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Abstract. Circulations are similar to flows in capacity-constrained net-
works, with the difference that they also observe lower bounds and, unlike
flows, are not directed from a source to a sink. We give a new description
of circulations in networks using a technique introduced by Kawahara;
he applied the same methods to network flows. We show the power and
flexibility of his approach in a new application, refining it at the same
time by introducing the concept of test relations. Furthermore we will
give algebraic formulations of a generic algorithm for computing a flow
in a network with lower bounds and a sufficient and necessary criterion
for the existence of a circulation.

1 Introduction

Networks with and without lower bounds as well as flows and circulations in
them have a wide range of applications. They are used for transport problems,
for modelling financial and economic situations and are also used in graph theory.
Common proofs of Hall’s theorem and of the Egervary-König-Theorem ([Jun],
Chapter 7) use networks, too. Also problems concerning matchings in bipartite
graphs and disjoint path problems can often be solved using networks. So there
are a lot of algorithms for and theorems about them.

Usually networks are described as graphs with weighted edges. In the ap-
proach we are using they are modelled as so-called fuzzy relations, a natural
generalisation of traditional relations. This idea was introduced in [Kaw]. The
advantage of this approach is that a lot of proofs can be done in an algebraic
manner by simple calculation. This opens the door for automated reasoning
about networks and related topics in graph theory.

We take up Kawahara’s approach in a new application. At the same time
we refine it by introducing the concept of fuzzy test relations, inspired by the
theory of tests in semirings [KozT,MB], which leads to a substantial notational
and conceptual simplification. This will be beneficial for automated proofs in
this problem domain.

In Section two we present the basics of fuzzy relations and other tools we
will use. Section three gives an overview over recent algebraic work concerning
flows in networks. Finally, from Section four on we present our new ideas about
circulations in networks with lower bounds.



2 Fuzzy Relations

2.1 Definition and Basic Operations

Definition 2.1 (Fuzzy Relation). A fuzzy relation α between sets X and Y ,
written α : X ↔ Y , is a mapping from X × Y into the interval [0, 1]. The set of
all fuzzy relations between X and Y is denoted by Rel(X,Y ). A fuzzy relation
between a set X and itself is called a fuzzy endorelation on X.

A fuzzy endorelation α on a set X can be viewed as representing a weighted
directed graph with node setX, where for x, y ∈ X the value α(x, y) is the weight
of edge (x, y). An edge weight α(x, y) = 0 means that x and y are considered
not to be connected by a direct edge. The notion of a fuzzy relation can be
generalised to allow elements of an arbitrary lattice as edge weights. However,
the above special case has a number of advantages in our setting; they will be
discussed as we go along.

Definition 2.2 (Special Relations). Given sets X and Y , there are three
particular fuzzy relations with

0XY :X ↔ Y , 0(x, y) = 0 ,
∇XY :X ↔ Y , ∇(x, y) = 1

idX :X ↔ X , idX(x, y) =

{
1 if x = y
0 otherwise

for all x, y, called the empty, universal and identity fuzzy relation, resp. When
X and Y are clear from the context the indices will be omitted.

In the graph view, 0 represents the totally disconnected graph while ∇ is the
fully connected graph in which all edges have maximal weight. Finally, id is a
graph in which every node carries a loop of maximal weight and there are no
other edges.

Definition 2.3 (Boolean Fuzzy Relation). A fuzzy relation is called Boolean
if its range is contained in the set {0, 1}.

A Boolean fuzzy relation α : X ↔ Y corresponds in a natural way to a
standard relation α̃ ⊆ X × Y given by

x α̃ y ⇔ α(x, y) = 1 .

To motivate the following definitions we will now explain how fuzzy relations
can be used to model flows and circulations.

A network is an edge-labeled directed graph with at most one edge between
any two nodes, in which the edge labels are non-negative real numbers modelling
transport capacities between the nodes. If there is an upper bound c 6= 0 for the
capacities (which holds, in particular, for finite networks) we can normalise them
to the interval [0, 1] by dividing them by c. Now the network can immediately
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be represented by a fuzzy relation α, which takes value d

c
if there is an edge with

weight d from x to y and zero otherwise.
It is well known how to use standard relations for describing certain aspects

of graphs. We want to extend these techniques to networks and their describing
fuzzy relations.

