≈ u} ∪ P
z
= {λa1. . . . .λan.JtK∅

?= λa1. . . . .λan.JuK∅} ∪ JPK

Lemma 5.7. Given an equational nominal unification problem P, its translation
JPK is a higher-order pattern unification problem.
Moreover, the size and the time needed to compute JPK is bounded by the square of
the size of P.

Proof. By Lemma 5.4, λa1. . . . .λan.JtK∅
?= λa1. . . . .λan.JuK∅ is an equa-

tion between λ-terms of the same type. Now notice that Jπ ·XK∇ =
X (Jπ ·b1K∇ , . . . , Jπ ·bmK∇) translate the variable X into an application of the free
variable X to a list of pairwise distinct bound variables, because the bi are all dif-
ferent, π is a permutation, and we ensure that all atoms are translated into bound
variables by adding λ-bindings in front of both terms. Therefore, both sides of the
equation are higher-order patterns.
Concerning the size of the translation, we obtain a quadratic bound due to the

translation of these suspensions.

Finally, we have to translate solutions of nominal unification problems into λ-
substitutions.

Definition 5.8. Let 〈a1, . . . , an〉 be a fixed ordered list of atoms. Given a nom-
inal substitution σ, and a freshness environment ∇, we define the following trans-
lation function

JσK∇ =
⋃

X∈Dom(σ)

[

X 7→ λa1. · · ·λan. Jσ(X)K∇
]

The following remark shows why in some places we require that solutions 〈∇, σ〉
of a nominal problem P satisfy Dom(σ) = Vars(P).

Remark 5.9. Let 〈a, b〉 be the fixed list of atoms.

Consider the nominal unification problem P1 = {a.X
?

≈ b.Y}, and its translations
as a higher-order pattern unification problem

JP1K =
r
{a.X

?

≈ b.Y}
z
= {λa.λb.λa.X(a, b) ?= λa.λb.λb.Y (a, b)}
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14 · J. Levy and M. Villaret

The λ-substitution

σ1 = J[X 7→ (a b)·Y]K{a#Y} = [X 7→ λa.λb.Y (a)]

does not solve JP1K. Whereas the λ-substitution

σ2 = J[X 7→ (a b)·Y,Y 7→ Y]K{a#Y} = [X 7→ λa.λb.Y (a), Y 7→ λa.λb.Y (b)]

solves JP1K. Notice that in the first case the domain of the nominal unifier (as
defined in Section 2) is {X}, whereas in the other case it is {X,Y} = Vars(P1).
We will see (Theorem 5.13) that, if Vars(P) ⊆ Dom(σ) and 〈∇, σ〉 solves P, then

JσK∇ solves JPK. With this example we see that the first condition in the implication
is necessary.

Now, consider the nominal unification problem P2 = {a.b.(a b)X
?

≈ b.b.(a b)X},
and its translation as

JP2K = {λa.λb.λa.λb.X(b, a) = λa.λb.λb.λb.X(b, a)}

In this case, the pattern substitution σ1 is a most general pattern unifier of JP2K,
and σ2 is a pattern unifier, but not a most general one.
Therefore, we have to require Vars(P) ⊇ Dom(σ), if we want to ensure that the

translation not only preserves unifiability, but also most generality.
Notice that w.l.o.g. we can require most general nominal solutions to satisfy

Vars(P) = Dom(σ), because most general solutions do not instantiate variables not
belonging to Vars(P), and we can always add pairs X 7→ X for all variables occurring
in P and not in Dom(σ).
Notice also that in σ2 there are two free variables with the same name Y , but

distinct types. Be aware that in Y 7→ λa.λb.Y (b) the replaced Y has two arguments,
whereas the introduced Y has only one argument (they have distinct types). In λ-
calculus this is not a problem. The reason of this duplicity is that the translation
function is parametric on a freshness environment ∇. This is relevant in the case
of a nominal variable. For instance, JYK∅ = Y (a, b) where we use the replaced Y
with two parameters, and JYK{a#Y } = Y (b) where we use the introduced Y with one
parameter. If we would like to avoid this duplicity we have to forbid the use of a
variable of the problem in the right-hand side of a nominal solution. Then, in our
example P1, the most general nominal solution could be written as 〈{a#Y′}, [X 7→
(a b)Y′,Y 7→ Y′]〉.

To prove that the translation of the solution of a problem is a solution of the
translation of the problem, we start by proving the following two technical lemmas.

Lemma 5.10. For any freshness environment ∇, nominal terms t, u, and atom
a, we have

(1 ) ∇ ⊢ a# t if, and only if, a 6∈ FV(JtK∇), and

(2 ) ∇ ⊢ t ≈ u if, and only if, JtK∇ =α JuK∇.

Proof. The first statement can be proved by routine induction on t and its
translation. Notice that atoms are translated nominally into variables and that
the binding structure is also identically translated, hence, the freshness of an atom
a corresponds to the free occurrence of its variable counterpart a. We here only
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comment the case t = π ·X, in this case, Jπ ·XK∇ = X (Jπ ·b1K∇ , . . . , Jπ ·bmK∇),
where bi#X /∈ ∇, for any i ∈ {1..m}. Therefore, we can establish the following
sequence of equivalences ∇ ⊢ a#π ·X iff π−1 ·a#X ∈ ∇ iff π−1 ·a 6∈ {b1, . . . , bm} iff
a 6∈ {π ·b1, . . . , π ·bm} iff a 6∈ FV(X(Jπ ·b1K∇ , . . . , Jπ ·bmK∇)) iff a 6∈ FV(Jπ ·XK).
The proof of the second statement can be done by induction on the equivalence

t ≈ u. We only comment the equivalence between suspensions: π·X ≈ π′·X. Notice
that, π ·X ≈ π′ ·X if, and only if, for all atoms a such that π ·a 6= π′ ·a, we have
a#X ∈ ∇. This condition is equivalent to: the bound variables Jπ ·aK∇ and Jπ′ ·aK∇
are passed as a parameter to X in Jπ ·XK∇ and Jπ′ ·XK∇ only when π ·a = π′ ·a.
Finally, this condition is equivalent to Jπ ·XK∇ = Jπ′ ·XK∇.

The first statement of the previous lemma will not be necessary for our purposes
because we have removed freshness equations.

Lemma 5.11. For any freshness environment ∇, nominal substitution σ, and
nominal term t satisfying Vars(t) ⊆ Dom(σ), we have JσK∇(JtK∅) = Jσ(t)K∇.

Proof. Again this lemma can be proved by structural induction on t. We only
sketch the suspension case. Let t = π ·X. We have the equalities:

JσK∇(Jπ ·XK∅) = [. . . , X 7→ λa1 . . . λan . Jσ(X)K∇ , . . .] (X(Jπ ·a1K∇ , . . . , Jπ ·anK∇))
= (λa1 . . . λan. Jσ(X)K∇) (Jπ ·a1K∇ , . . . , Jπ ·anK∇)
= [a1 7→ Jπ ·a1K∇ , . . . , an 7→ Jπ ·anK∇] (Jσ(X)K∇)
= Jπ ·σ(X)K∇
= Jσ(π ·X)K∇

Notice that in the first equality we use X ∈ Vars(t) ⊆ Dom(σ), hence X ∈
Dom(JσK∇).

