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Abstract. Inconsistency between metadata and code customizations
is a major concern in modern, configurable enterprise systems. The
increasing reliance on metadata, in the form of XML files, and code
customizations, in the form of Java files, has led to a hybrid development
platform. The expected consistency requirements between metadata
and code should be checked but often are not, so current tools offer
surprisingly poor development support. In this paper, we adapt classical
data flow analyses to detect inconsistencies and provide better static
guarantees. We provide a formalization of the consistency requirements
and a set of adapted analyses for a concrete case study. Our work
is implemented in a fast and efficient prototype in the form of an
Eclipse plugin. We validate our work by testing this prototype on
actual production code; preliminary results show that this approach
is worthwhile. We found a significant number of previously undetected
consistency errors and have received very positive feedback from the
developer community in the case study.

1 Introduction

Complex enterprise systems increasingly use metadata in the form of XML files
for configuration. This facilitates maintenance and allows developers to gain a
better overview by focusing on the what of the system rather than on the how.
However, metadata cannot tell the whole story and especially for business logic
requirements, it is often necessary to add custom code (e.g. in Java) to implement
specialized functionality. This is frequently done through code customizations.
A code customization is a small code snippet with a predefined interface that
can be plugged into the base system. The relation between metadata and code
customization is that metadata declares the existence of specialized business logic
and the code customization provides an implementation. A code customization
fulfills concrete requirements but at the same time introduces new consistency
constraints on the system: Metadata and code must agree on proper use of
common names and types. Current tools are surprisingly poor at managing these
consistency constraints and the errors that arise from violating them.
In this paper, we claim that some of these problems can be eliminated by

adapting classic data flow analyses to framework-specific code customizations.
We propose a set of data flow analyses for a concrete case study: The Apache
Open For Business (OFBiz) [1] enterprise resource planning (ERP) system.
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These analyses are implemented in an Eclipse plugin and have been applied
to a production quality installation of OFBiz. Our prototype has found a large
number of consistency errors in this code base. In this paper, we show how our
prototype can locate the source of each error and help developers increase the
quality of their code customizations. The prototype has been released to the
OFBiz developer community and received very positive feedback [2, 3].
The contributions of this work are:

– A formalization of the consistency constraints between metadata and code
customizations in OFBiz.
– A set of framework-specific adaptions of dataflow analyses based on this
formalization.
– A working implementation of these analyses in the form of an Eclipse plugin.
– An empirical validation of the tool by analyzing production code and eliciting
feedback from OFBiz developers.
– A discussion of the limitations of the analyses, and the trade-off between
soundness (no false negatives) and precision (only few false positives).

Section 2 below shows a motivating example from the out-of-the-box version
of OFBiz, and section 3 provides more background on this case study with an
emphasis on its size and complexity. Section 4 formalizes the implicit consistency
requirements in OFBiz, and sections 5 and 6 describe the flow analyses used to
realize these consistency requirements. Section 7 describes our prototype Eclipse
plugin that implements these analyses, and section 8 presents and discusses em-
pirical results from applying this tool to the case study. Section 9 discusses wider
perspectives and implications of this work, and section 10 considers related work.

2 Motivating Example: Code Customizations in OFBiz

The OFBiz framework exposes a range of services. A service can be described
in a service definition such as that shown in listing 1.1. A service definition
contains metadata about a service, such as its name and where it is implemented,
and describes the service’s input and output in the form of attributes. For
each attribute, it states its name and type as well as whether this attribute
is mandatory or optional. Services are often implemented in Java code snippets,
called code customizations. A code customization must conform to the service
interface given by the service definition. Conformance is in this case defined
as accepting the same input and returning the same output as specified in the
service definition.
Listing 1.1 provides an actual example of the buildPdfFromSurveyResponse

service from the Content module in OFBiz v.3. This service creates PDF-files
based on online surveys. The actual implementation of a service is typically
written in a more expressive language such as Java. As stated in line 3 of
listing 1.1, the buildPdfFromSurveyResponse service is implemented in Java
by the method buildPdfFromSurveyResponse, shown in listing 1.2. The service
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� �

1 <service name="buildPdfFromSurveyResponse" engine="java"
2 location="org.ofbiz.content.survey.PdfSurveyServices"
3 invoke="buildPdfFromSurveyResponse">
4 <description >Build Pdf From Survey

Response </description >
5 <attribute name="surveyResponseId" type="String"

mode="IN" optional="false" />
6 <attribute name="outByteWrapper"

type="org.ofbiz.entity.util.ByteWrapper"
mode="OUT" optional="false" />

7 </service >
� �

Listing 1.1. The buildPdfFromSurveyResponse service definition states that the
service is implemented in Java by the buildPdfFromSurveyResponse method
in the PdfSurveyServices class. The service has a mandatory input attribute
surveyResponseId and a mandatory output attribute outByteWrapper.