To this end we first introduce some operations on the interval [0, 1]. For
a, b ∈ [0, 1] we define

• a ∨ b = max{a, b}
• a ∧ b = min{a, b}
• a⊖ b = max{0, a− b}
• a⊕ b = min{1, a+ b}

Consistent with these definitions we define the operators
∨

x∈X x and
∧

x∈X x
for arbitrary subsets X ⊆ [0, 1] by

∨
x∈X x = supX and

∧
x∈X x = infX.

Definition 2.4 (Basic Operations). For fuzzy relations α, β : X ↔ Y the
join α ⊔ β, the meet α ⊓ β, the truncating difference α ⊖ β and the truncating
sum α⊕β : X ↔ Y are the pointwise extensions of the operators defined above:

• ∀x ∈ X ∀y ∈ Y : (α ⊔ β)(x, y) = α(x, y) ∨ β(x, y)
• ∀x ∈ X ∀y ∈ Y : (α ⊓ β)(x, y) = α(x, y) ∧ β(x, y)
• ∀x ∈ X ∀y ∈ Y : (α⊖ β)(x, y) = α(x, y) ⊖ β(x, y)
• ∀x ∈ X ∀y ∈ Y : (α⊕ β)(x, y) = α(x, y) ⊕ β(x, y)

Two fuzzy relations α, β : X ↔ Y are said to be disjoint if α⊓ β = 0. Adapting
the usual notation A ∪̇B for the union of disjoint sets A and B, we abbreviate
the union of two disjoint fuzzy relations α and β by α ⊔̇β. Moreover, we write
α ⊑ β if α(x, y) ≤ β(x, y) holds for all (x, y) ∈ X × Y .

Analogously to above we extend ⊔ to sets of fuzzy relations, writing
⊔

i∈I αi.
It is easy to see that meet, join and truncating sum are commutative and

associative. Moreover, join distributes over meet and vice versa.
The behaviour of the truncating sum is more complex. Due to the trunca-

tion the common laws of addition and subtraction are not transferable. With
additional assumptions similar rules are valid. For example β ⊑ α implies
(α ⊖ β) ⊕ β = α. In Section 2.3 we will state similar properties concerning the
connection between the above operations and the cardinality of fuzzy relations.

Definition 2.5 (Scalar Multiplication). For real numbers k ∈ [0, 1] and a
fuzzy relation α : X ↔ Y the scalar multiplication k · α, also written kα, is
defined by (kα)(x, y) = k · α(x, y) for all (x, y) ∈ X × Y .

Scalar multiplication distributes over ⊔, ⊓, ⊖ and ⊕.

Definition 2.6 (Converse). For a fuzzy relation α : X ↔ Y the converse
α♯ : Y ↔ X is defined by

∀x ∈ X ∀y ∈ Y : α♯(y, x) = α(x, y).

Converse commutes with scalar multiplication, i.e., (kα)♯ = k(α♯), and dis-
tributes over ⊔,⊓,⊖ and ⊕. In the graph view this operation reverses all edges
while preserving their weights.
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2.2 Composition, Powers and Star

Definition 2.7 (Composition). We define the composition αβ : X ↔ Z of
two fuzzy relations α : X ↔ Y and β : Y ↔ Z by

αβ(x, z) =
∨

y∈Y (α(x, y) ∧ β(y, z)).

This is a straightforward generalisation of the composition of standard rela-
tions. It correctly describes the capacity behaviour along network paths: If there
are edges from x to y and from y to z with capacities α(x, y) and β(y, z) then at
most α(x, y)∧β(y, z) can be transported from x to z along the concatenation of
these two edges. Hence αβ describes the supremum of transport capacity over
all two-edge paths from x to z.