Example 5.12. Let be t = f((a b) ·X, (a b) ·Y), ∇ = {b#Y} and σ = [X 7→ b.a,
Y 7→ Y]. We will have

JσK∇ = J[X 7→ b.a,Y 7→ Y]K{b#Y} = [X 7→ λa.λb.Jb.aK{b#Y}, Y 7→ λa.λb.JYK{b#Y}]

= [X 7→ λa.λb.λb.a, Y 7→ λa.λb.Y (a)]

JtK∅ =
q
f
(

(a b)·X, (a b)·Y
)y

∅
= f

(

X(b, a), Y (b, a)
)

Jσ(t)K∇=
q
[X 7→ b.a,Y 7→ Y] f

(

(a b)·X, (a b)·Y
)y

{b#Y}
= Jf(a.b, (a b)·Y)K{b#Y}

= f(λa.b, Y (b))

Now, we have

JσK∇
(

JtK∅
)

= f
(

(λa.λb.λb.a)(b, a), (λa.λb.Y (a))(b, a)
)

= f(λc.b, Y (b)) = f(λa.b, Y (b))

= Jσ(t)K∇
Notice that the substitution resulting form the β-reduction of the underlined

redex needs to avoid a capture of b. This is done replacing the bound variable b
by c. In the following section we will see that, in pattern unification, we can do
this without using new bound variable names. In this case, we could have used a
instead of c.

From these two lemmas we can prove the following results.
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Theorem 5.13. For any freshness environment ∇, equational nominal unifica-
tion problem P, and nominal substitution σ with Vars(P) ⊆ Dom(σ) , we have that
〈∇, σ〉 solves the equational nominal unification problem P, if, and only if, JσK∇
solves the pattern unification problem JPK.
Proof. By definition of nominal solution, the pair 〈∇, σ〉 solves P iff

∇ ⊢ σ(t) ≈ σ(u) for all t
?

≈ u ∈ P

By Lemma 5.10 this is equivalent to:

Jσ(t)K∇ =α Jσ(u)K∇ for all t
?

≈ u ∈ P

and, by Lemma 5.11 this is equivalent to:

JσK∇(JtK∅) = JσK∇(JuK∅) for all t
?

≈ u ∈ P

Since the substitution JσK∇ does not instantiate the variables a1, . . . , an, this is
equivalent to (see Remark 5.14):

JσK∇
(

λa1. . . . .λan.JtK∅
)

= JσK∇
(

λa1. . . . .λan.JuK∅
)

for all t
?

≈ u ∈ P

where 〈a1, . . . , an〉 is the list of atoms occurring in P.

Finally, since
r
t

?

≈ u
z
= λa1. . . . .λan.JtK∅

?= λa1. . . . .λan.JuK∅, this is equivalent

to JσK∇ solves JPK.

The proof of Theorem 5.13 also allows us to prove that 〈∇, σ〉 solves t
?

≈ u, if,
and only if, JσK∇ solves JtK∅

?= JuK∅. Therefore, it seems unnecessary to add the
λ-bindings λa1. · · · .λan in front of both sides of the higher-order equations, as was
suggested in Example 3.4. The following remark illustrates what would happen if
we had defined translation of equations in this way.

Remark 5.14. Assume that we had defined
r
t

?

≈ u
z
= JtK∅

?= JuK∅, instead of

the definition we have for
r
t

?

≈ u
z
with the external lambda’s.

The translation of the unsolvable nominal equation a
?

≈ b would result into a ?= b
which is solvable by [a 7→ b] (notice that, in this case, atoms are translated into free
variables). The example does not contradict Theorem 5.13 because the substitution
[a 7→ b] is not the translation of any nominal substitution, i.e. there does not exists a
freshness environment ∇ and a nominal substitution σ such that JσK∇ = [a 7→ b]. If
we introduce the external λ-bindings we get the unsolvable higher-order unification
problem λa.λb.a ?= λa.λb.b.
On the other hand, the translation of the solvable nominal equation of Exam-

ple 3.4 would be

JPK =
r
{a.b.f(b,X6)

?

≈ a.a.f(a,X7)}
z
= {λa.λb.f(b,X6(a, b))

?= λa.λa.f(a,X7(a, b))}

that is not a higher-order pattern unification problem (notice that Lemma 5.7 does
not hold if we do not introduce the external λ-bindings).
The translation of its nominal most general solution is

JσK∇ = J[X6 7→ (b a)·X7]K{b#X7}
= [X6 7→ λa.λb.X7(b), X7 7→ λa.λb.X7(a)]
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In this case, JσK∇ is a higher-order unifier of JPK, as Theorem 5.13 predicts. How-
ever, it is not a most general unifier, and we are interested in translating most
general solutions into most general solutions.

Theorem 5.15. If the equational nominal unification problem P is solvable, then
the higher-order pattern unification problem JPK is also solvable.

Proof. The theorem is a direct consequence of Theorem 5.13.

The opposite implication of Theorem 5.15 can not be directly proved from Theo-
rem 5.13, because JPK should have solutions that are not of the form JσK∇, for any
solution 〈∇, σ〉 of P.

6. SOME PROPERTIES OF PATTERN UNIFICATION

In this section we prove some fundamental properties of Higher-Order Pattern Uni-
fication. In particular, we prove that we can express most general unifiers of pattern
unification problems only using bound-variable names and types already used in
the problem. This property is used in next sections in the translation of pattern
unifiers into nominal unifiers.
In the following example we note that in the solution of pattern unification prob-

lems it is important to save names of bound variables. In the following we will
distinguish between variables and variable names. For instance λx.λx.x has three
occurrences of variables, two distinct variables, with one unique variable name.
Notice that α-conversion preserves the number of variables, but may change the
number of names.

Example 6.1. Consider the nominal problem a.X
?

≈ a.f(b.Y). Its transla-
tion is λa.λb.λa.X(a, b) ?= λa.λb.λa.f(λb.Y (a, b)). An α-conversion results in
λa.λb.λc.X(c, b) ?= λa.λb.λc.f(λd.Y (c, d)) and it shows that the parameters of X
and Y are in fact different. A most general solution is [X 7→ λc.λb.f(λd.Y (c, d))].
Since Y is translated as Y (a, b), we would have to translate back Y (c, d) as (a c)(d b)·
Y. And, since substitutions like [X 7→ t] are translated as [X 7→ λa.λb. JtK∇], we
would have to translate back [X 7→ λc.λb. JtK∇] as [X 7→ (a c) · t]. Therefore, our
pattern unifier had to be translated back as [X 7→ (a c)·f(d.(a c)(d b)·Y)]. However,
the list of atoms is fixed as the list of atoms occurring in the problem, hence, we
know how to translate a and b as a and b and vice versa, but we do not know how
to translate back c and d. Here it is done introducing new atoms. However, the
use of an infinite list of atom names would imply that the list of arguments of a
variable (the list of capturable atoms) would be infinite.

