
Nested datatypes with generalized Mendler
iteration: map fusion and the example of the

representation of untyped lambda calculus with
explicit flattening

Ralph Matthes

Institut de Recherche en Informatique de Toulouse (IRIT)
C. N. R. S. et Université Paul Sabatier (Toulouse III)
118 route de Narbonne, F-31062 Toulouse Cedex 9

Abstract. Nested datatypes are families of datatypes that are indexed
over all types such that the constructors may relate different family mem-
bers. Moreover, the argument types of the constructors refer to indices
given by expressions where the family name may occur. Especially in
this case of true nesting, there is no direct support by theorem provers
to guarantee termination of functions that traverse these data structures.
A joint article with A. Abel and T. Uustalu (TCS 333(1–2), pp. 3–
66, 2005) proposes iteration schemes that guarantee termination not by
structural requirements but just by polymorphic typing. They are generic
in the sense that no specific syntactic form of the underlying datatype
“functor” is required. In subsequent work (accepted for the Journal of
Functional Programming), the author introduced an induction principle
for the verification of programs obtained from Mendler-style iteration of
rank 2, which is one of those schemes, and justified it in the Calculus
of Inductive Constructions through an implementation in the theorem
prover Coq.
The new contribution is an extension of this work to generalized Mendler
iteration (introduced in Abel et al, cited above), leading to a map fu-
sion theorem for the obtained iterative functions. The results and their
implementation in Coq are used for a case study on a representation of
untyped lambda calculus with explicit flattening. Substitution is proven
to fulfill two of the three monad laws, the third only for ”hereditarily
canonical” terms, but this is rectified by a relativisation of the whole
construction to those terms.

1 Introduction

Nested datatypes [1] are families of datatypes that are indexed over all types
and where different family members are related by the datatype constructors.
Let κ0 stand for the universe of (mono-)types that will be interpreted as sets
of computationally relevant objects. Then, let κ1 be the kind of type transfor-
mations, hence κ1 := κ0 → κ0. A typical example would be List of kind κ1,
where List A is the type of finite lists with elements from type A. But List

is not a nested datatype since the recursive equation for List , i. e., List A =
1 + A× List A, does not relate lists with different indices. A simple example of
a nested datatype where an invariant is guaranteed through its definition are
the powerlists [2] (or perfectly balanced, binary leaf trees [3]), with recursive
equation PList A = A+ PList(A× A), where the type PList A represents trees
of 2n elements of A with some n ≥ 0 (that is not fixed) since, throughout this
article, we will only consider the least solutions to these equations. The basic
example where variable binding is represented through a nested datatype is a
typeful de Bruijn representation of untyped lambda calculus, following ideas of
[4–6]. The lambda terms with free variables taken from A are given by Lam A,
with recursive equation Lam A = A+Lam A×Lam A+Lam(option A). The first
summand gives the variables, the second represents application of lambda terms
and the interesting third summand stands for lambda abstraction: An element
of Lam(option A) (where option A is the type that has exactly one more element
than A, namely None, while the injection of A into option A is called Some)
is seen as an element of Lam A through lambda abstraction of that designated
extra variable that need not occur freely in the body of the abstraction.

Programming with nested datatypes is possible in the functional program-
ming language Haskell, but this article is concerned with frameworks that guar-
antee termination of all expressible programs, such as the Coq theorem prover
[7] that is based on the Calculus of Inductive Constructions (CIC), presented
with details in [8], which only recently (since version 8.1 of Coq) evolved towards
a direct support for many nested datatypes that occur in practice, e. g., PList
and Lam are fully supported with recursion and induction principles. Although
Coq is officially called the “Coq proof assistant”, it is already in itself1 a func-
tional programming language. This is certainly not surprising since it is based on
an extension of polymorphic lambda calculus (system Fω), although the default
type-theoretic system of Coq since version 8.0 is “pCIC”, namely the Predicative
Calculus of (Co)Inductive Constructions. System Fω is also the framework of the
article with Abel and Uustalu [10] that presents a variety of terminating iteration
principles on nested datatypes for a notion of nested datatypes that also allows
true nesting, which is not supported by the aforementioned recent extension of
CIC. A nested datatype will be called “truly nested” (non-linear [11]) if the
intuitive recursive equation for the inductive family has at least one summand
with a nested call to the family name, i. e., the family name appears somewhere
inside the type argument of a family name occurrence of that summand. Our
example throughout this article is lambda terms with explicit flattening [12],
with the recursive equation

LamE A = A+ LamE A× LamE A+ LamE (option A) + LamE (LamE A) .

The last summand qualifies LamE as truly nested datatype: LamE A is the type
argument to LamE .

1 Not to speak of the program extraction facility of Coq that allows to obtain programs
in OCaml, Scheme and Haskell from Coq developments in an automatic way [9].

2

Even without termination guarantees, the algebra of programming [13] shows
the benefits of programming recursive functions in a structured fashion, in par-
ticular with iterators: there are equational laws that allow a calculational way
of verification. Also for nested datatypes, laws have been important from the
beginning [1]. However, no reasoning principles, in particular no induction prin-
ciples, were studied in [10] on terminating iteration (and coiteration) principles.
Newer work by the author [14] integrates rank-2 Mendler iteration into CIC and
also justifies an induction principle for them. This is embodied in the system
LNMIt , the “logic for natural Mendler-style iteration”, defined in Section 3.1.
This system integrates termination guarantees and calculational verification in
one formalism and would also allow dependently-typed programming on top of
nested datatypes. Just to recall, termination is also of practical concern with de-
pendent types, namely that type-checking should be decidable: If types depend
on object terms, object terms have to be evaluated in order to verify types,
as expressed in the convertibility rule. Note, however, that this only concerns
evaluation within the definitional equality (i. e., convertibility), henceforth de-
noted by '. Except from the above intuitive recursive equations, = will denote
propositional equality throughout: this is the equality type that requires proof
and that satisfies the Leibniz principle, i. e., that validity of propositions is not
affected by replacing terms by equal (w. r. t. =) terms.

The present article is concerned with an extension of LNMIt to a system
LNGMIt that has generalized Mendler-iteration GMIt , introduced in [10], in
addition to plain Mendler-iteration that is provided by LNMIt . Generalized
Mendler-iteration is a scheme encompassing generalized folds [11, 3, 15]. In par-
ticular, the efficient folds of [15] are demonstrated to be instances of GMIt in
[10], and the relation to the gfolds of [11] is discussed there. Perhaps surprisingly,
GMIt could be explained within Fω through MIt . In a sense, this all boils down
to the use of a syntactic form of right Kan extensions as the target constructor
Gκ1 of the polymorphic iterative functions of type ∀Aκ0 . µFA → GA, where
µF denotes the nested datatype [10, Section 4.3]. (These Kan extension ideas
are displayed in more detail using Haskell in [16], but only in a setting that
excludes truly nested datatypes although the type system of current Haskell
implementations has no problems with them.)

The main theorem of [14] is trivially carried over to the present setting,
i. e., just by the Kan extension trick, the justification of LNMIt within CIC
with impredicative universe Set =: κ0 and propositional proof irrelevance is
carried over to LNGMIt . Impredicativity of κ0 is needed here since syntactic Kan
extensions use impredicative means for κ0 in order to stay within κ1. However,
LNMIt and LNGMIt are formulated as extensions of pCIC with its predicative
Set as κ0.