� �

1 public static Map buildPdfFromSurveyResponse
2 (DispatchContext dctx , Map context) {
3 GenericDelegator delegator = dctx.getDelegator ();
4 Map results = ServiceUtil.returnSuccess ();
5 String surveyResponseId =

(String)context.get("surveyResponseId");
6 String contentId = (String)context.get("contentId");
7 try {
8 if (UtilValidate.isNotEmpty(surveyResponseId)) {
9 GenericValue surveyResponse =
10 delegator.findByPrimaryKey("SurveyResponse",
11 UtilMisc.toMap("surveyResponseId",

surveyResponseId));
12 }
13 ...some 45 lines of code left out ...
14 ByteWrapper outByteWrapper =
15 new ByteWrapper(baos.toByteArray ());
16 results.put("outByteWrapper", outByteWrapper);
17 } catch (GenericEntityException e) {
18 ServiceUtil.returnError(e.getMessage ());
19 }
20 return results;
21 }

� �

Listing 1.2. The buildPdfFromSurveyResponse method implements the service
declared in listing 1.1. The context map declared in line 2 contains input attributes
and the results map in line 4 contains the output attributes. An input attribute is
read in line 5 and an output attribute is set in line 16.

declares two mandatory attributes: an input attribute surveyResponseId of
type String and an output attribute outByteWrapper of type ByteWrapper.
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There are three expected kinds of consistency constraints between listing 1.1
and 1.2, detailed in sections 2.1 through 2.3 below. These constraints are not
stated explicitly in the OFBiz documentation and are not checked until runtime
where violations can lead to unpredictable behaviour.

2.1 A Java Implementation Must Exist

The service definition says that there must exist a PdfSurveyServices class with
a buildPdfFromSurveyResponsemethod that implements the service. Checking
this constraint is a prerequisite for checking the two other kinds of constraints;
since this is fairly easy to do it is not discussed further.

2.2 Only Declared Input Attributes May Be Accessed

The service definition contains a mandatory input attribute surveyResponseId
of type String. Input attributes are supplied to the method via the contextmap
in line 2 in listing 1.2. The implementation code should only access keys in this
map that correspond to declared input attributes, such as surveyResponseId.
Lines 5 and 6 in listing 1.2 show a correct access to a declared input attribute
surveyResponseId and an incorrect access to an undeclared input attribute
contentId.

2.3 All Declared Output Attributes Must Be Assigned

The example service definition contains a single mandatory output attribute,
outByteWrapper. Clients of this service can assume that on successful execution,
this key is present in the results map. Hence the service implementation
should make sure that either the key is present or an error message is returned.
In listing 1.2, the outByteWrapper attribute is set in line 16. However, the
findByPrimaryKey method in line 10 may throw a checked exception which
would prevent the attribute from being set. The catch block in line 18 creates a
map containing an error message but does not return this map and hence has no
effect. This type of subtle error is hard to spot and potentially leads to erroneous
output of the service.
Note that the two errors described above are genuine consistency errors found

in the release version of OFBiz (November 2007).

2.4 Current Development Tools

A key concern in OFBiz development is to ensure that the definition and
implementation of a service are consistent. Development is traditionally done
using normal Java- and XML-editors, so there is no tool-support for checking
the three above-mentioned kinds of consistency constraints. This is because
traditional tools such as XML schema conformance checking and Java type
checking do not reveal constraint violations that involve both XML and Java
artifacts. This lack of tool support causes slow development, costly maintenance,
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and errors in deployed OFBiz products, as shown in a previous survey [4] of the
OFBiz user forums, issue tracking system, and so on. That consistency is a major
concern is further evidenced from the positive feedback that we have received
from the OFBiz community on the release of our initial prototype [2, 3]. Before
we describe analyses and tools developed, we briefly introduce the overall case
study, OFBiz.

3 Case Study: Apache Open for Business (OFBiz)

The OFBiz [1] project is an open source enterprise resource planning (ERP)
system. The cornerstone of the project is a J2EE-based framework. The base
framework is implemented in Java and can be configured using XML files
conforming to 17 different schemas. These schemas can be considered as
separate domain-specific languages tailored for individual concerns in OFBiz
development, such as user interface, data model, services, workflow etc. The
use of these schemas is described in greater detail in [4]. Apart from XML
configuration files, code customizations written as small Java code snippets can
be added to realize specialized functionality that is beyond the scope of ordinary
configuration. Finally, the framework uses HTML and a template engine to
render user interfaces, and also uses scripting languages, such as BeanShell script
[5], for minor tasks.

The framework has a three layer architecture as shown

Fig. 1. The 3-layer ar-
chitecture of OFBiz

in figure 1. The bottom layer is a base engine that
handles loading and wiring of modules. The middle
layer is a set of base modules to define business objects,
services, graphical widgets and workflows. The top
layer is a set of standard ERP application modules
such as Inventory, Accounting, Content Management
etc. Developers can add their own modules or extend
existing modules so the framework is highly flexible.
To give an impression of the size and strength of

OFBiz, we list the following metrics: The out-of-the-
box solution consists of approximately 180 000 lines
of Java code and 195 000 lines of XML. The data

model consists of more than 700 domain classes designed according to patterns
based on industrial practice [6]. Industrial users include large companies such as
British Telecom and United Airlines [7] as well as a range of small- and medium-
sized companies [8]. It is a top-level project in the Apache Software Foundation
and is backed by an active community. We therefore consider it a valid case
study of large scale, industrial-strength development with metadata and code
customizations.
Because of the size and complexity of OFBiz, we have chosen to focus on

a specific subset of code customizations. OFBiz exposes a range of services
to internal and external clients. These services are located by their metadata
descriptions, i.e., service definitions as exemplified in listing 1.1. A concrete
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service, described by a service definition, can be implemented in a variety of ways,
such as SOAP, RMI, scripting languages, a custom domain-specific language for
data manipulation called Minilang, or by a general-purpose language. We will
focus on the last option, viz. the general-purpose language Java, since services
implemented in Java are the cause of most problems. Using Java is a double-
edged sword: On one hand, it gives developers great expressive power to meet
their requirements; on the other hand, this is easily misused to create a whole
range of new and subtle bugs.