If we look at Nipkow’s transformation rules described in Subsection 2.2, it seems
that no new bound-variable names are introduced. However, this is not true. There
are three places where their introduction is hidden. In the following we illustrate
these cases.

(1) It is assumed that equations have the same most external λ-bindings, i.e.
that they are of the form λ~x.s ?= λ~x.t. If this is not the case, we have
to α-convert one of the sides. However, this is not always possible without
introducing new bound-variable names. For instance, if we have the equa-
tion λx.λy.λy.X(x, y) ?= λy.λy.λx.Y (x, y), after α-converting the two most
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external λ-binder, we get λx.λy.λy.X(x, y) ?= λx.λy.λx.Y (x, y), that needs
a new bound-variable name to obtain the same λ-binders in both sides, by
means of α-conversion. Using a new name z we would get λx.λy.λz.X(x, z) ?=
λx.λy.λz.Y (z, y).

(2) In the flex-rigid rule the terms ui may not be of first-order type. In this
case, we need to η-expand some subterms. For instance, the rule transforms
λx.X(x) ?= λx.f(λx.g(x)) into the equation λx.X1(x)

?= λx.λx.g(x) and the
substitution

[

X 7→ λx.f(X1(x))
]

. The left-hand side of the equation needs to
be η-expanded, and we can not use the name x. Using a new name z, and
α-converting we would get λx.λz.X1(x, z)

?= λx.λz.g(z).

(3) When we compute a substitution for a variable, it must be applied
to all the occurrences of the variable, and this may involve a β-
reduction. Some β-reductions need to introduce new names to avoid
variable-captures. For instance, if we have the equations

{

λx.λy.X(x, y) ?=

λx.λy.f(λx.Y (x, y)), λx.λy.Z(x, y) ?= λx.λy.X(y, x)
}

, after solving the first

one we get
[

X 7→ λx.λy.f(λx.Y (x, y))
]

that must be substituted in the second

equation. We get, λx.λy.Z(x, y) ?= λx.λy.
(

λx.λy.f(λx.Y (x, y))
)

(y, x). The β-
reduction using the standard substitution algorithm introduces a new name z to
avoid the capture of the variable x, giving λx.λy.Z(x, y) ?= λx.λy.f(λz.Y (z, x))

In the following we show how we can overcome these problems. One of the ideas
is using a kind of swapping for λ-calculus, instead of the usual substitution, like it
is done in nominal terms.

Definition 6.2. Given two variables x, y, and a λ-term t, we define the swap-
ping of x and y in t, noted by (x y)·t inductively as follows

(x y)·x = y
(x y)·y = x
(x y)·z = z if z 6= x, y
(x y)·c = c
(x y)·

(

λz.t
)

= λ
(

(x y)·z
)

.
(

(x y)·t
)

(x y)·
(

a(t1, . . . , tn)
)

=
(

(x y)·a
)(

(x y)·t1, . . . , (x y)·tn
)

where c is a constant and a is a constant or a variable.

Notice that this swapping is distinct from the swapping on nominal terms. In
particular (a b)X = X , and we do not keep suspensions. In some cases its ap-
plication results into an α-equivalent term, but in general the result is a different
term.

Remark 6.3. In λ-calculus, following the Barendregt variable convention, oper-
ations are defined on classes of α-equivalent terms, rather than on particular terms.
This, for instance, allows us to freely α-convert terms in substitutions in order to
avoid variable capture. Therefore, (although it is often omitted) we have to prove
that the operation is independent of the representative of the class that we take. The
previous swapping operation is defined for particular terms. However, the following
lemma ensures that it can be extended to α-equivalent classes of terms. Barendregt
variable convention suggests to use distinct variable names for distinct variables.
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Here, since we try to avoid the introduction of new variable names, we do not use
the convention, and work with particular terms.

Lemma 6.4. For any term t and variables x and y, we have

(x y)·t =α [x 7→ y, y 7→ x]t

where [x 7→ y, y 7→ x] changes x by y and y by x in t, simultaneously.
In particular, if x, y 6∈ FV(t), then (x y)·t =α t.

Proof. By structural induction on t. For one of the cases of λ-abstraction, for
instance, we have

(x y)λx.t = λy.(x y)t By induct. hypothesis
= λy.[x 7→ y, y 7→ x]t Let be z 6∈ FV(t) ∪ {x, y}
= λy.[z 7→ y][y 7→ x][x 7→ z]t Since y 6∈ FV([y 7→ x][x 7→ z]t)
=α λz.[y 7→ x][x 7→ z]t Since z 6= x, y
= [y 7→ x]λz.[x 7→ z]t Since z 6∈ FV(t)
=α [y 7→ x]λx.t Since x 6∈ FV(λx.t)
= [x 7→ y, y 7→ x]λx.t

Lemma 6.5. If ~y is a list of pairwise distinct variable names5 , |~y| = |~x| = n
and {~y} ∩ FV(λ~x.t) = ∅, then

(λ~x.t)(~y) = Πn(~x, ~y)·t

where Πn(~x, ~y) is a permutation on the names ~x, ~y defined inductively as

Π1(〈x〉, 〈y〉) = (x y)
Πn

(

〈x1, . . . , xn〉, 〈y1, . . . , yn〉
)

= Πn−1

(〈

(x1 y1)·x2, . . . , (x1 y1)·xn

〉

,
〈

y2, . . . , yn
〉)

·(x1 y1)

Proof. By induction on the length n of both vectors. Obviously, the variable
x1 is not free in λx1.λx2, . . . , xn.t. By assumption, the variable y1 is neither free
in this term.
From FV(λx2, . . . , xn.t) ⊆ FV(λ~x.t) ∪ {x1}, and x1, y1 6∈ FV(λ~x.t), we have

FV((x1 y1)·(λx2, . . . , xn.t)) ⊆ FV(λ~x.t) ∪ {y1}. Since y1 6∈ {y2, . . . , yn} and {~y} ∩
FV(λ~x.t) = ∅, we have {y2, . . . , yn} ∩ FV((x1 y1) ·(λx2, . . . , xn.t)) = ∅. Therefore,
we can apply the induction hypothesis to the term (x1 y1)·(λx2, . . . , xn.t) and the
vector (y2, . . . , yn), obtaining

(λ~x.t)(~y) =α (λy1.(x1 y1)·(λx2, . . . , xn.t))(y1, y2, . . . , yn) By Lemma 6.4

=β ((x1 y1)·(λx2, . . . , xn.t))(y2, . . . , yn) By β-reduction

= (λ(x1 y1)·x2, . . . , (x1 y1)·xn.(x1 y1)·t)(y2, . . . , yn) By def. of swapping

= Πn−1

(

〈(x1 y1)·x2, . . . , (x1 y1)·xn〉, 〈y2, . . . , yn〉
)

·(x1 y1)·t By induct. hypothesis

= Πn(~x, ~y)·t

5Notice that we do not require ~x to be pairwise distinct. If they are also pairwise distinct, then
Πn(~x, ~y) = (xn yn) . . . (x1 y1).
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Now we will describe a variant of the higher-order pattern unification algorithm
of Section 2.2. In this variant, external λ-binders are α-converted explicitly and
the flex-rigid rule has been replaced by a new rule where η-expansion is made
explicit, i.e. the terms ui are base-typed, thus the right-hand side does not need
to be η-expanded, like in the original rule. Moreover, β-redexes are removed using
swappings, according to Lemma 6.5, since we are dealing with patterns.