The functions that are defined by a direct application of GMIt are uniquely
determined (up to pointwise propositional equality) by their recursive equation,
under a reasonable extensionality assumption. It is shown when these functions
are themselves extensional and when they are “natural”, and what natural has
to mean for them.

3

By way of the example of lambda terms with explicit flattening—the truly
nested datatype LamE—the merits of the general theorems about LNGMIt will
be studied, mainly by a representation of parallel substitution on LamE using
GMIt and a proof of the monad laws for it. One of the laws fails in general,
but it can be established for the hereditarily canonical terms. Their inductive
definition (using the inductive definition mechanism of pCIC) refers to the notion
of free variables that is obtained from the scheme MIt . The whole development
for LamE can be interpreted within the hereditarily canonical terms, and for
those, parallel substitution is shown to be a monad.

All the concepts and results have been formalised in the Coq system, also
using module functors having as parameter a module type with the abstract
specification of LNGMIt , in order to separate the impredicative justification from
the predicative formulation and its general consequences that do not depend on
an implementation/justification. The Coq code is available [17] and is based on
[18].

The following section 2.1 introduces to the Mendler style of obtaining termi-
nating recursive programs and develops the notions of free variables and renam-
ing in the case study. It also discusses extensionality and naturality. Section 2.2
presents GMIt and defines a representation of substitution for the case study,
leading to a list of properties one would like to prove about it. In Section 3.1,
the already existing system LNMIt with the logic for MIt is properly defined,
while Section 3.2 defines the new extension LNGMIt as a logic for GMIt and
proves some general results. The question of naturality for functions that are
defined through GMIt is addressed in Section 4. General results about proving
naturality are presented, one of them is map fusion. Section 5 problematizes the
results obtained so far in the case study. Hereditary canonicity is the key notion
that allows to pursue that case study. Section 6 concludes.

Acknowledgements: To Andreas Abel for all the joint work in this field and
some of his LATEX macros and the figure I reused from earlier joint papers, and
to the referees for their helpful advice that I could only partially integrate in
view of the length of this article. In an early stage of the present results, I have
benefitted from support by the European Union FP6-2002-IST-C Coordination
Action 510996 “Types for Proofs and Programs”.

2 Mendler-style Iteration

Mendler-style iteration schemes, originally proposed for positive inductive types
[19], come with a termination guarantee, and termination is not based on syn-
tactic criteria (that all recursive calls are done with “smaller” arguments) but
just on types (called “type-based termination” in [20]).

2.1 Plain Mendler-style Iteration MIt

In order to fit the above intuitive definition of LamE into the setting of Mendler-
style iteration, the notion of rank-2 functor is needed. Their kind is defined as

4

κ2 := κ1 → κ1. Any constructor F of kind κ2 qualifies as rank-2 functor for
the moment, and µF : κ1 denotes the generated family of datatypes. For our
example, set

LamEF := λXκ1λAκ0 . A+XA×XA+X(option A) +X(XA)

and LamE := µLamEF . In general, there is just one datatype constructor for
µF , namely in : F (µF) ⊆ µF , using X ⊆ Y := ∀Aκ0 . XA → Y A for any
X,Y : κ1 as abbreviation for the respective polymorphic function space. For
LamE , more clarity comes from the four derived datatype constructors

varE : ∀Aκ0 . A→ LamE A ,
appE : ∀Aκ0 .LamE A→ LamE A→ LamE A ,
absE : ∀Aκ0 .LamE (option A)→ LamE A ,
flatE : ∀Aκ0 .LamE (LamE A)→ LamE A ,

where, for example, flatE is defined as λAκ0λeLamE(LamE A). in A (inr e), with
right injection inr (here, we assume that + associates to the left), and the other
datatype constructors are defined by the respective sequence of injections (see
[12] or [10, Example 8.1]).2 From the explanations of Lam in the introduction, it
is already clear that varE , appE and absE represent the construction of terms
from variable names, application and lambda abstraction in untyped lambda
calculus (their representation via a nested datatype has been introduced by [5,
6]).

A simple example can be given as follows: Consider the untyped lambda
term λz. z x1 with the only free variable x1. For future extensibility, think of the
allowed set of variable names as option A with type variable A. The designated
element None of option A shall be the name for variable x1. λz. z x1 is represented
by

absE (appE (varE None) (varE (Some None))) ,

with None and Some None of type option(option A), hence with the shift that
is characteristic of de Bruijn representation. Obviously, the representation is of
type ∀Aκ0 .LamE (option A), and it could have been done in a similar way with
Lam instead of LamE .

In [4], a lambda-calculus interpretation of monad multiplication of Lam is
given that has the type of flatE (with LamE replaced by Lam), but here, this
is just a formal (non-executed) form of an integration of the lambda terms that
constitute its free variable occurrences into the term itself. We call flatE ex-
plicit flattening. It does not do anything to the term but is another means of
constructing terms.

For an example, consider t := λy. y {λz. z x1} {x2}, where the braces shall
indicate that the term inside is considered as the name of a variable. If these
terms-as-variables were integrated into the term, i. e., if t were “flattened”, one
would obtain λy. y (λz. z x1)x2. This is a trivial operation in this example. In
2 In Haskell 98, one would define LamE through the types of its datatype constructors

whose names would be fixed already in the definition of LamE .

5

[14], it is recalled that parallel substitution can be decomposed into renaming,
followed by flattening. Under the assumption that substitution is a non-trivial
operation, flattening and renaming cannot both be considered trivial. Through
the explicit form of flattening, its contribution to the complexity of substitution
can be studied in detail.

We want to represent t as term of type ∀Aκ0 .LamE (option(optionA)), in
order to accommodate the two free variables x1, x2. We instantiate the repre-
sentation above for λz. z x1 by option A in place of A and get a representation
as term t1 : LamE (option(optionA)). x2 is represented by

t2 := varE (Some None) : LamE (option(optionA)) .

Now, t shall be represented as the term

flatE (absE t3) : LamE (option(optionA)) ,

hence with t3 : LamE (option (LamE (option(optionA)))), defined as

t3 := appE
(

appE (varE None) (varE (Some t1))
)

(varE (Some t2)) ,

that stands for y {λz. z x1} {x2}. Finally, we can quantify over the type A.

Mendler iteration of rank 2 [10] can be described as follows: There is a con-
stant

MIt : ∀Gκ1 . (∀Xκ1 . X ⊆ G→ FX ⊆ G)→ µF ⊆ G

and the iteration rule

MIt GsA (in A t) ' s (µF) (MIt Gs)A t .

In a properly typed left-hand side, t has type F (µF)A and s is of type

∀Xκ1 . X ⊆ G→ FX ⊆ G .

The term s is called the step term of the iteration since it provides the inductive
step that extends the function from the type transformation X that is to be
viewed as approximation to µF , to a function from FX to G.

Our first example of an iterative function on LamE is the function EFV :
LamE ⊆ List (EFV is a shorthand for LamEToFV) that gives the list of the
names of the free variables (with repetitions in case of multiple occurrences).
We want to have the following definitional equations that describe the recursive
behaviour (we mostly write type arguments as indices in the sequel):

EFVA (varEA a) ' [a] ,
EFVA (appEA t1 t2) ' EFVA t1 + EFVA t2 ,
EFVA (absEA r) ' filterSomeA (EFVoption A r) ,
EFVA (flatEA e) ' flatten(map EFVA (EFVLamE A e)) .