4 Formalizing the Consistency Requirements

The OFBiz documentation does not state any consistency requirements on the
relation between metadata and code customizations. The expected requirements
are implicit and only enforced at runtime where a constraint violation can lead to
unpredictable behaviour or system malfunction. In this section, we will formalize
the exact consistency requirements between metadata and code customizations
with respect to input and output. Later in sections 5 and 6, we will describe
our analyses that are approximations of these requirements. Our formalization
is based on the idea that the XML metadata files are the specification that the
Java code must conform to. To formalize the consistency constraints between
metadata and code, we first introduce our general formalization of metadata
and code.

4.1 Formalizing Metadata

To represent a service definition from the XML metadata, we introduce the
following definitions: Let Θ be the unbounded set of all possible service
attributes, and let θ be an individual attribute, such as surveyResponseId. We
will use the predicate mandatory to denote whether an attribute is mandatory
or optional. We will use the predicates in and out to denote declared input and
output attributes. Note that an attribute can be both input and output at the
same time. Let ΘIN be the bounded set of all declared input attributes. Let
ΘOUT be the bounded set of declared output attributes. Finally, let ΘREQ be
the bounded set of all declared, mandatory output attributes.

Θ = {θ1 , θ2 , . . .}
ΘIN = {θ|θ ∈ Θ ∧ in(θ)}

ΘOUT = {θ|θ ∈ Θ ∧ out(θ)}
ΘREQ = {θ|θ ∈ ΘOUT ∧mandatory(θ)}

4.2 Formalizing Code

Code customizations of services in OFBiz always have the following signature:

public static Map service
(DispatchContext dctx , Map context)
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Input attributes are stored in the context map and output attributes are
typically stored in a results map. We will use context and results as general
identifiers for the sets of input and output attributes in our formalization.
Furthermore, let Σ be the set of all program traces. A program trace, σ =
〈α1 , α2 . . . αn〉, is a sequence of executed statements.

Σ = {σ1 , σ2 . . .}
σ = 〈α1 , α2 . . . αn〉

4.3 Input Requirements

Service input consists of a set of input attributes, as described in section 2. The
requirement on input attributes is that only declared attributes are read in the
code. As an illustration, one can think of this as similar to Java’s scoping rules
[9, ch.6.3]. An attribute can only be used if it is in the scope of its declaration. If
an attribute is required by the service definition then it is in scope in the code.
The context parameter contains the input attributes so we are interested in

checking every use of context. To use an input attribute, x, one must invoke
the context.get(x). If this method is invoked then the service definition must
state that x is indeed an input attribute. This rule can be stated more formally
as follows:

∀〈α1 , α2 . . . αn〉 ∈ Σ.∀x ∈ Θ.∀i.αi is context.get(x) ⇒ x ∈ ΘIN

The above constraint is violated if there is a statement αi and a key x /∈ ΘIN
such that αi attempts to read x from context.

4.4 Output Requirements

Service output consist of a set of output attributes. Like input attributes, output
attributes are stored in a Map but an output map may be returned from multiple
return statements. The requirement on output attributes is that mandatory
output attributes are definitely assigned at the point where they are returned. In
particular, one must ensure that all mandatory output attributes have definitely
been assigned for each individual return statement. This corresponds to the
definite assignment rules of Java [9, ch.16] and checking that these rules are
obeyed involves many of the same intricacies, most notably in the case of try
statements.
Output attributes are stored in a results map, so we are interested in

checking every use of results. To assign a value y to an output attribute x
one must invoke results.put(x, y). Such an assignment can be undone by
invoking the results.remove(x)method. If an output attribute x is mandatory
then it must be assigned when the method returns. This rule can be stated more
formally like this:

∀x ∈ ΘREQ .∀〈α1 , α2 . . . αn〉 ∈ Σ.∀i.αi is return results ⇒
∃j.j < i.(αj is results.put(x, y)∧ ¬∃k.j < k < i.αk is results.remove(x))
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The above constraint is violated if there is a mandatory output attribute x and
an execution σ with a return statement αi and such that either there is no
statement αj that sets key x before αi or there is a statement αk between αj
and αi that removes the key x from the map.

4.5 Further Output Attribute Checks

In addition, one might require that the service implementation only attempts
to set output attributes that may be needed according to the service definition.
This rule can also be stated formally as follows:

∀x ∈ Θ.∀〈α1 , α2 . . . αn〉 ∈ Σ.∀i.αi is return results ∧
∃j.j < i.αj is results.put(x, y) ⇒ x ∈ ΘOUT

This constraint is violated if there is an attribute x and an execution σ with a
return statement αi and a key x /∈ ΘOUT such that αi attempts to assign x to
the returned map results, and x is not an output attribute.

4.6 Duality of Requirements

Interestingly, the requirement on the output in section 4.4 is the dual of the
requirement on the input in section 4.3. The input requirement says that if x is
used in context.get(x) on some execution path in the code then attribute x
must be provided to the service according to the XML service definition. The
output requirement says that if attribute x must be returned from the service
according to the XML service definition then every execution path that leads
to a return statement in the Java code must define x. We shall see that this
duality is reflected in the analyses by the use of different meet operators.

5 Analysis of Service Input

In this section, we describe the individual steps performed by our analysis of
service input. The analysis uses two artifacts: the service definition and the
implementation code. The analysis consists of the following five steps:

1. Collect declared attributes from the XML service definition.
2. Construct a control flow graph for the Java code.
3. Perform a reaching definitions flow analysis on the code.
4. Construct a def-use chain for the code.
5. For each use of the input map, check that only declared keys are used.