Definition 6.6. We assume unoriented equations and define the following set
of transformation rules over higher-order pattern equations:

α-transformation:

λ~w.λx.t ?= λ~w.λy.u →
〈

λ~w.λx.t ?= λ~w.(x y)·(λy.u), [ ]
〉

if x 6∈ FV(u)

λ~w.λx.t ?= λ~w.λx.u →
〈

λ~w.t ?= λ~w.u, [ ]
〉

if x 6∈ FV(t) and x 6∈ FV(u)

λ~w.λx.t ?= λ~w.λx.u →
〈

λ~w.λx.t ?= λ~w.λx.u, [X 7→ λ~y.Z(~z)]
〉

if x 6∈ FV(t), X(~y) is a subterm of u,
x ∈ {~y} and {~z} = {~y} \ {x}

Rigid-rigid:

λ~w.a(t1, . . . , tn)
?= λ~w.a(u1, . . . , un) →

〈

{λ~w.t1
?= λ~w.u1, . . . , λ~w.tn

?= λ~w.un}, [ ]
〉

Flex-rigid:

λ~w.X(~x) ?= λ~w.a(λ~y1.u1, . . . , λ ~ym.um) →
〈

{

λ~w.λ~y1.X1(~z1)
?= λ~w.λ~y1.u1 ,

. . .

λ~w.λ ~ym.Xm( ~zm) ?= λ~w.λ ~ym.um

}

,

[X 7→ λ~x.a(λ~y1.X1(~z1), . . . , λ ~ym.Xm( ~zm))]
〉

if X 6∈ FV(ui), a is a constant or a ∈ {~x},
and {~zi} = {~x} ∪ {~yi}, for i = 1, . . . ,m.

Flex-flex:

λ~w.X(~x) ?= λ~w.X(~y) →
〈

∅, [X 7→ λ~x.Z(~z)]
〉

where {~z} = {xi |xi = yi}

λ~w.X(~x) ?= λ~w.Y (~y) →
〈

∅, [X 7→ λ~x.Z(~z), Y 7→ λ~y . Z(~z)]
〉

where X 6= Y and {~z} = {~x} ∩ {~y}

These transformations are applied as follows. The equation on the left-hand side
is replaced by the equations in the first component of the right-hand side, and then
the substitution in the second component of the right-hand side is applied to all
the equations. If this substitution introduces β-redexes, they are removed using
swappings, according to Lemma 6.5. Moreover, all the substitutions are composed
to compute the resulting unifier. In other words, the transformation is applied
as follows 〈{e} ∪ E, σ〉 → 〈σ′(E′ ∪ E) ↓β, σ′ ◦ σ〉, if we have a transformation
e → 〈E′, σ′〉.

With the following examples, we illustrate how these rules solve the problems
concerning the introduction of new bound variable names described previously, at
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the beginning of this section.

Example 6.7. Given the equation λx.λy.λy.X(x, y) ?= λy.λy.λx.Y (x, y) the
application of the first α-transformation rule gives us λx.λy.λy.X(x, y) ?=
λx.λx.λy.Y (y, x). A second application of this α-transformation gives us
λx.λy.λy.X(x, y) ?= λx.λy.λx.Y (x, y). Now, the first α-transformation rule is
no longer applicable. However, we can apply the third α-transformation rule,
that instantiates [X 7→ λx.λy.X ′(y)], and gives the equation λx.λy.λy.X ′(y) ?=
λx.λy.λx.Y (x, y). Now, applying the second α-transformation rule, we obtain
λy.λy.X ′(y) ?= λy.λx.Y (x, y). Again, we can apply the third α-transformation rule,
that instantiates [Y 7→ λx.λy.Y ′(x)], and gives λy.λy.X ′(y) ?= λy.λx.Y ′(x). The
first α-transformation rule gives λy.λy.X ′(y) ?= λy.λy.Y ′(y). Finally, the second
α-transformation rule gives λy.X ′(y) ?= λy.Y ′(y).
This last equation can be solved applying the second flex-flex rule. The resulting

unifier is
[

X ′ 7→ λy.Z(y), Y ′ 7→ λy.Z(y)
]

◦
[

Y 7→ λx.λy.Y ′(x)
]

◦
[

X 7→ λx.λy.X ′(y)
]

∣

∣

∣

{X,Y }

=
[

X 7→ λx.λy.Z(y), Y 7→ λx.λy.Z(x)
]

Example 6.8. The new flex-rigid rule transforms λx.X(x) ?= λx.f(λy.a)
into the equation λx.λy.X1(x, y)

?= λx.λy.a and the substitution [X 7→
λx.f(λy.X1(x, y))]. The original flex-rigid rule would give us λx.X1(x)

?= λx.λy.a,
that conveniently η-expanded using the same variable name y, results into the
same equation. A further application of the flex-rigid rule solves the equation by
[X1 7→ λx.λy.a].
In other cases, the resulting equation may be different. The new rule transforms

λx.X(x) ?= λx.f(λx.g(x)) into the equation λx.λx.X1(x)
?= λx.λx.g(x) and the

substitution [X 7→ λx.f(λx.X1(x))]. However, the original flex-rigid rule would
give us λx.X1(x)

?= λx.λx.g(x) and the substitution [X 7→ λx.f(X1(x))]. In the
subsequent η-expansion we can not use the name x, and we need a new name z,
and α-conversion of the right-hand side getting λx.λz.X1(x, z)

?= λx.λz.g(z). Both
equations are obviously distinct. However, to solve this second equation, X1 can
not use the first argument, because it is not used in the right-hand side. Therefore,
we can instantiate X1 7→ λx.λy.X ′

1(y), and α-convert the new variable name z,
getting the same equation as with the new flex-rigid rule.