Here, we denoted by [a] the singleton list that only has a as element and by + list
concatenation. Moreover, filterSome : ∀Aκ0 .List(option A) → List A removes

6

all the occurrences of None from its argument and also removes the injection
Some from A to option A from the others. This is nothing but saying that the
extra element None of option A is the variable name that is considered bound
in absEA r, and that therefore all its occurrences have to be removed from the
list of free variables. The set of free variables of flatEA e is the union of the sets
of free variables of the free variables of e, which are still elements of LamE A.
This is expressed by the usual mapping function

map : ∀Aκ0∀Bκ0 . (A→ B)→ List A→ List B

for lists and the operation flatten : ∀Aκ0 .List(List A) → List A that concate-
nates all the lists in its argument to a single list, and we did not mention the
types with which the type arguments of map and flatten are instantiated.3 We
now argue that there is such a function EFV , by showing that it is directly
definable as MIt List sEFV for some closed term

sEFV : ∀Xκ1 . X ⊆ List → LamEFX ⊆ List ,

and therefore, we have the termination guarantee (in [10], a definition of MIt
within Fω is given that respects the iteration rule even as reduction from left to
right, hence this is iteration as is the iteration over the Church numerals of which
this is still a generalization). Using an intuitive notion of pattern matching, we
define

sEFV := λXκ1λitX⊆ListλAκ0λtLamEF X A.match twith
| inl(inl(inl aA)) 7→ [a]
| inl(inl(inr(tXA1 , tXA2))) 7→ itA t1 + itA t2
| inl(inr rX(option A)) 7→ filterSome(itoption A r)
| inr eX(XA) 7→ flatten(map itA (itXA e)) .

For EFV := MIt List sEFV , the required equational specification is obviously
satisfied (since the pattern-matching mechanism behaves properly with respect
to definitional equality ').4

The visible reason why Mendler’s style can guarantee termination without
any syntactic descent (in which way can the mapping over EFVA be seen as
“smaller”?) is the following: the recursive calls come in the form of uses of it,
which does not have type LamEF ⊆ List but just X ⊆ List , and the type argu-
ments of the datatype constructors are replaced by variants that only mention
X instead of LamE . So, the definitions have to be uniform in that type trans-
formation variable X, but this is already sufficient to guarantee termination (for

3 It would have been cleaner to use just one function instead, namely the function
flat map : ∀Aκ0∀Bκ0 . (A → List B) → List A → List B, where flat mapA,B f ` is
the concatenation of all the B-lists f a for the elements a of the A-list `. Note that
flatten is monad multiplication for the list monad and could also be made explicit
by a truly nested datatype.

4 In Haskell 98, our specification of EFV , together with its type, can be used as a
definition, but no termination guarantee is obtained.

7

the rank-1 case of inductive types, this has been discovered in [21] by syntactic
means and, independently, by the author with a semantic construction [22]).

A first interesting question about the results of EFVA t is how they behave
with respect to renaming of variables. First, define for any type transformation
X : κ1 the type of its map term as (from now, omit the kind κ0 from A and B)

monX := ∀A∀B. (A→ B)→ XA→ XB .

Clearly, map : monList , but also renaming lamE will have a type of this form,
more precisely, lamE : monLamE , and lamE f t has to represent t after renam-
ing every free variable occurrence a in t by fa. It would be possible to define
lamE by help of GMIt introduced in the next section, but it will automatically
be available in the systems LNMIt and LNGMIt that will be described in Sec-
tion 3. Therefore, we content ourselves in displaying its recursive behaviour (we
omit the type arguments to lamE):

lamE f (varEA a) ' varEB(fa) ,
lamE f (appEA t1 t2) ' appEB (lamE f t1) (lamE f t2) ,
lamE f (absEA r) ' absEB(lamE (option map f) r) ,

lamE f (flatEA e) ' flatEB

(
lamE

(
λtLamE A. lamE (λxA. fx) t

)
e
)
.

Here, in the second clause, yet another map term occurs, namely the canonical
option map : mon option, so that lamE is called with type arguments option A
and option B. In the final clause, the outer call to lamE is with type arguments
LamE A and LamE B, while the inner one stays with A and B. The right-hand
side in the last case is unpleasantly η-expanded, and one would have liked to see
flatEB(lamE (lamE f) e) instead. However, these two terms are not definitionally
equal.

For any X : κ1 and map term m : monX, define the following proposition

ext m := ∀A∀B∀fA→B∀gA→B . (∀aA. fa = ga)→ ∀rXA.mAB f r = mAB g r .

It expresses that m only depends on the extension of its functional argument,
which will be called extensionality of m in the sequel. In intensional type theory
such as CIC, it does not hold in general.5 In LNMIt and LNGMIt , the canonical
map term mapµF that comes with µF is extensional. Hence, lamE of our example
will be extensional, and the right-hand side in the last case is propositionally
equal to the simpler form considered above.

We can now state the “interesting question”, mentioned before: Can one
prove

∀A∀B∀fA→B∀tLamE A.EFVB (lamE f t) = map f (EFVA t) ?

This is an instance of the question for polymorphic functions j of type X ⊆ Y
whether they behave propositionally as a natural transformation from (X,mX)
5 There are deep studies [23–25] on a reconciliation of intensional type theory with

extensionality for function spaces. However, we will stick with CIC.

8

to (Y,mY), given map functions mX : monX and mY : monY . Here, the pair
(X,mX) is seen as a functor although no functor laws are required (for the
moment). The proposition that defines j to be such a natural transformation is

j ∈ N (mX, mY) := ∀A∀B∀fA→B∀tXA. jB (mX AB f t) = mY AB f (jA t) .

The system LNMIt , described in Section 3.1, allows to answer the above ques-
tion by showing EFV ∈ N (lamE , map). This is in contrast to pure functional
programming, where, following [26], naturality is seen as free, namely as a spe-
cific instance of parametricity for parametric equality. In intensional type theory
such as our LNMIt and LNGMIt (see Section 3.2), naturality has to be proven
on a case by case basis.

By (plain) Mendler iteration MIt , one can also define a function eval :
LamE ⊆ Lam that evaluates all the explicit flattenings and thus yields the
representation of a usual lambda term [14]. In [14], also eval is seen in LNMIt
to be a natural transformation.

2.2 Generalized Mendler-style iteration GMIt

We would like to define a representation of substitution on LamE . As for Lam,
the most elegant solution is to define a parallel substitution

substE : ∀A∀B. (A→ LamE B)→ LamE A→ LamE B ,

where for a substitution rule f : A→ LamE B, the term substEA,B f t : LamE B
is the result of substituting every variable a : A in the term representation
t : LamE A by the term f a : LamE B. The operation substE would then qualify
as Kleisli extension operation of a monad in Kleisli form (a. k. a., bind operation
in Haskell).

Evidently, the desired type of substE is not of the form LamE ⊆ G for any
G : κ1. However, it is equivalent (just move the universal quantification over B
across an implication) to LamE ⊆ RanLamE LamE , with

RanH G := λA.∀B. (A→ HB)→ GB

for any H,G : κ1, which is a syntactic form of a right Kan extension of G
along H. This categorical notion has been introduced into the research on nested
datatypes in [5], while in [12], it was first used to justify termination of iteration
schemes, and in [10], it served as justification of generalized Mendler iteration,
to be defined next. Its motivation was better efficiency (it covers the efficient
folds of [15], see [10]), but visually, this is just hiding of the Kan extension
from the user. Technically, this also means a formulation that does not need
impredicativity of the universe κ0 because, only with impredicative κ0, we have
RanH G : κ1. Hence, we stay within pCIC.