5.1 Collect Declared Attributes from the XML Service Definition

The first step in the analysis is to determine which input attributes are declared.
Not all service definitions are as simple as listing 1.1. Figure 2 shows the OFBiz
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domain classes involved in the collection of service attributes. In addition to the
service’s own attributes, a service can inherit attributes from other services and
optionally override characteristics of these inherited attributes. For instance,
the ClearCommerce and CyberSource provider services from the Accounting
module all inherit attributes from the general OFBiz credit card and payment
processing services to enable service polymorphism. Furthermore, a service
can automatically collect attributes based on the fields of a business entity
through the auto-attributes association, shown in figure 2. For instance, the
updateAgreement service from the Accounting module uses all fields of the
Agreement business entity as input attributes. The advantage of this is that
whenever the Agreement business entity is extended with a new field, this change
is automatically reflected in the updateAgreement service. This can be further
refined such that all primary keys are mandatory attributes and all non-primary
keys are optional attributes.

Fig. 2. The domain classes relevant for locating and collecting attributes for an OFBiz
service. The collection process is described as step (1) in section 5. A service may
have its own attributes, may inherit attributes from other services, and may collect
automatic attributes based on fields of a set of business entities, extends and views.

In summary, collecting service attributes from the metadata is a non-
trivial process. The collection process requires traversing the service inheritance
hierarchy and checking for overridden attributes. If the service uses the
auto-attributes association, shown in figure 2, then one must also traverse
related business entities, use their fields as attributes and check whether primary
or non-primary keys are filtered out and whether any named fields are included
or excluded.



294 A. Hessellund and P. Sestoft

5.2 Construct a Control Flow Graph for the Java Code

The second step in the analysis is to construct an intraprocedural control flow
graph for the service implementation to facilitate flow analysis at a later stage.
The control flow graph is constructed using classical algorithms [10, ch.8.4] with
graph nodes being statements. The construction process handles straightforward
constructs such as conditionals and loops as well as the more complicated
try-catch-finally construct in Java. For our prototype, described in section
7, we traverse the built-in abstract syntax tree representation of the Eclipse Java
Development Tools (JDT) to build the control flow graph.
Constructing the control flow graph for the try-catch-finally construct

requires some special considerations. The control flow must facilitate a flow
analysis that can determine whether a variable is definitely assigned after a
try statement. As the Java Language Specification [9, ch.16.2.15] shows, this
is non-trivial matter since (1) try statements can be nested, (2) there can be
several catch clauses, (3) the exception classes form an inheritance hierarchy
that affects catch clause matching, and (4) one has to take any finally clauses
into account.
The construction process proceeds in the following manner: For each state-

ment that is in scope of one or more try statements, we add an edge to the
next statement in the current try block, or if there is no such next statement,
we add an edge to either the first statement in the finally block (if any) or
else to the next statement after the try-catch statement. For each checked
exception that the statement in question throws, we must add an edge to the
corresponding catch clause. To do the latter, we iterate through every catch
clause starting from the first in the innermost try statement to the last in
the outermost try statement. If the innermost try statement does not have a
relevant catch clause, we must add an edges to any intermediate finally clauses
(in the case of nested try statements). In principle, almost every statement in the
try block can throw an unchecked exception, but our analysis only takes checked
exceptions into account. Taking unchecked exceptions into account would lead
to too many edges on the graph and render the results of the final flow analysis
less interesting because the final result would contain too many false positives.

5.3 Perform a Reaching Definitions Flow Analysis on the Code

The third step in our analysis is to perform a classic reaching definitions flow
analysis [10, ch.9.2.4]. The purpose of this flow analysis is to determine which
definitions reach each statement in the code. A definition is represented as a pair
of a variable and its defining statement’s location (its AST node). Specifically, for
each statement we determine which variable definitions reach this point. This is
done by solving the following equations where entry(stmt) is the set of definitions
reaching a statement, stmt. The set exit(stmt) contains the definitions that may
be exposed to the successors of stmt in the control flow graph. The genstmt and
killstmt sets are the definitions that are generated and killed by the statement
stmt. The init node is the starting point of the graph [10, p.605-6].
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exit(init) = ∅
exit(stmt) = genstmt ∪ (entry(stmt) − killstmt)

entry(stmt) = ∪pred is a predecessor of stmtexit(pred)

The analysis is monotonic and the result is the least fixpoint of the equations.
An important part of the equations is the use of union as the meet operator. The
significance is that a definition reaches a statement if there is some path from a
definition to the statement on the control flow that does not kill the definition.