Example 6.9. Given the equations
{

λx.λy.X(x, y) ?= λx.λy.f(λx.Y (x, y)),

λx.λy.Z(x, y) ?= λx.λy.X(y, x)
}

, after solving the first equation and replac-

ing
[

X 7→ λx.λy.f(λx.Y (x, y))
]

into the second one, we get λx.λy.Z(x, y) ?=

λx.λy.
(

(λx.λy.f(λx.Y (x, y)))(y, x)
)

. By Lemma 6.5, we can β-reduce using swap-
pings, instead of the usual standard substitution. The permutation will be
Π2(〈x, y〉, 〈y, x〉) = Π1

(

〈(x y) ·y〉, 〈x〉
)

· (x y) = (xx) · (x y) = (x y), and the result
of the β-reduction will be

(

λx.λy.f
(

λx.Y (x, y)
))

(y, x) =β (x y)·f
(

λx.Y (x, y)
)

= f
(

λy.Y (y, x)
)

Lemma 6.10. The algorithm described in Definition 6.6 is sound and complete
and computes a most-general higher-order pattern unifier whenever it exists, when
names of free and bound variables are disjoint.
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Proof. The algorithm computes basically the same most general unifiers than
the Nipkow’s algorithm.
The fact that we use swapping instead of substitution to remove β-redexes is not

a problem according to Lemma 6.5. We will obtain a term that is α-equivalent to
the one that we would obtain with the traditional capture-avoiding substitution.
Notice that in the lemma we require arguments of free variables (the sequence ~y)
to be a list of distinct bound variables. This is ensured in the case of higher-order
pattern unification, but it is not true in the general λ-calculus. The algorithm
preserves the disjointness of bound and free variable names. Therefore, the other
condition of the lemma {~y} ∩ FV(λ~x.t) is also satisfied.
In the third α-transformation rule, if x 6∈ FV(t) and x ∈ FV(u) and the equation

is solvable, then x must occur in u just below a free variable, as one of its argu-
ments, and this free variable must be instantiated by a term that does not use this
argument. Notice also that the three α-transformation rules, when the equation
is solvable, succeed in making the lists of most external λ-bindings equal in both
sides of the equation.
In the case of the flex-rigid rule, we may obtain an equation λ~x.Xi(x1, . . . , xn)

?=
λ~x.λ~y.u′

i that needs to be η-expanded, and where {x1, . . . , xn} ∩ {~y} 6= ∅. Let
be {x′

1, . . . , x
′
n′} = {x1, . . . , xn} \ ~y, i.e. the sequence of variables xi’s not in

~y. In any solution of this equation Xi can not use the variables of the inter-
section of {x1, . . . , xn} ∩ {~y}. Therefore, we can extend the solution with Xi 7→
λx1, . . . xn.λ~y.X

′
i(x

′
1, . . . , x

′
n, ~y), and get the equation λ~x.λ~y.X ′

i(x
′
1, . . . , x

′
n′ , ~y)

?=
λ~x.λ~y.u′

i.
The flex-flex and rigid-rigid rules are the same as in Nipkow’s algorithm.

Lemma 6.11. Let P be a solvable pattern unification problem, where the set of
free and bound variable names are disjoint, and let 〈a1, . . . , an〉 be a list of the
names of bound variables of the problem. Then, there exists a most general unifier
σ such that

(1 ) σ does not use other bound-variable names than the ones already used in the
problem, i.e than {a1, . . . , an}.

If in the original problem all bound variables with the same name have the same
type, i.e. we have a type τi for every bound variable name ai, then

(2 ) the same applies to σ, i.e. any bound variable of σ with name ai has type τi,
and

(3 ) any free variable X occurring in σ has type ν1 → · · · → νm → ν, where
〈ν1, . . . , νm〉 is a sublist of 〈τ1, . . . , τn〉.

Proof. By Lemma 6.10 with the new transformation rules we obtain most gen-
eral unifiers for solvable pattern unification problems. Then, by simple inspection
of the new transformation rules, where all bound variable names in the right-hand
sides of the rules are already present in the left-hand sides, we have that new equa-
tions and substitutions do not introduce new names. In addition, since names of
free and bound variables are distinct, β-reductions due to substitution applications
satisfy conditions of Lemma 6.5, therefore we can conclude that we do not need
new bound variable names due to β-reductions either.
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Notice also that in these rules, when we introduce a new bound variable in the
right-hand side, with a name already used in the left-hand side, both variables have
the same type. When, we swap two variable names in an α-conversion or in a
β-reduction, they have also the same type.
Finally, let σ′ be any most general unifier not using other bound variable

names than the ones used in P , i.e. a1, . . . , an. For every variable X oc-
curring free in σ, chose one of their occurrences. This will be of the form
X(b1, . . . , bm), where {b1, . . . , bm} ⊆ {a1, . . . , an} and the bi’s are pairwise dis-
tinct. Let 〈bπ(1), . . . , bπ(m)〉 be a sublist of 〈a1, . . . , an〉. Then composing σ′ with
[X ′ 7→ λb1. · · · .λbm.X(bπ(1), . . . , bπ(m))], for every variable X , we get another most
general unifier fulfilling the requirements of the third statement of the lemma. No-
tice that, although not all occurrences of X have the same parameters, it does not
matter which one we chose because all them have the same type.

7. THE REVERSE TRANSLATION

As we have shown, Theorem 5.13 is not enough to prove that, if JPK is solvable,
then P is solvable. We still have to prove that if JPK is solvable, then for some
solution σ of JPK we can build a nominal solution 〈∇, σ′〉 of P. This is the main
objective of this section. Taking into account that JPK is a higher-order pattern
unification problem, and that these problems are unitary, we will prove something
stronger: if JPK is solvable, then JσK−1

is defined for the most general unifier σ of

JPK. Moreover, in the next section we will prove that JσK−1
is also a most general

nominal unifier.

Definition 7.1. Let 〈a1, . . . , an〉 be a fixed ordered list of atoms, and let ∇ be
a freshness environment. The back-translation function is defined on λ-terms in
η-long β-normal form as follows:

JaK−1
∇ = a

Jf(t1, . . . , tn)K−1
∇ = f(Jt1K−1

∇, . . . , JtnK−1
∇)

Jλa.tK−1
∇ = a . JtK−1

∇

JX(c1, . . . , cm)K−1
∇ = π−1 ·X where π is a permutation on 〈a1, . . . , an〉 satisfying

〈π ·c1, . . . , π ·cm〉 is the sublist of 〈a1, . . . , an〉 such that
π ·ci#X 6∈ ∇ and ci and π ·ci have the same sort

where a is a bound variable with name a, f is the constant associated to the function
symbol f, either X is the free variable associated to X, or if X is a fresh variable
then X is a fresh nominal variable, and the permutation π−1 is supposed to be
decomposed in terms of transpositions (swappings).

Notice that the back-translation function is not defined for all λ-terms, even for
all higher-order patterns. In particular, Jλx.tK−1 is not defined when x is not base

typed, or Jx(t1, . . . , tn)K−1
is not defined when x is a bound variable.