The trick is to use the notion of relativized refined containment [10]: given
X,H,G : κ1, define the abbreviation

X ≤H G := ∀A∀B. (A→ HB)→ XA→ GB.

9

Generalized Mendler iteration consists of a constant (the iterator)

GMIt : ∀Hκ1∀Gκ1 . (∀Xκ1 . X ≤H G→ FX ≤H G)→ µF ≤H G

and the generalized iteration rule

GMIt H GsAB f (in A t) ' s (µF) (GMIt H Gs)AB f t .

As mentioned before, GMIt can again be justified within Fω, hence ensuring
termination of the rewrite system underlying '.

Coming back to substE , we note that its desired type is LamE ≤LamE LamE ,
and in fact, we can define substE := GMIt LamE LamE ssubstE with

ssubstE : ∀Xκ1 . X ≤LamE LamE → LamEF X ≤LamE LamE ,

given by (note that we start omitting the type parameters at many places)

λXκ1λitX≤LamELamEλAλBλfA→LamE BλtLamEF X A.match twith
| inl(inl(inl aA)) 7→ fa
| inl(inl(inr(tXA1 , tXA2))) 7→ appE (itA,B f t1) (itA,B f t2)
| inl(inr rX(option A)) 7→ absE (itoption A,option B (liftE f) r)
| inr eX(XA) 7→ flatE (itXA,LamE B(varELamE B ◦ (itA,B f)) e)) .

Here, we used an analogue of lifting for Lam in [6],

liftE : ∀A∀B. (A→ LamE B)→ option A→ LamE (option B) ,

definable by pattern-matching with properties

liftEA,B f None ' varEoption BNone ,
liftEA,B f (Some a) ' lamE Some (fa) ,

where renaming lamE is essential.
Note that varELamE B ◦ (itA,B f) has type XA→ LamE (LamE B) (the infix

operator ◦ denotes composition of functions). From the point of view of clarity
of the definition, we would have much preferred flatE (lamE (itA,B f) e) to the
term in the last clause of the definition of ssubstE . It would only type-check after
instantiating X with LamE , hence generalized Mendler iteration cannot accept
this alternative. However, a system of sized nested datatypes [27] could assign
more informative types to lamE in order to solve this problem, but there do not
yet exist systematic means of program verification for them.

Our definition only satisfies

substE f (flatE e) ' flatE (substE (varE ◦ (substE f)) e) ,

to be seen immediately from the generalized iteration rule (assuming again
proper '-behaviour of pattern matching). Note that substE f (varE a) ' fa
is already the verification of the first of the three monad laws for the purported
monad (LamE , varE , substE) in Kleisli form (where varE is the unit of the
monad).

The following will be provable about substE in the system LNGMIt , where
we mean the universal (and well-typed) closure of all statements:

10

1. (∀aA. fa = ga)→ substE f t = substE g t
2. (∀aA. a ∈ EFV t→ fa = ga)→ substE f t = substE g t
3. lamE g (substE f t) = substE ((lamE g) ◦ f) t
4. substE g (lamE f t) = substE (g ◦ f) t
5. substE g (substE f t) = substE ((substE g) ◦ f) t
6. EFV (substE f t) = flatten(map (EFV ◦ f) (EFV t))

The first is extensionality, the second refined extensionality, the third and fourth
are the two halves of naturality (number 4 appears to be an instance of map
fusion, as studied in [15]), the fifth is one of the other two monad laws, and the
last a means to express that EFV is a monad morphism from LamE (that does
not satisfy the last remaining monad law) to List . An easy consequence from it
is b ∈ EFV (substE f t)→ ∃a. a ∈ EFV t ∧ b ∈ EFV (fa). This consequence and
the first five statements are all intuitively true for substitution, renaming and the
enumeration of free variables, and they were all known for Lam, hence without
explicit flattening. The point here is that also the truly nested datatype LamE
can be given a logic that allows such proofs within intensional type theory, hence
in a system with static termination guarantee, interactive program construction
(in implementations such as Coq) and no need to represent the programs in
a programming logic: the program’s behaviour with respect to ' is directly
available.

3 Logic for Natural Generalized Mendler-style Iteration

First, we recall LNMIt from [14], then we extend it by GMIt and its definitional
rules in order to obtain its extension LNGMIt .

3.1 LNMIt

In LNMIt , for a nested datatype µF , we require that F : κ2 preserves extensional
functors. In pCIC, we may form for X : κ1 the dependently-typed record EX
that contains a map term m : monX, a proof e of extensionality of m, i. e., of
ext m, and proofs f1, f2 of the first and second functor laws for (X,m), defined
by the propositions

fct1m := ∀A∀xXA.mAA (λy.y)x = x ,
fct2m := ∀A∀B∀C ∀fA→B ∀gB→C ∀xXA.mAC (g ◦ f)x = mBC g (mAB f x).

Given a record ef of type EX, Coq’s notation for its field m is m ef , and likewise
for the other fields. We adopt this notation instead of the more common ef .m.
Preservation of extensional6 functors for F is required in the form of a term
of type ∀Xκ1 . E X → E(FX), and LNMIt is defined to be pCIC with κ0 :=
Set , extended by the constants and rules of Figure 1, adopted from [14]. In

6 While the functor laws are certainly an important ingredient of program verification,
the extensionality requirement is more an artifact of our intensional type theory, as
discussed in Section 2.1.

11

Parameters:
F : κ2

FpE : ∀Xκ1 . EX → E(FX)
Constants:
µF : κ1

mapµF : mon(µF)

In : ∀Xκ1 ∀ef EX∀jX⊆µF . j ∈ N (m ef , mapµF)→ FX ⊆ µF
MIt : ∀Gκ1 . (∀Xκ1 . X ⊆ G→ FX ⊆ G)→ µF ⊆ G
µFInd : ∀P : ∀A.µFA→ Prop.

(
∀Xκ1∀ef EX∀jX⊆µF∀nj∈N (m ef ,mapµF).(

∀A∀xXA. PA(jA x)
)
→ ∀A∀tFXA. PA(In ef j n t)

)
→ ∀A∀rµFA. PA rRules:

mapµF f (In ef j n t) ' In ef j n (m(FpE ef) f t)
MIt s (In ef j n t) ' s (λA. (MIt s)A ◦ jA) t
λAλxµFA. (MIt s)A x ' MIt s

Fig. 1. Specification of LNMIt as extension of pCIC.

LNMIt , one can show the following theorem [14, Theorem 3] about canonical
elements: There are terms ef µF : EµF and InCan : F (µF) ⊆ µF (the canonical
datatype constructor that constructs canonical elements) such that the following
convertibilities hold:

m ef µF ' mapµF ,
mapµF f (InCan t) ' InCan(m (FpE ef µF) f t) ,

MIt s (InCan t) ' s (MIt s) t .

(The proof of this theorem needs the induction rule µFInd in order to show that
mapµF is extensional and satisfies the functor laws. These proofs enter ef µF ,
and In can then be instantiated with X := µF , ef := ef µF and j the identity
on µF with its trivial proof of naturality, to yield the desired InCan.)