5.4 Construct a Def-Use Chain for the Code

The control flow graph and the results of the reaching definitions analysis enable
us to build def-use chains for every variable in the code. A def-use chain ties
a definition of a variable together with the statements where the variable is
being used. For the purposes of our analysis, we are specifically interested in the
defToUse function which given a definition, def, returns the set of statements,
stmt, where this definition is being used. The use predicate expresses whether a
statement uses a variable and the entry(stmt) set is the previously computed
set of definitions reaching stmt [11].

defToUse(def) = {stmt|use(stmt, def) ∧ def ∈ entry(stmt)}

5.5 For Each Use of the Input Map, Check That Only Declared
Keys Are Used

The final step in our service input analysis is to check that only declared
input attributes are actually being used. This is the consistency requirement
on service input described in section 4.3. The analysis as implemented provides
an approximation to this exact requirement, primarily because the control
flow graph generates a superset of the set Σ of possible program traces. The
analysis may deem a statement context.get(x) reachable although no actual
computation could execute it.
Furthermore, the analysis checks whether the attribute is being cast to the

correct type, such as when surveyResponseId is cast to the String type in line 5
in listing 1.2. The idiom (C)context.get(x) is used for casting input attributes
so the analysis performs the type check simply by checking whether the declared
type of x is assignable to type C.
A constraint violation is flagged as an error called Use of undeclared input

attribute. In some cases, the key, x, is an expression or a variable whose
value is computed by an expression at an earlier program statement. Then
the analysis fails and the statement is annotated with a warning that the
analysis is unable to determine whether this attribute is declared in the service
definition. Using such computed keys can be considered metaprogramming on
top of the OFBiz framework. An example of this practice is for instance the
updateOrRemove service in the Content Management Module. This service can
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change the structure of business entities at runtime. This practice is used in less
than 10 places in our version of the framework so we consider it beyond the
scope of our current analysis requirements.

6 Analysis of Service Output

In this section, we will describe the steps performed in the service output
analysis. The analysis uses the service definition and the implementation code.

1. Collect declared attributes from the XML service definition.
2. Construct a control flow graph for the Java code.
3. Perform an available map keys flow analysis on the code.
4. For each return statement, check that each mandatory output attribute has
definitely been assigned before that statement.

5. For each use of the output map, check that only declared keys are used.

6.1 Collect Declared Attributes from the XML Service Definition

The collection of output attributes is completely analogous to the collection of
input attributes, described in section 5.1.

6.2 Construct a Control Flow Graph for the Java Code

The control flow graph from the previous section is reused.

6.3 Perform an Available Map Keys Flow Analysis on the Code

The third step in the analysis is to determine which keys are put into the
map of output attributes during different traces of the program. The analysis
is a flow analysis which shares some characteristics with the classical available
expressions flow analysis [10, ch.9.2.6]. The purpose of the analysis is to compute
the domain of each defined map for each statement in the implementation code.
By domain, we here mean the set of keys that have definitely been assigned.
The analysis results are represented as a pair of the AST node defining the
map and a set of those map keys. Where the available expressions flow analysis
determines whether an expression is definitely available at a given program point,
our available map keys analysis determines whether a key in a given map is
definitely available at a given program point. The main difference is that in our
analysis map entries are treated as variables instead of merely runtime values.
This difference is reflected in the gen and kill functions.
Analysis of output attributes is a bit more complicated than input attributes

because an output attribute can be set in several different but equivalent ways.
The most common approach is to instantiate a HashMap and invoke the put(x,
y) method on that map to set the output attribute x to the value y. Another
approach is to use the framework-provided method UtilMisc.toMap which
takes a number of keys and values and returns a map containing those keys
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and values as entries, i.e., a batch of put invocations. A third approach is to
programmatically invoke another service, e.g., the someService service, which
returns a map using the method dctx.runSynch("someService",inputMap).
Each of these different approaches generates a key at the statement where it
occurs and plays a part in the genstmt function. Examples of the corresponding
killstmt function would be invocations of methods such as clear() or remove(x)
on the map of output attributes.
The analysis is performed similarly to the available expressions analysis with

the main difference being different gen and kill functions. Specifically, we solve
the following set of equations [10, p.612]:

exit(init) = ∅
exit(stmt) = genstmt ∪ (entry(stmt) − killstmt)

entry(stmt) = ∩pred is a predecessor of stmtexit(pred)

An important part of the analysis is the use of intersection as the meet
operator in these equations as opposed to union in the reaching definitions
analysis in section 5.3. This reflects the duality of the consistency requirements
on input and output discussed in section 4.6. The significance of using
intersection here is that a map key only definitely reaches a return statement
if every path leading to this return sets the map key. This means that if a map
key is in the entry set of a return statement, the output attribute is definitely
assigned at that statement. Another difference between the two analyses is that
where the reaching definitions analysis starts by initializing every statement to
have empty exit sets, the available map keys analysis initializes the exit set of
every statement, except the starting node, to the universe of all possible keys.
This is a direct consequence of using the intersection operator and in terms of
execution of the analysis, it requires a pre-pass to compute the universe.

6.4 For Each Return Statement, Check That Each Mandatory
Output Attribute has Definitely been Assigned Before That
Statement

The fourth step in the analysis is to check that mandatory output attributes
have definitely been assigned on return. This is the consistency requirement on
service output described in section 4.4. A constraint violation is flagged as an
error called Missing mandatory output attribute, x. This is because there is some
path leading to this statement that does not set the key x in the returned map.

6.5 For Each Use of the Output Map, Check That Only Declared
Keys Are Used

Finally, similar to the previous analysis in section 5.5 we check that only
declared keys are used. Violations of this constraint do not cause the system
to malfunction but indicate an attribute spelling error or other programmer
error or misunderstanding. Setting an undeclared output attribute is somewhat
similar to declaring a local variable in Java and never making use of it. It is not
an error but a redundancy that indicates a possible problem in the code.
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7 Prototype Implementation

Eclipse is a commonly used tool among OFBiz developers, so our implementation
approach has aimed to extend Eclipse and make the previously described
analyses available in that environment. Our prototype is an Eclipse plugin that
provides an OFBiz model browser, as shown in figure 3, that allows developers
to browse the logical structure of an OFBiz installation to manage entities and
services rather than XML- and Java-files. From the browser, one can navigate
to service definitions and service implementations in a single click. From the
browser one can also initiate an analysis of either a single service or the entire
installation.