Notice also that the permutation π is not completely determined by the side
condition of the forth equation. For instance, given 〈a1, a2, a3〉 as the list of atoms,

all them of the same sort, to define JX(a1)K−1
{a1#X,a2#X} = π−1 ·X the condition

requires π·a1 = a3, but then, we can choose π·a2 = a1 and π·a3 = a2, or vice versa
π ·a2 = a2 and π ·a3 = a1. Therefore, JtK−1

∇ is nondeterministically defined.
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For λ-substitutions the back-translation is defined as follows.

Definition 7.2. Let 〈a1, . . . , an〉 be a fixed ordered list of atoms, and let ∇ be a
freshness environment. The back-translation function is defined on λ-substitutions
as follows.

JσK−1
∇ =

⋃

X∈Dom(σ)

[

X 7→ Jσ(X)(a1, . . . , an)K−1
∇

]

Notice that if σ(X)(a1, . . . , an) is not a well-typed λ-term, or

Jσ(X)(a1, . . . , an)K−1
∇ is not defined for some X ∈ Dom(σ), then JσK−1

∇ is
not defined.
We introduce the following notion to describe which λ-terms and substitutions

have reverse translation w.r.t. a freshness environment.

Definition 7.3. Given a λ-term t (resp. λ-substitution σ), and a freshness en-

vironment ∇, we say that t (resp. σ) is ∇-compatible if JtK−1
∇ (resp. JσK−1

∇) is
defined.

Lemma 7.4. For any λ-term t, and freshness environment ∇, if t is ∇-

compatible, then
r
JtK−1

∇

z
∇
= t.

For every λ-substitution σ, and freshness environment ∇, if σ is ∇-compatible, thenr
JσK−1

∇

z
∇
= σ.

Proof. Let 〈a1, . . . , an〉 be a fixed ordered list of atoms. The existence of JtK−1
∇

restricts the form of t to five cases. For the first four, the proof is trivial. In the
case t = X(c1, · · · , cm), we have

r
JX(c1, · · · , cm)K−1

∇

z
∇

=
q
π−1 ·X

y
∇

= X
(q
π−1 ·π ·c1

y
∇
, · · · ,

q
π−1 ·π ·cm

y
∇

)

= X(c1, · · · , cm)

where π is a permutation on 〈a1, . . . , an〉 satisfying 〈π·c1, . . . , π·cm〉 is the sublist of
〈a1, . . . , an〉 such that π ·ci#X 6∈ ∇ and ci and π ·ci have the same sort.
For the second statement, by Definitions 7.2 and 5.8 we have

r
JσK−1

∇

z
∇

=

u
v ⋃

X∈Dom(σ)

[X 7→ Jσ(X)(a1, · · · , an)K−1
∇]

}
~

∇

=
⋃

X∈Dom(σ)

[

X 7→ λa1 · · · an.
r
Jσ(X)(a1, · · · , an)K−1

∇

z
∇

]

=
⋃

X∈Dom(σ)

[X 7→ λa1 · · · an.σ(X)(a1, · · · , an)]

=
⋃

X∈Dom(σ)

[X 7→ σ(X)] = σ

Where we make use of the first statement to prove
r
Jσ(X)(a1, · · · , an)K−1

∇

z
∇
=

σ(X)(a1, · · · , an). Notice that, if σ is ∇-compatible, then σ(X)(a1, · · · , an) is also
∇-compatible.
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Given a pattern unifier, in order to reconstruct the corresponding nominal uni-
fier, we have several degrees of freedom. We start with higher-order pattern unifier
σ with a restricted use of names of bound variables. Then, we will construct a
freshness environment ∇ such that σ is ∇-compatible. This construction is de-
scribed in the proof of Lemma 7.6, and it is nondeterministic. The corresponding
nominal solution is then 〈∇, JσK−1

∇〉. Moreover, JσK−1
∇ is not uniquely defined.

The following example illustrates these degrees of freedom in this back-translation.

Example 7.5. The nominal unification problem

P = {a.a.X
?

≈ c.a.X , a.b.X
?

≈ b.a.(a b)·X}

where all atoms and variables are of the same sort, is translated as

JPK = { λa.λb.λc.λa.λa.X(a, b, c) ?= λa.λb.λc.λc.λa.X(a, b, c) ,

λa.λb.λc.λa.λb.X(a, b, c) ?= λa.λb.λc.λb.λa.X(b, a, c) }

Most general higher-order pattern unifiers are

σ1 = [X 7→ λa.λb.λc.Z(a, b)]

and

σ2 = [X 7→ λa.λb.λc.Z(b, a)]

which are equivalent.
Let 〈a, b, c〉 be the fixed list of atoms. Following the construction described in the

forthcoming proof of Lemma 7.6, for every variable Z occurring in σ, we construct
a sublist of atoms LZ = 〈b1, . . . , bm〉 satisfying bj : JτjK−1

, for every j = 1, . . . ,m.
In our case, we can choose among three possibilities L1

Z = 〈a, b〉, L2
Z = 〈a, c〉 or

L3
Z = 〈b, c〉. We construct ∇ =

⋃

Z occurs in σ
a ∈ 〈a1, . . . , an〉 \ LZ

{a#Z}.

From the two pattern unifiers σi’s, and the three lists Lj
Z ’s we can construct six

possible nominal unifiers:

σ1 σ2

L1
Z 〈{c#Z} , [X 7→

(

a b c
a b c

)−1

·Z]〉 〈{c#Z} , [X 7→

(

a b c
b a c

)−1

·Z]〉

L2
Z 〈{b#Z} , [X 7→

(

a b c
a c b

)−1

·Z]〉 〈{b#Z} , [X 7→

(

a b c
c a b

)−1

·Z]〉

L3
Z 〈{a#Z} , [X 7→

(

a b c
b c a

)−1

·Z]〉 〈{a#Z} , [X 7→

(

a b c
c b a

)−1

·Z]〉

The permutations can be written as swappings obtaining:

σ1 σ2

L1
Z 〈{c#Z} , [X 7→ Z]〉 〈{c#Z} , [X 7→ (a b)·Z]〉

L2
Z 〈{b#Z} , [X 7→ (b c)·Z]〉 〈{b#Z} , [X 7→ (a b)(b c)·Z]〉

L3
Z 〈{a#Z} , [X 7→ (a c)(b c)·Z]〉 〈{a#Z} , [X 7→ (a c)·Z]〉

All these nominal unifiers are most general and equivalent. Notice that these are
all the most general nominal unifiers.
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Lemma 7.6. For every equational nominal unification problem P, if the pattern
unification problem JPK is solvable, then there exists a freshness environment ∇,
and a most general pattern unifier σ, such that σ is ∇-compatible.