This will now be related to the presentation in Section 2.1: The datatype
constructor In is way more complicated than our previous in, but we get back
in in the form of InCan that only constructs the “canonical elements” of the
nested datatype µF . The map term mapµF for µF , which does renaming in
our example of LamE , as demonstrated in Section 2.1, is an integral part of
the system definition since it occurs in the type of In. This is a form of simul-
taneous induction-recursion [28], where the inductive definition of µF is done
simultaneously with the recursive definition of mapµF . The Mendler iterator
MIt has not been touched at all; there is just a more general iteration rule that
also covers non-canonical elements, but for the canonical elements, we get the
same behaviour, i. e., the same equation with respect to '. The crucial part is
the induction principle µFInd , where Prop denotes the universe of propositions
(all our propositional equalities and their universal quantifications belong to it).
Without access to the argument n that assumes naturality of j as a transforma-

12

tion from (X,m ef) to (µF,mapµF), one would not be able to prove naturality
of MIt s, i. e., of iteratively defined functions on the nested datatype µF . The
author is not aware of ways how to avoid non-canonical elements and neverthe-
less have an induction principle that allows to establish naturality of MIt s [14,
Theorem 1].

The system LNMIt can be defined within CIC with impredicative Set , ex-
tended by the principle of proof irrelevance, i. e., by ∀P : Prop ∀pP1 ∀pP2 . p1 = p2.
This is the main result of [14], and it is based on an impredicative construction
of simultaneous inductive-recursive definitions by Capretta [29] that could be
extended to work for this situation. It is also available in the form of a Coq
module [18] that allows to benefit from the evaluation of terms in Coq. For this,
it is crucial that convertibility in LNMIt implies convertibility in that implemen-
tation.

The “functor” LamEF is easily seen to fulfill the requirement of LNMIt to
preserve extensional functors (using [14, Lemma 1 and Lemma 2]). As mentioned
in Section 2.1, LNMIt allows to prove that EFV ∈ N (lamE , map), and this is
an instance of [14, Theorem 1].

3.2 LNGMIt

Let LNGMIt be the extension of LNMIt by the constant GMIt from section 2.2,

GMIt : ∀Hκ1∀Gκ1 . (∀Xκ1 . X ≤H G→ FX ≤H G)→ µF ≤H G ,

and the following two rules:

GMItH,G s f (In ef j n t) ' s (λAλBλfA→HB . (GMItH,G sAB f) ◦ jA) f t ,
λAλBλfA→HBλxµFA.GMItH,G sAB f x ' GMItH,G s .

Theorem [14, Theorem 3] about ef µF and InCan for LNMIt immediately
extends to LNGMIt and yields the following additional convertibility:

GMIt s f (InCan t) ' s (GMIt s) f t ,

which has this concise form only because of the η-rule for GMIt that was made
part of LNGMIt . Thus, we get back the original behaviour of GMIt described
in Section 2.2, but with the derived datatype constructor InCan instead of the
defining datatype constructor in.

Lemma 1. The system LNGMIt can be defined within LNMIt if the universe
κ0 of computationally relevant types is impredicative.

Proof. The proof is nothing but the observation that the embedding of GMItω

into MItω of [10, Section 4.3] extends for our situation of a rank-2 inductive
constructor µF to non-canonical elements, i. e., the full datatype constructor In
instead of only in, considered in that work: define for H,G : κ1 the terms

toGRan := λXκ1λhX≤HGλAλxXAλBλfA→HB . hAB f x ,
fromGRan := λXκ1λhX⊆RanH GλAλBλfA→HBλxXA. hAxB f .

13

These terms establish the logical equivalence of X ≤H G and X ⊆ RanH G :

toGRan : ∀Xκ1 . X ≤H G→ X ⊆ RanH G ,
fromGRan : ∀Xκ1 . X ⊆ RanH G → X ≤H G .

Define for a step term s : ∀Xκ1 . X ≤H G → FX ≤H G for GMItH,G the step
term s′ for MItRanH G as follows:

s′ := λXκ1λhX⊆RanH G . toGRanFX (sX (fromGRanX h)) .

Then, we can define

GMItH,G s := fromGRanµF (MItRanH G s′)

and readily observe that the main definitional rule for GMIt in LNGMIt is in-
herited from that of MIt in LNMIt and that the other rule is immediate from the
definition.7 Impredicativity of κ0 is needed to have RanH G : κ1, as mentioned
in Section 2.2. ut

Corollary 1. The system LNGMIt can be defined within CIC with impredicative
Set, extended by the principle of propositional proof irrelevance, i. e., by ∀P :
Prop ∀pP1 ∀pP2 . p1 = p2.

Proof. Use the the previous lemma and the main theorem of [14] that states the
same property of LNMIt .

[14] is more detailed about how much proof irrelevance is needed for the proof.

Lemma 2 (Uniqueness of GMIt s). Assume H,G : κ1, s : ∀Xκ1 . X ≤H G→
FX ≤H G and h : µF ≤H G (the candidate for being GMIt s). Assume further
the following extensionality property of s (s only depends on the extension of its
first function argument, but in a way adapted to the parameter f):

∀Xκ1∀g, h : X ≤H G. (∀A∀B∀fA→HB∀xXA. g f x = h f x)→
∀A∀B∀fA→HB∀yFXA. s g f y = s h f y .

Assume finally that h satisfies the equation for GMIt s:

∀Xκ1∀ef EX∀jX⊆µF∀nj∈N (m ef ,mapµF)∀A∀B∀fA→HB∀tFXA.
hA,B f (In ef j n t) = s (λAλBλfA→HB . (hA,B f) ◦ jA) f t .

Then, ∀A∀B∀fA→HB∀rµF A. hA,B f r = GMIt s f r.

Proof. By the induction principle µFInd , as for [14, Theorem 2].

Given type constructors X,H,G, the type X ≤H G has an embedded func-
tion space, so there is the natural question whether an inhabitant h of X ≤H G

7 Strictly speaking, we have to define GMIt itself, but this can be done just by ab-
stracting over G, H and s that are only parameters of the construction.

14

only depends on the extension of this function parameter. This is expressed by
the proposition (gext stands for generalized extensionality)

gext h := ∀A∀B∀f, g : A→ HB. (∀aA. fa = ga)→ ∀rXA. hA,B f r = hA,B g r .

The earlier definition of ext is the special instance where X and G coincide and
where H is the identity type transformation Idκ0 := λA.A.

Given type constructors H,G and a term s : ∀Xκ1 . X ≤H G → FX ≤H G,
we say that s preserves extensionality if ∀Xκ1∀hX≤HG. gext h→ gext(s h) holds.

Lemma 3 (Extensionality of GMIt s). Assume type constructors H,G and a
term s : ∀Xκ1 . X ≤H G→ FX ≤H G that preserves extensionality in the above
sense. Then GMIt s : µF ≤H G is extensional, i. e., gext(GMIt s) holds.

Proof. An easy application of µFInd .

Coming back to the representation substE of substitution on LamE from
Section 2.2, straightforward reasoning shows that ssubstE preserves extensional-
ity, hence Lemma 3 yields gext substE , which proves the first item in the list on
page 11. Its refinement, namely the second item in that list,

(∀aA. a ∈ EFV t→ fa = ga)→ substE f t = substE g t ,

needs a direct proof by the induction principle µFInd , where the behaviour of
EFV on non-canonical elements plays an important role, but is nevertheless
elementary.