Fig. 3. Our prototype extends Eclipse with a browser for the logical model of an
OFBiz installation. Here, the buildPdfFromSurveyResponse service in the Content
Management component is selected and the two attributes of the service are shown.
The context menu offers the choice of navigating to the service implementation or
service definition.

The prototype uses a standard XML parser to parse and load all relevant
XML files and relies on the Eclipse Java Development Tools (JDT) to parse
and build abstract syntax trees for the corresponding Java code. The analyses
are performed by traversing these XML- and Java-representations. The result
of each analysis is reported as errors and warnings in the Problems View and
marked in XML and Java editors as well, as shown in figure 4. The prototype
is therefore integrated into the regular OFBiz development experience in a non-
invasive way. Developers can quickly navigate from an error in the Problems
View to the cause of the error in a Java editor, and repair it there.
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Fig. 4. Our prototype pointing out the inconsistency in listing 1.1 line 6. When an
analysis is executed, the results are shown as entries in the Problems View at the
bottom. When the user selects an error line in the Problems View, the Java editor is
opened and the cursor is placed at the error’s location in the source code.

We have released a preliminary version of the prototype to the OFBiz
developer community and received very positive feedback [2, 3]. This indicates
that the prototype addresses a real need and that the detected errors are
considered serious. The prototype is available on the Internet along with an
online Flash-demo of its capabilities [12]. In the next section, we will describe
the results of applying this prototype to actual OFBiz production code.

8 Empirical Results

In order to validate our claims, we have applied our prototype on the out-of-the-
box version of OFBiz (November 2007). This version contains some 2000 services
of which 550 are implemented using Java code customizations. Our test setup is
an Intel Core 2 CPU, 1.83 GHz, laptop with 2 GB of RAM. Running a complete
analysis of the entire OFBiz installation (see section 3) took 22.3 seconds and
used an average of 105 MB of heap space. In another setup with constrained
memory, the complete analysis took 65.2 seconds but used only an average of 55
MB of heap space. This indicates that the prototype is fast enough to be used
in a real industrial scenario.
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Table 1. Overview of the 133 errors and 122 warnings detected in the out-of-the-box
version of OFBiz. This version is already deployed in several industrial settings so these
errors and warnings are present in live installations.

Severity Type No. of

Error Undeclared input attribute 77

Error Missing mandatory output attribute 56

Warning May be missing mandatory output attribute 16

Warning Unable to analyze expression 12

Warning Unable to analyze complex returns 27

Warning Unable to analyze interprocedural call 67

Our analysis found 133 errors and 122 warnings in our OFBiz installation. The
tested OFBiz installation is a relatively stable version that is currently being used
in several industrial settings. This means that the errors and warnings we have
detected are present in several deployed OFBiz products. An overview of these
errors and warnings can be found in table 1.
The two classes of errors in table 1 are the most serious problems. Use of

an undeclared input attribute can potentially lead to NullPointerExceptions
since reading an undeclared attribute from the map of input attributes typically
returns null. An attempt to call a method on this attribute will therefore throw
a NullPointerException and cause the OFBiz application to fail. A missing
mandatory output attribute is quite simply a breach of the contract specified in
the service definition. Clients of the service in question will expect this contract
to be fulfilled. Closer examination of these errors has shown that it is often
an exception handling control flow path that does not assign all mandatory
output attributes. In some special cases, the analysis indicates that a mandatory
output attribute might not be assigned. This happens when irregular use of
certain framework-provided utility methods is detected. The last three classes of
warnings are all caused by limitations in the analysis. If a variable is assigned
the value of an expression and later used as key in the map of output attributes,
it is typically part of some metaprogramming on top of the framework.

int j = computeFieldNo ();
String key = "field" + j;
results.put(key , "someValue");
return results;

These parts of the code are beyond the scope of the analysis, and this is indicated
by the unable to analyze expression warning.
If a return statement returns the value of an expression then the analysis

issues a warning since we are unable to determine the value of that expression.

return isEmpty () ? new HashMap () : results;
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Finally, the largest class of warnings are those caused by interprocedural
calls that have not been incorporated into the analysis. The analysis has been
adapted to handle most framework-provided utility methods. However, certain
customizations introduce idiosyncratic utility methods that the analysis is unable
to handle.

Map results = new HashMap ();
otherObject.foo(results);
return results;

Where otherObject.foo is a custom method not provided by the framework
and hence not included in the analysis.

9 Discussion

Several questions arise from our analysis and examination of the OFBiz
framework. In this section, we will discuss four central ones. First, what are the
limitations of our analysis? Second, can our approach be applied to other areas of
OFBiz? Third, are the code customization described in this paper particular for
OFBiz or do they appear in other frameworks as well? Fourth, is the OFBiz idiom
of using maps to store input and output attributes really an internal domain-
specific language, embedded in Java? If so, our input and attribute analyses are
really standard compiler checks for consistency of this domain-specific language.