Since the supremum of a bounded subset of the real numbers always exists
and is unique, the composition of two fuzzy relations is well defined even if one
of the sets X,Y,Z is infinite.

A standard relation R ⊆ X×Y is called univalent if it relates every element of
X to at most one element of Y . This is expressed algebraically by the condition
R♯R ⊆ idY . The dual notion of injectivity is characterised by RR♯ ⊆ idX . As a
generalisation we call a fuzzy relation univalent if α♯α ⊑ idY holds. If α satisfies
the property αα♯ ⊑ idX it is called injective.

The composition of fuzzy relations distributes over join, i.e., α(β ⊔ γ) =
αβ⊔αγ and (α⊔β)γ = αγ⊔βγ. In general composition does not distribute over
meet; in this case only (α⊓ β)γ ⊑ αγ ⊓ βγ and analogously α(β ⊓ γ) ⊑ αβ ⊓αγ
hold. However, for univalent α the equality α(β ⊓γ) = αβ ⊓αγ and for injective
γ the equality (α ⊓ β)γ = αγ ⊓ βγ hold.

Composition commutes with scalar multiplication, i.e., k(αβ) = (kα)β =
α(kβ). Finally, composition is contravariant w.r.t. converse, i.e., (αβ)♯ = β♯α♯.

Definition 2.8 (Powers and Star). The n-th power αn of a fuzzy endorelation
α : X ↔ X is defined inductively by α0 = idX and αn+1 = ααn for n ∈ N0.
The reflexive and transitive closure α∗ of a fuzzy endorelation is defined by
α∗ =

⊔
n∈N0

αn.

An elementary argument shows the equality α∗ =
⊔

0≤n<|X| α
n for every

fuzzy endorelation α on a finite set X.

2.3 Cardinality of Fuzzy Relations

For a standard relation R ⊆ X × Y its cardinality |R| is the number of pairs in
R; it coincides with the sum

∑
(x,y)∈X×Y α(x, y) where α is the Boolean fuzzy

relation corresponding to R, i.e., α(x, y) = 1 ⇔ (x, y) ∈ R. This is generalised
in the following definition due to [Kaw].

Definition 2.9 (Cardinality). The cardinality |α| of a fuzzy relation α : X ↔
Y is defined by |α| =

∑
(x,y)∈X×Y α(x, y).
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The cardinality will allow an elegant description of total weights of subnet-
works. E.g., the cardinality of the relation consisting of all outgoing edges of a
node describes the sum of the weights of all edges leaving that node. This is
used, e.g., in Definition 3.2 of flows.

Obvious properties of the cardinality are:

• |α| ≥ 0
• |α| = 0 ⇔ α = 0
• |α| = |α♯|
• Cardinality is an isotone function, i.e., α ⊑ β implies |α| ≤ |β|.

The cardinality of a fuzzy relation could become infinite if one of the partic-
ipating sets is infinite; in this paper we won’t deal with such cases. If both X
and Y are finite sets the cardinality of a fuzzy relation α : X ↔ Y is always a
nonnegative real number bounded by |X| · |Y |.

A fuzzy relation α : X ↔ Y is called normalised if |α| ≤ 1. This implies
|β| ≤ 1 for all fuzzy relations β with β ⊑ α. We will make use of normalised
fuzzy relations when we want to label edges with the cardinality of a fuzzy
relation.

A connection between meet and cardinality is the equation

|α ⊔ β| = |α| + |β| − |α ⊓ β| (1)

for arbitrary fuzzy relations α, β : X ↔ Y . In particular, it states |α ⊔ β| =
|α| + |β| for disjoint fuzzy relations α and β.

For fuzzy relations α, β, γ with β ⊑ α and γ ⊑ α⊖ β the equality |γ|+ |β| =
|γ ⊕ β| holds. If β ⊑ α then |α⊖ β| = |α| ⊖ |β|.

2.4 Test Relations

Definition 2.10 (Test Relation). A Boolean subrelation of idX is called a
test relation on X.

A test relation τ corresponds in a natural way to the subset {x : τ(x, x) = 1}
of X; conversely, every subset T of X can be represented by the test relation τ
with τ(x, x) = 1 ⇔ x ∈ T .