4 Naturality in LNGMIt

In order to establish an extension of the map fusion law of [15], a notion of
naturality for functionals h : X ≤H G has to be introduced. We first treat the
case where H is the identity Idκ0

. In this case, we omit the argument for H
from X ≤H G and only write X ≤ G. Assume a function h : X ⊆ G and map
terms mX : monX and mG : monG. Figure 2, which is strongly inspired by
[12, Figure 1], recalls naturality, i. e., h ∈ N (mX , mG) is displayed in the form
of a commuting diagram (where commutation means pointwise propositional
equality of the compositions) for any A, B and f : A→ B. The diagonal marked
by h f in Figure 2 can then be defined by either (mG f)◦hA or hB ◦ (mX f), and
this yields a functional of type ∀A∀B. (A→ B)→ XA→ GB, again called h in
[30, Exercise 5 on page 19]. Its type is more concisely expressed as X ≤ G. The
exercise in [30] (there expressed in pure category-theoretic terms) can be seen to
establish a naturality-like diagram of the functional h. Namely, also the diagram
in Figure 3 commutes for all A, B, C, f : A→ B and g : B → C. Moreover, from
a functional h for which the second diagram commutes, one obtains in a unique
way a natural transformation h from X to G with hA being h idA. In category
theory, this is a simple exercise, but in our intensional setting, this allows to
define naturality for any X,G : κ1, mX : monX, mG : monG and h : X ≤ G.

15

A
f // B X A

hA //

h f

&&

mX f

��

GA

mG f

��
X

h

⊆
// G X B

hB // GB

Fig. 2. Naturality of h : X ⊆ G

A
f // B X A

h f //

h(g◦f)

%%LLLLLLLLLLLLLLLLL

mX f

��

GB

mG g

��

B
g // C

X
h

≤
// G X B

h g // GC

Fig. 3. Naturality of h : X ≤ G

Definition 1 (Naturality of h : X ≤ G). Given X,G : κ1, mX : monX,
mG : monG and h : X ≤ G, the functional h is called natural with respect to
mX and mG if it satisfies the following two laws:

1. ∀A∀B∀C∀fA→B∀gB→C∀xXA.mG g (hA,B f x) = hA,C (g ◦ f)x
2. ∀A∀B∀C∀fA→B∀gB→C∀xXA. hB,C g (mX f x) = hA,C (g ◦ f)x

Mac Lane’s exercise [30] can readily be extended to the generality of X ≤H G,
with arbitrary H, and a function h : X ◦H ⊆ G, but with less pleasing diagrams.
We therefore content ourselves with an algebraic description of the parts we need
for LNGMIt .

Definition 2 (Naturality of h : X ≤H G). Given X,H,G : κ1 and h :
X ≤H G, define the two parts of naturality of h as follows: If mH : monH and
mG : monG, define the first part gnat1 mH mG h by

∀A∀B∀C∀fA→HB∀gB→C∀xXA.mG g (hA,B f x) = hA,C ((mH g) ◦ f)x .

If mX : monX, define the second part gnat2 mX h by

∀A∀B∀C∀fA→B∀gB→HC∀xXA. hB,C g (mX f x) = hA,C (g ◦ f)x .

Since Idκ0
has the map term λAλBλfA→BλxA. fx, Definition 1 is an instance

of Definition 2.
The backwards direction of Mac Lane’s exercise for our generalization is now

mostly covered by the following lemma.

16

Lemma 4. Given X,H,G : κ1, mX : monX, mH : monH, mG : monG and
h : X ≤H G such that gnat1 mH mG h and gnat2 mX h hold, the function h⊆ :=
λAλxX(HA). hHA,A (λyHA. y)x : X ◦H ⊆ G is natural: h⊆ ∈ N (mX ?mH , mG).
Here, mX ? mH denotes the canonical map term for X ◦H, obtained from mX

and mH .

Proof. Elementary.

Thus, finally, one can define and argue about functions of type (µF) ◦ H ⊆ G
through (GMIt s)⊆.

Lemma 5 (First part of naturality of GMIt s). Given H,G : κ1, map terms
mH : monH, mG : monG and a term s : ∀Xκ1 . X ≤H G → FX ≤H G that
preserves extensionality. Assume further

∀Xκ1∀hX≤HG. E X → gext h→ gnat1 mH mG h→ gnat1 mH mG (s h) .

Then, GMIt s satisfies the first part of naturality, i. e., gnat1 mH mG (GMIt s).

Proof. Induction with µFInd . The proof does not use the naturality of argument
j, provided by the context of the induction step. Preservation of extensionality
is used in order to apply Lemma 3 for the function representing the recursive
calls, because that function becomes the h of the main assumption on s.

An an instance of this lemma, one can prove the third item in the list on
page 11 on properties of substE .

Theorem 1 (Second part of naturality of GMIt s—map fusion). Given
H,G : κ1 and a term s : ∀Xκ1 . X ≤H G→ FX ≤H G that preserves extension-
ality. Assume further

∀Xκ1∀hX≤HG∀ef EX . gext h→ gnat2 (m ef)h→ gnat2 (m (FpE ef)) (s h) .

Then, GMIt s satisfies the second part of naturality, i. e., gnat2 mapµF (GMIt s).

Proof. Induction with µFInd . Again, we have to use Lemma 3 for the function

h := λAλBλfA→HB . (GMItH,G sAB f) ◦ jA

representing the recursive calls in the right-hand side of the rule for GMIt in the
definition of LNGMIt . Since we also have to provide a proof of gnat2 (m ef)h,
we crucially need naturality of j that comes with the induction principle.

Although the proof is quite simple (again, see the full proof in the Coq develop-
ment [17]), this is the main point of the complicated system LNGMIt with its
inductive-recursive nature: ensure naturality to be available for j inside the in-
ductive step of reasoning on µF . One might wonder whether this theorem could
be an instance of [14, Theorem 1], using the definition of GMIt in Lemma 1 for
impredicative κ0. This is not true, due to problems with extensionality: Proving

17

propositional equality between functions rarely works in intensional type theory
such as CIC, and the use of RanH G in the construction of Lemma 1 introduces
values of function type.

As an instance of this theorem, one can prove the fourth item in the list
on page 11 on properties of substE . The fifth item (the interchange law for
substitution that is one of the monad laws) can then be proven by the induction
principle µFInd , using extensionality and both parts of naturality (hence, the
items 1, 3 and 4 that are based on Lemma 3, Lemma 5 and Theorem 1) in the
case for the representation of lambda abstraction (recall that liftE is defined by
help of lamE).

5 Completion of the Case Study on Substitution

The last item on page 11 in the list of properties of substE can be proven by the
induction principle µFInd without any results about LamE , just with several
preparations about lists, also using naturality of EFV in the proof of the case
for the representation of lambda abstraction. Thus, that property list can be
considered as finished.

We are not yet fully satisfied: The last monad law is missing, namely

∀A∀tLamE A. substE varEA t = t .

Any proof attempt breaks due to the presence of non-canonical terms in LNGMIt .
We call any term of the form InCan t with t : F (µF)A a canonical term in µFA,
but since this notion is not recursively applied to the subterms, we cannot hope
to prove the above monad law for all the canonical terms in the family LamE
either.