Proof. The most general unifier σ is chosen, accordingly to Lemma 6.11, as a
unifier not using other bound variable names than the ones used in JPK. Moreover,
since all bound variables of JPK with the same name ai have the same type τi, the
same happens in σ, and all free variables Z occurring in σ have a type of the form
Z : τi1 → . . . → τim → δ, for some indexes satisfying 1 ≤ i1 < · · · < im ≤ n. Notice
that there could be more than one set of indexes satisfying this condition.
The freshness environment ∇ is constructed as follows. For any variable Z :

τi1 → . . . τim → δ occurring6 in σ , let LZ = 〈ai1 , . . . , aim〉 be a sublist of the atoms
〈a1, . . . , an〉. Then,

∇ =
⋃

Z occurs in σ
a ∈ 〈a1, . . . , an〉 \ LZ

{a#Z}

We prove that σ(X)(a1, . . . , an) is ∇-compatible, for any X ∈ Dom(σ).
Since σ is most general Dom(σ) only contains variables X of JPK. All these

variables have type Jτ1K → · · · → JτnK → Jτ0K, where 〈τ1, . . . , τn〉 is the list of sorts
of 〈a1, . . . , an〉, and τ0 is the sort of X. Therefore, σ(X)(a1, . . . , an) is a well-typed
λ-term. Now we prove that this term is back-translatable by structural induction.
By Lemma 6.11, σ(X) does not use bound variables with other names and types

than the ones already used in the original problem. This ensures that we can always
translate back bound variables a as the atom with the same name a. Terms formed
by a constant or free variable are particular cases of applications with m = 0,
studied bellow.
All λ-abstractions will be of the form λai.t, where ai = JaiK. This ensure that its

translation back is possible, if the body of the λ-abstractions is back-translatable.
All applications are of the form f(t1, . . . , tm) where f is a constant of the original

nominal problem (since σ is most general), or of the form X(ai1 , . . . , aim) where X
is a free variable and ai1 , . . . , aim are distinct bound variables. Notice that we can
no have terms of the form ai(t1, . . . , tn) where ai is a bound variable, because all
these bound variables have basic types. In the first case, the application is back-
translatable if arguments are. In the second case, let X : τj1 → . . . → τjm → δ, for
some indexes satisfying 1 ≤ j1 < · · · < jm ≤ n. using the ∇ constructed before,
we can translate back X(ai1 , . . . , aim) as π−1 ·X, for some π satisfying π(aik) = ajk ,
for j = 1, . . . ,m. Notice that ajk and aik have the same sort τjk . Hence, this second
kind of applications is also back-translatable.

Theorem 7.7. For every equational nominal unification problem P, if the pat-
tern unification problem JPK is solvable, then P is also solvable.

Proof. By Lemma 7.6, if JPK is solvable then there exist a most general uni-

fier σ of JPK, and a freshness environment ∇ such that 〈∇, JσK−1
∇〉 is defined.

W.l.o.g. assume that Dom(σ) = Vars(JPK) and hence, according to Definition 7.2,

6We say that X occurs in σ, if X occurs free in σ(Y ), for some Y ∈ Dom(σ).
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Dom(JσK−1
∇) = Vars(P). By Lemma 7.4, we have

r
JσK−1

∇

z
∇

= σ, which solves

JPK. Hence, by Theorem 5.13, 〈∇, JσK−1
∇〉 solves P.

From Theorems 5.15 and 7.7, and linear-time decidability for Higher-Order Pat-
terns Unification [Qian 1996], we conclude the following results.

Corollary 7.8. Nominal Unification is quadratic reducible to Higher-Order
Pattern Unification.
Nominal Unification can be decided in quadratic deterministic time.

8. CORRESPONDENCE BETWEEN UNIFIERS

In this section we establish a correspondence between the solutions of a nominal
unification problem and their translations. We prove that the translation function
is monotone, in the sense that it translates more general nominal solutions into
more general pattern solutions. The reverse translation also satisfies this property.
Therefore, both translate most general solutions into most general solutions. We
start by generalizing the translation of a nominal substitution w.r.t. a freshness en-
vironment, to respect the translation of a nominal substitution w.r.t. two freshness
environments, and similarly for the reverse translation.

Definition 8.1. Let 〈a1, . . . , an〉 be a fixed list of atoms.
Given a nominal substitution σ, and two freshness environments ∇ and ∇′, sat-

isfying ∇ ⊢ σ(∇′), we define

JσK∇
′

∇ =
⋃

X∈Dom(σ)

[X 7→ λb1, . . . , bm.Jσ(X)K∇]

where 〈b1, . . . , bm〉 = 〈a ∈ 〈a1, . . . , an〉 | a#X 6∈ ∇′〉.
Given a pattern substitution σ, and two freshness environments ∇ and ∇′, we

define

JσK−1∇
′

∇ =
⋃

X∈Dom(σ)

[

X 7→ Jσ(X)(b1, . . . , bm)K−1
∇

]

where 〈b1, . . . , bm〉 = 〈a ∈ 〈a1, . . . , an〉 | a#X 6∈ ∇′〉.

We say that σ is ∇′ → ∇-compatible if JσK−1∇
′

∇ exists.

Notice that this definition generalizes Definition 5.8 because JσK∇ = JσK∅∇, and

Definition 7.2 because, JσK−1
∇ = JσK−1∅

∇.
The following lemmas are generalizations of Lemmas 5.11 and 7.4, respectively.

Their proofs are also straightforward generalizations.

Lemma 8.2. For any nominal substitution σ, freshness environments ∇1 and
∇2, and nominal term t, satisfying ∇2 ⊢ σ(∇1) and Vars(t) ⊆ Dom(σ), we have

JσK∇1

∇2
(JtK∇1

) = Jσ(t)K∇2

Lemma 8.3. For any λ-substitution σ and freshness environment ∇1 and ∇2, if
σ is ∇1 → ∇2-compatible, then

r
JσK−1∇1

∇2

z∇1

∇2

= σ
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If a λ-substitution σ1 is more general than another σ2, then there exists a sub-
stitution σ3 that satisfies σ2 = σ3 ◦ σ1. The following lemma states that this
substitution can be used to construct a nominal substitution Jσ3K−1

that we will

use, in Lemma 8.5, to prove that Jσ1K−1
is more general than Jσ2K−1

.

Lemma 8.4. For any pair of λ-substitutions σ1 and σ2 and freshness environ-
ments ∇1 and ∇2, if σ1 is ∇1-compatible, σ2 is ∇2-compatible, and σ1 is more
general than σ2, then there exists a λ-substitution σ3 such that

(1 ) σ2 = σ3 ◦ σ1|Dom(σ1)∪Dom(σ2)

(2 ) σ3 is ∇1 → ∇2-compatible, and

(3 ) ∇2 ⊢ Jσ3K−1∇1

∇2
(∇1).