Hence the test relations form a Boolean subalgebra of Rel(X,X) with τ ⊔ σ
being the join and τ ⊓ σ = τσ being the meet.

Consider a general fuzzy relation α and a test relation τ . Then, by isotony of
multiplication, τα ⊑ id α = α. So τα is a part of α; it omits all edges of α that
do not start in a node in τ . This models enforcing the precondition τ . Similarly,
ατ removes all edges of α that do not end in a node in τ ; it enforces τ as a
postcondition.

Combining this with the cardinality operator we can express the input or
output capacity of a set of nodes characterised by τ compactly as |ατ | and |τα|,
respectively.

The following property will be used several times:
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Lemma 2.11. Assume τ, σ, α, β, γ : X ↔ X such that τ, σ are test relations
with τσ = 0 and γ ⊑ τα and γ ⊑ σβ.

(a) γ = 0.
(b) |τα ⊔ σβ| = |τα| + |σβ|.

Proof. Part (a) follows from the general theory of semirings (see Lemma A.4 in
the Appendix). Part (b) holds by Equation (1), since by Part (a) τα ⊓ σβ = 0.

⊓⊔

Part (a) means that edge sets with disjoint sets of starting nodes are disjoint
as well (remember that the composition of test relations is their conjunction).

To avoid excessive notation, in the remainder we will write τ both for a
subset τ ⊆ X and its characterising test relation. The complement of τ relative
to X/idX is denoted by τ c.

Moreover, lower case latin letters will be used to denote elements x ∈ X
and the corresponding test relations characterising the singleton sets {x}. These
relations are also called point relations.

Every test relation can be written as the join of suitable point relations, i.e.,
U =

⊔
u∈U u where the join ranges over point relations u. In the finite case this

can be used to show properties of test relations via structural induction.
Using point relations we can also describe single graph edges. Given points

x, y and a weight k ∈ [0, 1], the fuzzy relation k(x∇y) describes a graph con-
necting just x and y with edge weight k: the test relations x and y reduce the
universal relation ∇ to the relation consisting only of the edge from x to y with
weight 1, and the weighting is done by scaling with the factor k.

3 Flows in Networks

Flows in networks were already treated in an algebraic manner in [Kaw] and
[Glü]. We give a brief summary of the ideas from there relevant to the present
paper. For the sake of well-definedness of cardinality let from now on all node
sets be finite.

3.1 Networks and Flows

Definition 3.1 (Networks). For a set X of nodes, a fuzzy endorelation α :
X ↔ X is also called a pseudo-network. For x, y ∈ X we call α(x, y) the ca-
pacity of (x, y). If additionally α ⊓ α♯ = 0 then N is called a network. An s-t-
(pseudo-)network is a triple N = (α : X ↔ X, s, t) consisting of a (pseudo-)net-
work α and two distinct elements of X, namely s (the source) and t (the sink)
of N .

Contrary to [Kaw] we admit input edges for the source and output edges for
the sink, i.e., we give up the requirements αs = 0 and tα = 0, to obtain a more
general concept.
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Our definition of a pseudo-network corresponds to that of a network as given
for example in [Jun], Chapter 6, or [AMO], Chapter 1, or [GTT], except that
there the capacities can have arbitrary values in R+.

Our network requirement that excludes antiparallel edges between two nodes
by the condition α⊓α♯ = 0XX may look too strong. But if we are given a fuzzy
relation α : X ↔ X not fulfilling this condition we can construct a network N̂ =
(α̂ : X̂ ↔ X̂, s, t) as follows: for all pairs (x, y) ∈ X×Y with α(x, y)⊓α♯(x, y) 6= 0
we introduce two additional nodes x′ and y′ and set α̂(x, y) = α̂(y, x) = α̂(x′, y′)
= α̂(y′, x′) = 0, α̂(x, x′) = α̂(x′, y) = α(x, y), α̂(y, y′) = α̂(y′, x) = α(y, x) and
α̂(x′, x) = α̂(y, x′) = α̂(y′, y) = α̂(x, y′) = 0.