The following is an ad hoc notion for our example. For the truly nested
datatype Bush of “bushes” with Bush A = 1 + A × Bush(Bush A), a similar
notion has been studied by the author in [14, Section 4.2], also introducing a
“canonization” function that transforms any bush into a hereditarily canonical
bush and that does not change hereditarily canonical bushes with respect to
propositional equality.

Definition 3 (Hereditarily canonical term). Define the notion of hered-
itarily canonical elements of the nested datatype LamE, the predicate can :
∀A.LamE A→ Prop, inductively by the following four closure rules:

– ∀A∀aA. can (varE a)
– ∀A∀tLamE A

1 ∀tLamE A
2 . can t1 → can t2 → can(appE t1 t2)

– ∀A∀rLamE(option A). can r → can (absE r)
– ∀A∀eLamE(LamE A). can e→ (∀tLamE A. t ∈ EFV e→ can t)→ can (flatE e)

This definition is strictly positive and, formally, infinitely branching. However,
there are always only finitely many t that satisfy t ∈ EFV e. System pCIC
does not need this latter information for having induction principles for can,

18

and LNGMIt comprises pCIC, but this is not the part that is under study here.
Therefore, all proofs by induction on can are not considered to be of real interest
for this article. Except for the information which results are used in these proofs.

Note once again the simultaneous inductive-recursive structure that is avoided
here: If only hereditarily canonical elements were to be considered from the be-
ginning, one would have to define their free variables simultaneously since the
last clause of the definition refers to them at a negative position.

5.1 Results for Hereditarily Canonical Terms

Using refined extensionality of substE (property number 2 in the list on page 11)
in the induction step for flatE e, induction on can provides the relativization of
the missing monad law to hereditarily canonical terms:

∀A∀tLamE A. can t→ substE varEA t = t .

Renaming lamE preserves hereditary canonicity:

∀A∀B∀fA→B∀tLamE A. can t→ can(lamE f t) .

This is proven by induction on can, and the crucial flatE case needs the following
identification of free variables of lamE f t:

∀A∀B∀fA→B∀tLamE A∀bB . b ∈ EFV (lamE f t)→ ∃aA. a ∈ EFV t ∧ b = fa ,

which is nearly an immediate consequence of naturality of EFV .
Analogously, substE preserves hereditary canonicity:

∀A∀B∀fA→LamE B∀tLamE A.
(∀aA. a ∈ EFV t→ can(fa))→ can t→ can(substE f t) .

Again, this is proven by induction on can, and again, the crucial case is with
flatE e, for which free variables of substE f t have to be identified, but this has
already been mentioned as a consequence of property number 6 in the list on
page 11.

As an immediate consequence of the last monad law, preservation of heredi-
tary canonicity by lamE and the second part of naturality of substE (item 4 of
the list, proven by map fusion), one can see lamE as a special instance of substE
for hereditarily canonical elements:

∀A∀B∀fA→B∀tLamE A. can t→ lamE f t = substE (varEB ◦ f) t .

From this, evidently, we get the more perspicuous equation for substE f (flatE e),
discussed on page 10, but only for hereditarily canonical e and only with propo-
sitional equality:

∀A∀B∀fA→LamE B∀eLamE(LamE A). can e→
substE f (flatE e) = flatE (lamE (substE f) e) .

19

5.2 Hereditarily Canonical Terms as a Nested Datatype

Define LamEC := λA. {t : LamE A | can t} : κ1. The set comprehension notation
stands for the inductively defined sig of Coq (definable within pCIC, hence
within LNGMIt) which is a strong sum in the sense that the first projection
π1 : LamEC ⊆ LamE yields the element t and the second projection the proof
of can t.

Thus, we encapsulate hereditary canonicity already in the family LamEC .
We will present LamEC as a truly nested datatype, but not one that comes as
a µF from LNGMIt .

It is quite trivial to define datatype constructors

varEC : ∀A.A→ LamEC A ,
appEC : ∀A.LamEC A→ LamEC A→ LamEC A ,
absEC : ∀A.LamEC (option A)→ LamEC A

from their analogues in LamE . For the construction of

flatEC : ∀A.LamEC (LamEC A)→ LamEC A ,

the problem is as follows: Assume e : LamEC (LamEC A). Then, its first projec-
tion, π1e, is of type LamE (LamEC A). Therefore, the first projection of flatEC e
has to be

t := flatE (lamE (π1)A (π1e)) : LamE A ,

with the renaming with (π1)A : LamEC A → LamE A inside. Thanks to the
preservation of hereditary canonicity by lamE and the identification of the vari-
ables of renamed terms, canonicity of t can be established.

Since flatEC is doing something with its argument, we cannot think of
LamEC as being generated from the four datatype constructors. We see this
more as a semantical construction whose properties can be studied. However,
there is still the operational kernel available in the form of the definitional equal-
ity '.

From preservation of hereditary canonicity by lamE and substE , one can
easily define lamEC : monLamEC and

substEC : ∀A∀B. (A→ LamEC B)→ LamEC A→ LamEC B .

The list of free variables is obtained through ECFV : LamEC ⊆ List , defined
by composing EFV with π1, which is then also natural. Therefore, one can
immediately transfer the identification of free variables of lamE f t and substE f t
to lamEC and substEC .

In order to have “real” results, proof irrelevance has to be assumed for the
proofs of hereditary canonicity. From propositional proof irrelevance, as used in
Corollary 1, it immediately follows that π1 is injective:

∀A∀t1, t2 : LamEC A. π1 t1 = π1 t2 → t1 = t2 .

20

This is the only addition to LNGMIt that we adopt here. Then, all the properties
of the list in Section 2.2 can be transferred to substEC , the recursive description
(now only with propositional equality) of lamE can be carried over to lamEC
that makes LamEC an extensional functor, and also the results of Section 5.1
that were relativized to hereditarily canonical terms now hold unconditionally
for lamEC and substEC . Finally, a monad structure has been obtained. Once
again, all the proofs are to be found in the Coq scripts [17].

6 Conclusions and Future Work

Recursive programming with Mendler-style iteration is able to cover intricate
nested datatypes with functions whose termination is far from being obvious.
But termination is not the only property of interest. A calculational style of
verification that is based on generic results such as naturality criteria is needed
on top of static analysis. The system LNGMIt and the earlier system LNMIt from
which it is derived are an attempt to combine the benefits from both paradigms:
the rich dependently-typed language secured by decidable type-checking and
termination guarantees on one side and the laws that are inspired from category
theory on the other side.

LNGMIt can prove naturality in many cases, with a notion of naturality that
encompasses map fusion. However, the system is heavily based on the unintuitive
non-canonical datatype constructor In which makes reasoning on paper some-
what laborious. This can be remedied by intensive use of computer aided proof
development. The ambient system for the development of the metatheory and
the case study is the Calculus of Inductive Constructions that is implemented
by the Coq system. Proving and programming can both be done interactively.
Therefore, LNGMIt , through its implementation in Coq, can effectively aid in
the construction of terminating programs on nested datatypes and to establish
their equational properties.

Certainly, the other laws in, e. g., [15] should be made available in our set-
ting as well. Clearly, not only (generalized) iteration should be available for
programs on nested datatypes. The author experiments with primitive recursion
in Mendler style, but does not yet have termination guarantees [31].