9.1 Limitations of the Analysis

Our analyses compute approximations of the constraints outlined in section
4. To discuss the sources of approximation, let us say that a “positive” is an
actual consistency error, and a “negative” is the absence of such an error. A
“true positive” is when an analysis discovers and reports an actual consistency
error; a “false positive” is when an analysis reports a consistency error but there
actually is none: the service will always execute without failure. Conversely, “true
negative” is when an analysis reports no consistency error and there is none; a
“false negative” is when an analysis reports no consistency error, but actually
there is one: the service may fail.
Using an analogy from logic, we may say that an analysis without false

positives is complete and that one without false negatives is sound. An analysis
with neither false positives nor false negatives is exact.
For computability reasons, our analyses are necessarily incomplete and have

false positives: they may report a consistency error where there is none. The
main reason for this is that the control flow graph built in sections 5.2 and 6.2
is an approximation of the set Σ of actual program traces. Consider:

if (... complex expression , always false ...)
context.get("thisAttributeIsNotDefined");
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Moreover, our analyses are unsound and have false negatives: they may report no
consistency error although the service may fail at runtime. Some people would
consider such an analysis flawed and useless, but our point of view is that making
the analysis sound (by eliminating all false negatives) would increase the number
of false positives to an extent that would make the analysis uninteresting.
There are two sources of unsoundness:

(a) We perform no alias analysis [10, ch.12.4]
(b) We consider only checked exceptions when building the control flow graph
for try-catch-finally statements

The lack of alias analysis affects the analysis of both input and output attributes.
For input attributes, it means that we get a false negative in this case, where
thisAttributeIsNotDefined is not an input attribute:

Map inputMapAlias = context;
inputMapAlias.get("thisAttributeIsNotDefined");

Our analysis will not discover that inputMapAlias is an alias of the input
attribute may context, and hence will not flag the get-method call as a violation
of the input attribute constraint.
For output attributes, the lack of alias analysis means that we get a false

negative in this case:

Map results = new HashMap ();
results.put("x", 1);
Map outputMapAlias = results;
outputMapAlias.remove("x");
return results;

Our analysis would not report that the output attribute x is missing from the
results map.
It would be fairly easy to add an alias analysis step and hence remove

this source of unsoundness, but we believe that it will only marginally affect
the practical utility of the analysis, because there is no reason for service
implementations to define aliases of input and output maps.
Considering only checked exceptions is the other main source of unsoundness.

The construction of the control flow graph does not take unchecked (runtime)
exceptions into account. Almost every Java statement may throw a runtime
exception. Taking such exceptions into account would give significantly more
control flow edges, which would cause a large number of false positives in the
analysis without contributing any significant new useful error messages. We have
therefore omitted runtime exceptions to get a simpler graph, fewer false positives,
and an analysis that is overall more useful.
Finally, a further source of approximation in our analyses is that they are

intraprocedural only. Hence if an input or output map is passed to a method the
analysis will issue a warning, corresponding to “don’t know” rather than give a
positive or negative answer:
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Map results = new HashMap ();
doSomething(results);
return results;

Since the doSomethingmethod may manipulate the entries in the resultsmap,
and the analysis is intraprocedural only, it cannot know the state of results
after the method call.
The analysis does understand the effect of a small number of framework-

provided utility methods, such as UtilMisc.toMap, that perform batch assign-
ment of values to attributes. User-defined utility methods are, however, beyond
the scope of our analysis.

9.2 Other Areas of Application in OFBiz

The OFBiz framework contains several other areas where our analysis may
be applicable. Service implementations in Java account for only 25% of the
service implementations in the entire framework. The remaining OFBiz service
implementations are written in a domain-specific language called Minilang, see
listing 1.3 for an example. Minilang is a simple, imperative, data manipulation
language with a concrete syntax in XML. One can express operations on
primitive types, Strings and OFBiz entities as well as conditionals and simple
error handling.

� �

1 <simple -method method -name="createWorkEffortCostCalc"
2 short -description="Create a WorkEffortCostCalc entry">
3 <make -value entity -name="WorkEffortCostCalc"

value -name="newEntity"/>
4 <set -pk -fields map -name="parameters"

value -name="newEntity"/>
5 <set -nonpk -fields map -name="parameters"

value -name="newEntity"/>
6 <if -empty field -name="newEntity.fromDate">
7 <now -timestamp -to-env env -name="newEntity.fromDate"/>
8 </if -empty>
9 <create -value value -name="newEntity"/>
10 </simple -method >

�

Listing 1.3. The implementation of the createWorkEffortCostCalc service in the
Minilang DSL. The code creates a WorkEffortCostCalc entity and initializes its fields
from a map of input attributes called parameters.

Minilang is much less expressive than Java so it should be fairly easy to
adapt our analyses to this language. This adaptation would involve two steps:
(1) changing our parser from the Eclipse JDT parser to a standard XML parser,
and (2) changing the gen and kill functions to include the syntactical constructs
of Minilang. The reason that we focused on Java is that if the analysis can handle
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Java with all its complexity then we claim that it is a trivial matter to extend
the analysis to other implementation languages in OFBiz.

9.3 Code Customizations in Other Frameworks

An obvious question that arise from this work is whether these analyses are
restricted to OFBiz. One of the main points of the paper is that exactly by
adapting classic flow analyses to a framework-specific setting can we reap extra
benefits. As it turns out, code customizations are found in other frameworks
than OFBiz. Request processing in J2EE web applications provides good
examples, such as servlet filters [13, ch.11] and Actions in Struts [14]. The Spring
Framework [15] is an open source, J2EE-based webapplication framework with
widespread industry adoption. Listing 1.4 shows an excerpt from one of the
Spring sample applications. In this code we can identify the exact same patterns
as in OFBiz. In line 3, an input attribute is accessed, and in lines 6 and 7
output attributes are assigned. In this case the metadata are split between Spring
configuration files and the client-side HTML, and standard tools do not enforce
consistency with the handleRequest code.