Proof. The first conclusion is a consequence of σ1 is more general than σ2.
However, w.l.o.g. we take a σ3 that only instantiates variables occurring in σ1 or
belonging to Dom(σ2).
For all X ∈ Dom(σ3), let 〈b1, . . . , bm〉 = 〈ai | ai#X 6∈ ∇1〉, where 〈a1, . . . , an〉

is the fixed list of atom names. Now, X occurs in σ1 or X ∈ Dom(σ2). In the
first case, since σ1 is ∇1-compatible and we are dealing with higher-order pattern
substitutions, X occurs in σ1 in (at least one) subterm of the form X(b′1, . . . , b

′
m),

where b′i are distinct bound variables with names in 〈a1, . . . , an〉, and bi and b′i
have the same type. Moreover, σ3(X)(b′1, . . . , b

′
m), conveniently β-reduced, is a

subterm of some σ2(Y ), for some Y ∈ Dom(σ2). In the second case, if X ∈
Dom(σ2), we also have this property. Therefore, since σ2 is ∇2-compatible, we have
that σ3(X)(b′1, . . . , b

′
m), and hence σ3(X)(b1, . . . , bm) is ∇2-compatible. Therefore,

Jσ3K−1∇1

∇2
=

⋃

X∈Dom(σ3)
[X 7→ Jσ3(X)(b1, . . . , bm)K−1] exists, and σ3 is ∇1 → ∇2-

compatible.
Let be b#X ∈ ∇1. The free variable names of σ3(X) and 〈a1, . . . , an〉

are disjoint. Therefore, b 6∈ FV(σ3(X)(b1, . . . , bm)), where 〈b1, . . . , bm〉 =
〈ai | ai#X 6∈ ∇1〉. By Lemma 7.4, since σ3(X)(b1, . . . , bm) is ∇2-

compatible, we have b 6∈ FV

(r
Jσ3(X)(b1, . . . , bm)K−1

∇2

z
∇2

)

. By Lemma 5.10,

∇2 ⊢ b#Jσ3(X)(b1, . . . , bm)K−1
∇2

. By Definition 8.1, ∇2 ⊢ b#Jσ3K−1∇1

∇2
(X). There-

fore, we have ∇2 ⊢ Jσ3K−1∇1

∇2
(∇1).

The following lemma ensures that the translation and reverse translation of sub-
stitutions is monotone w.r.t. the more generality relation.

Lemma 8.5. For every nominal unification problem P and pair of unifiers
〈∇1, σ1〉 and 〈∇2, σ2〉, satisfying Vars(P) ⊆ Dom(σ1) ⊆ Dom(σ2), we have 〈∇1, σ1〉
is more general than 〈∇2, σ2〉, if, and only if, Jσ1K∇1

is more general than Jσ2K∇2
.

Proof. ⇒) By Theorem 5.13, both Jσ1K∇1
and Jσ2K∇2

are solutions of JPK. If
〈∇1, σ1〉 is more general than 〈∇2, σ2〉, then there exists a nominal substitution
σ′ such that ∇2 ⊢ σ′(∇1) and ∇2 ⊢ σ′ ◦ σ1|Dom(σ1)∪Dom(σ2) ≈ σ2. For all X ∈
Dom(σ2), we have ∇2 ⊢ σ′(σ1(X)) ≈ σ2(X). By Lemma 5.10, Jσ′(σ1(X))K∇2

=α

Jσ2(X)K∇2
. By Lemma 8.2, Jσ′K∇1

∇2
(Jσ1(X)K∇1

) =α Jσ2(X)K∇2
. By Lemma 5.11,
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Jσ′K∇1

∇2
(Jσ1K∇1

(JXK∅)) =α Jσ2K∇2
(JXK∅). Since JXK∅ = X(a1, . . . , an) and ai will be

distinct free variables, we have

Jσ2K∇2
(X) = Jσ′K∇1

∇2
◦ Jσ1K∇1

(X), for all X ∈ Dom(Jσ2K∇2
)

Therefore, Jσ1K∇1
is more general than Jσ2K∇2

.
⇐) There exists a λ-substitution σ′ such that Jσ2K∇2

= σ′◦Jσ1K∇1
|Dom(σ1)∪Dom(σ2).

By Lemma 8.4, σ′ is ∇1 → ∇2-compatible. Hence, it exists the nominal substi-

tution σ′′ = Jσ′K−1∇1

∇2
. For any X ∈ Dom(σ2), by Lemmas 8.2 and 8.3, we haveq

σ′′
(

σ1(X)
)y

∇2
= Jσ′′K∇1

∇2

(

Jσ1K∅∇1
(JXK∅)

)

= σ′
(

Jσ1K∅∇1
(JXK∅)

)

= Jσ2K∅∇2
(JXK∅) =

Jσ2(X)K∇2
. By Lemma 5.10, we have ∇2 ⊢ σ′′

(

σ1(X)
)

≈ σ2(X). Therefore,
∇2 ⊢ σ′′ ◦ σ1|Dom(σ1)∪Dom(σ2) ≈ σ2. By Lemma 8.4, we also have ∇2 ⊢ σ′′(∇1).
From both facts, we conclude that σ1 is more general than σ2.

Corollary 8.6. Most general nominal unifiers are unique.

Proof. It is a direct consequence of uniqueness of most general higher-order
pattern unifiers and Lemma 8.5.

Finally we can conclude that the translations preserve most generality.

Theorem 8.7. For any nominal problem P and nominal solution 〈∇, σ〉, satis-
fying Vars(P) ⊆ Dom(σ), 〈∇, σ〉 is a most general unifier if, and only if, JσK∇ is a
most general unifier of JPK.
Proof. ⇒) Suppose that 〈∇, σ〉 is a most general nominal unifier of P, but

JσK∇ is not a most general pattern unifier of JPK. By Theorem 5.13, JσK∇ is a
solution of JPK. Since most general higher-order pattern unifiers are unique, and
by Lemma 7.6, there exists a most general pattern unifier σ′ of JPK strictly more

general than JσK∇ and such that Jσ′K−1
exists. By Lemma 7.4,

r
Jσ′K−1

z
= σ′.

Since we assume that 〈∇, σ〉 is most general and nominal most general unifiers are

also unique, we have that 〈∇, σ〉 is more general than Jσ′K−1. Hence, by Lemma 8.5,

JσK∇ is more general than
r
Jσ′K−1

z
= σ′, which contradicts that σ′ is strictly more

general than JσK∇.
⇐) Suppose that JσK∇ is most general, and 〈∇, σ〉 is not. Then, there exists

a most general unifier 〈∇′, σ′〉 such that 〈∇, σ〉 is not more general than 〈∇′, σ′〉.
On the other hand, since JσK∇ is most general, it is more general than Jσ′K∇′ .
Hence, by Lemma 8.5, 〈∇, σ〉 is more general than 〈∇′, σ′〉. This contradicts the
initial assumption. Therefore, if JσK∇ is most general, then 〈∇, σ〉 must be most
general.

9. CONCLUSIONS

The paper describes a precise quadratic reduction from Nominal Unification to
Higher-Order Pattern Unification. This helps to better understand the semantics
of the nominal binding and permutations in comparison with λ-binding and α-
conversion. Moreover, using the result of linear time decidability for Higher-Order
Patterns Unification [Qian 1996], we prove that Nominal Unification can be decided
in quadratic time.
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