An alternative to LNGMIt with its non-canonical elements could be a de-
pendently-typed approach from the very beginning. This could be done by in-
dexing the nested datatypes additionally over the natural numbers as with sized
nested datatypes [27] where the size corresponds to the number of iterations of
the datatype “functor” over the constantly empty family. But one could also try
to define functions directly for all powers of the nested datatype (suggested to
me by Nils Anders Danielsson) or even define all powers of it simultaneously
(suggested to me by Conor McBride). The author has presented preliminary re-
sults at the TYPES 2004 meeting about yet another approach where the indices
are finite trees that branch according to the different arguments that appear in
the recursive equation for the nested datatype (based on ideas by Anton Setzer
and Peter Aczel).

21

References

1. Bird, R., Meertens, L.: Nested datatypes. In Jeuring, J., ed.: Mathematics of
Program Construction, MPC’98, Proceedings. Volume 1422 of Lecture Notes in
Computer Science., Springer Verlag (1998) 52–67

2. Bird, R., Gibbons, J., Jones, G.: Program optimisation, naturally. In Davies, J.,
Roscoe, B., Woodcock, J., eds.: Millenial Perspectives in Computer Science, Pro-
ceedings of the 1999 Oxford-Microsoft Symp. in Honour of Professor Sir Anthony
Hoare, Palgrave (2000)

3. Hinze, R.: Efficient generalized folds. In Jeuring, J., ed.: Proceedings of the Second
Workshop on Generic Programming, WGP 2000, Ponte de Lima, Portugal. (2000)

4. Bellegarde, F., Hook, J.: Substitution: A formal methods case study using monads
and transformations. Science of Computer Programming 23 (1994) 287–311

5. Bird, R.S., Paterson, R.: De Bruijn notation as a nested datatype. Journal of
Functional Programming 9(1) (1999) 77–91

6. Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized
inductive types. In Flum, J., Rodŕıguez-Artalejo, M., eds.: Computer Science Logic,
13th International Workshop, CSL ’99, Proceedings. Volume 1683 of Lecture Notes
in Computer Science., Springer Verlag (1999) 453–468

7. Coq Development Team: The Coq Proof Assistant Reference Manual Version 8.1.
Project LogiCal, INRIA. (2006) System available at coq.inria.fr.

8. Paulin-Mohring, C.: Définitions Inductives en Théorie des Types d’Ordre
Supérieur. Habilitation à diriger les recherches, Université Claude Bernard Lyon I
(1996)

9. Letouzey, P.: A new extraction for Coq. In Geuvers, H., Wiedijk, F., eds.: TYPES
2002 Post-Conference Proceedings. Volume 2646 of Lecture Notes in Computer
Science., Springer Verlag (2003) 200–219

10. Abel, A., Matthes, R., Uustalu, T.: Iteration and coiteration schemes for higher-
order and nested datatypes. Theoretical Computer Science 333(1–2) (2005) 3–66

11. Bird, R., Paterson, R.: Generalised folds for nested datatypes. Formal Aspects of
Computing 11(2) (1999) 200–222

12. Abel, A., Matthes, R.: (Co-)iteration for higher-order nested datatypes. In Geu-
vers, H., Wiedijk, F., eds.: TYPES 2002 Post-Conference Proceedings. Volume
2646 of Lecture Notes in Computer Science., Springer Verlag (2003) 1–20

13. Bird, R., de Moor, O.: Algebra of Programming. Volume 100 of International Series
in Computer Science. Prentice Hall (1997)

14. Matthes, R.: An induction principle for nested datatypes in intensional type theory.
Journal of Functional Programming (2008) To appear.

15. Martin, C., Gibbons, J., Bayley, I.: Disciplined, efficient, generalised folds for
nested datatypes. Formal Aspects of Computing 16(1) (2004) 19–35

16. Johann, P., Ghani, N.: Initial algebra semantics is enough! In Ronchi Della Rocca,
S., ed.: Typed Lambda Calculi and Applications (TLCA) 2007, Proceedings. Vol-
ume 4583 of Lecture Notes in Computer Science., Springer Verlag (2007) 207–222

17. Matthes, R.: Coq development for “Nested datatypes with generalized Mendler
iteration: map fusion and the example of the representation of untyped lambda
calculus with explicit flattening”. http://www.irit.fr/~Ralph.Matthes/Coq/

MapFusion/ (January 2008)
18. Matthes, R.: Coq development for “An induction principle for nested

datatypes in intensional type theory”. http://www.irit.fr/~Ralph.Matthes/

Coq/InductionNested/ (January 2008)

22

19. Mendler, N.P.: Recursive types and type constraints in second-order lambda calcu-
lus. In: Proceedings of the Second Annual IEEE Symposium on Logic in Computer
Science, Ithaca, N.Y., IEEE Computer Society Press (1987) 30–36

20. Barthe, G., Frade, M.J., Giménez, E., Pinto, L., Uustalu, T.: Type-based termi-
nation of recursive definitions. Mathematical Structures in Computer Science 14
(2004) 97–141

21. Uustalu, T., Vene, V.: A cube of proof systems for the intuitionistic predicate
µ-, ν-logic. In Haveraaen, M., Owe, O., eds.: Selected Papers of the 8th Nordic
Workshop on Programming Theory (NWPT ’96). Volume 248 of Research Reports,
Department of Informatics, University of Oslo. (May 1997) 237–246

22. Matthes, R.: Naive reduktionsfreie Normalisierung (translated to English: naive
reduction-free normalization). Slides of talk on December 19, 1996, given at the
Bern Munich meeting on proof theory and computer science in Munich, available
at the author’s homepage (December 1996)

23. Hofmann, M.: Extensional concepts in intensional type theory. PhD thesis, Uni-
versity of Edinburgh (1995) Available as report ECS-LFCS-95-327.

24. Altenkirch, T.: Extensional equality in intensional type theory. In: 14th Annual
IEEE Symposium on Logic in Computer Science (LICS 1999), IEEE Computer
Society (1999) 412–420

25. Oury, N.: Extensionality in the calculus of constructions. In Hurd, J., Melham,
T.F., eds.: Theorem Proving in Higher Order Logics. Proceedings. Volume 3603 of
Lecture Notes in Computer Science., Springer Verlag (2005) 278–293

26. Wadler, P.: Theorems for free! In: Proceedings of the fourth international con-
ference on functional programming languages and computer architecture, Imperial
College, London, England, September 1989, ACM Press (1989) 347–359

27. Abel, A.: A Polymorphic Lambda-Calculus with Sized Higher-Order Types. Dok-
torarbeit (PhD thesis), LMU München (2006)

28. Dybjer, P.: A general formulation of simultaneous inductive-recursive definitions
in type theory. The Journal of Symbolic Logic 65(2) (2000) 525–549

29. Capretta, V.: A polymorphic representation of induction-recursion. Note of 9
pages available on the author’s web page (a second 15 pages version of May 2005
has been seen by the present author) (March 2004)

30. Mac Lane, S.: Categories for the Working Mathematician. second edn. Volume 5
of Graduate Texts in Mathematics. Springer Verlag (1998)

31. Matthes, R.: Recursion on nested datatypes in dependent type theory. In Beck-
mann, A., Dimitracopoulos, C., Löwe, B., eds.: Logic and Theory of Algorithms.
Volume 5028 of Lecture Notes in Computer Science., Springer Verlag (2008) To
appear.

23