Listing 1.4. The handleRequest method from the ViewItemController class in the
JPetStore sample application from the Spring Framework version 2.5. The code follows
the same idiom as OFBiz code customizations by accepting a map, in this case the
request, and returning another map, in this case the model.

Our prototype could be adapted to the Spring framework merely by changing
the gen and kill functions in the available map keys analysis. The code in
listing 1.4 uses getParameter(x) instead of OFBiz’s get(x) to access an input
attribute named x. Similarly, the output analysis would also only need a little
tweaking. Further work, however, must be done in order to determine how easy
it is to capture this kind of variability in the prototype.

9.4 An Internal Domain-Specific Language

It seems that the OFBiz style approach is common, especially in the context of
Java web application frameworks. We do, however, want to further extend our

� �
1 public ModelAndView handleRequest
2 (HttpServletRequest request , HttpServletResponse response)..{
3 String itemId = request.getParameter("itemId");
4 Item item = this.petStore.getItem(itemId);
5 Map model = new HashMap ();
6 model.put("item", item);
7 model.put("product", item.getProduct ());
8 return new ModelAndView("Item", model);
9 }� �
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claim about this approach. The use of attributes stored in maps can be thought
of as an internal domain-specific language (DSL) hosted in the Java language.
Let us call this language the Attribute DSL. The Attribute DSL contains the
following five language constructs:

Construct Meaning

java.util.Map.get(x) reads an attribute x

java.util.Map.put(x, y) assigns value y to attribute x

java.util.Map.remove(x) deletes an attribute x

org.ofbiz.base.util.UtilMisc.toMap(...) batch assignment of values

java.util.Map.clear() batch deletion of attributes

The Attribute DSL is weakly typed in contrast to Java. So by using this DSL
within Java, we lose static guarantees. Reading an attribute is a good example
of this loss; the existence of the Customer attribute is checked only at runtime,
and the type of the attribute value is checked only at runtime. The introduction
of generic types in Java 5.0 does not solve this problem since a single input map
may contain attributes of type String, Customer and Integer. The most specific
java.util.Map type that can hold these attribute is Map<String,Object>,
which means that all attributes will have compile-time type Object.

Customer customer = (Customer) context.get("Customer");

Fortunately, OFBiz provides us with the metadata needed by our analysis to
re-establish the previously lost static guarantees:

<attribute name="Customer" type="dk.itu.Customer" ../>

The existence of these metadata may explain why OFBiz developers feel
confident leaving out the explicit runtime checks that one would expect in the
above code.
The analyses that we have provided in the previous sections provide the

static guarantees of definedness and type correctness that are missing from the
Attribute DSL. The input attribute analysis is really a standard compiler check
for variables being in scope when used, and the output attribute analysis is a
standard compiler check for definite assignment.

10 Related Work

This work is influenced mainly by two areas of research: framework-completion
and static semantic checking of weakly typed languages.
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10.1 Framework-Completion

Framework-completion code is similar to code customizations in the sense that
they conform to predefined interfaces and makes use of framework-provided
methods. The code customizations that we have described are a bit more
monolithic than framework-completion code which typically is split between
multiple methods and relies heavily on framework callbacks.
Fairbanks et al. [16] have investigated framework-completion code in the

Eclipse and the Java Applet framework and identified API complexity as a key
problem in development. To help developers they propose design fragments, a
kind of framework-completion recipes expressed in XML. These design fragments
are similar to OFBiz service definitions in the sense that they contain extra
metadata. The tool support for design fragments is of a more syntactic nature
than our plugin which on the other hand relies more on semantics in the form
of data flow. Other related work in this category is recent papers on framework-
specific modelling languages that synthesize metadata and code in a higher-level
language [17, 18].

10.2 Static Semantic Checking of Weakly Typed Languages

The idiom of storing attributes in maps has, as described in section 9, the
unfortunate consequence that the type system is weakened. Our flow analyses
are a way of providing static guarantees in spite of this weakened type system.
There are several pieces of related work in area of weakly typed languages.
Wright and Cartwright [19] have suggested the concept of soft typing based on
work in Scheme. The main idea is to provide type information for the compiler
by relying on a generalization of Hindley-Milner type inference. This work has
been extended to other languages such as JavaScript [20] and Erlang [21]. Our
work has a similar purpose but can be distinguished by the fact that we rely on
two artifacts: metadata and code as opposed to merely code. Another related
approach which relies heavily on data flow analysis is Christensen et al. [22].
Their focus is on dynamically generated string expressions such as SQL queries
but the goal is similar to ours.

11 Conclusion

The use of XML and Java as a hybrid development platform for configurable
enterprise systems leads to inconsistencies between metadata and code cus-
tomizations. We have formalized the consistency constraints for a concrete
platform, viz. OFBiz, and provided a set of dataflow analyses adapted to this
platform. The analyses are implemented in the a tool that we have successfully
applied to OFBiz. Using the tool, we have detected a large number of errors as
well as elicited very positive feedback from the OFBiz community. Our overall
contributions in this paper are:

– A formalization of the consistency constraints between metadata and code
customizations in OFBiz.
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– A set of framework-specific adaptions of dataflow analyses based on this
formalization.
– A working implementation of these analyses in the form of an Eclipse plugin.
– An empirical validation of the tool by analyzing production code and eliciting
feedback from OFBiz developers.
– A discussion of the limitations of the analyses, and the trade-off between
soundness (no false negatives) and precision (only few false positives).
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