This strategy turns a pair of antiparallel edges into a bypassing device:

x y

α(x, y)

α(y, x)

x y

x
′

y
′

α
(x

, y
) α(x

, y)

α(y
, x) α

(y
, x

)

Fig. 1. Bypassing device

In a quite natural way the definition of a network flow (cf. again the standards
[Jun] and [AMO]) is translated into the language of fuzzy relations:

Definition 3.2 (Flow). A flow ϕ in a pseudo-network α : X ↔ X is a fuzzy
endorelation ϕ : X ↔ X such that ϕ ⊑ α and |τϕ| = |ϕτ | for all test relations
τ : X ↔ X on X. A flow ϕ in an s-t-(pseudo-)network (α : X ↔ X, s, t) is a
fuzzy endorelation on X with ϕ ⊑ α and |τϕ| = |ϕτ | for all test relations τ with
τ ⊑ X\{s, t}.

The first part of this definition is the capacity constraint : the flow along an
edge can be at most as high as allowed by the capacity of that edge. The second
part corresponds to the flow conservation, commonly written as

∑
v∈V ϕ(v, u) =

∑
v∈V ϕ(u, v) ∀u ∈ X \ {s, t}, (∗)

see, e.g., [Jun], p.147 (with a slightly different notation). Our version of flow con-
servation seems to be stronger than (∗), but the equivalence of the two formula-
tions can be shown by induction over the size of the tests (cf. [Glü], Section 6.2).
There is always at least the trivial flow 0 in any network N = (α : X ↔ X, s, t).
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Because of flow conservation, in bypassing devices as in Fig. 1 there is a
one-to-one correspondence between flows in the original pseudo-network and the
modified network.

3.2 The Max-Flow Min-Cut Theorem

A flow can be seen as a possibility of transporting a certain amount from s to t.
So a flow is the more valuable the more it transports from s to t. This motivates
the next definition:

Definition 3.3 (Value of a Flow). The value of a flow ϕ in a network N =
(α : X ↔ X, s, t) is defined as val(ϕ) = |sϕ| − |ϕs|.

The value measures how much s “generates” in addition to its own input
|ϕs|. In Prop. 6.1 of [Glü] it has been shown (in a slightly different notation)
that the equality val(ϕ) = |sϕ| − |ϕs| = |ϕt| − |tϕ| holds. Note that the value of
a flow can even be a negative number as shown in the following example:

Example 3.4.

s t
0.2/0.5

In this network α consists of the single edge (t, s) with capacity 0.5, and the
depicted flow ϕ is given by ϕ(t, s) = 0.2. So we have val(ϕ) = |sϕ| − |ϕs| =
0 − 0.2 = −0.2. However, our main aim will be to send flow from s to t. ⊓⊔

Definition 3.5 (Residual Network). For a flow ϕ on an s-t-network N =
(α : X ↔ X, s, t) we define the residual network Nα of N with respect to α as
the pseudo-network Nα = (ϕα : X ↔ X, s, t) with ϕα = (α⊖ ϕ) ⊔ ϕ♯.

That means, a flow ϕ over an edge (x, y) with capacity α(x, y) causes two
edges in the residual network: one edge (x, y) with capacity α(x, y) − ϕ(x, y)
(note that ϕ ⊑ α) and one edge (y, x) in the opposite direction with capacity
ϕ(x, y). The intuitive meaning is that one can send along the edge (x, y) an
additional flow amount of at most α(x, y)− ϕ(x, y) and the flow along the edge
(x, y) can be decreased by an amount of at most ϕ(x, y), which corresponds to
increasing the flow over the reverse edge (y, x) by exactly the same amount. In
this context the requirement α ⊓ α♯ = 0 is indispensable.

An important concept for reasoning about flows is that of a cut.

Definition 3.6 (Cut). A cut in an s-t-network N = (α : X ↔ X, s, t) is a
test relation τ on X with the property s ⊑ τ ⊑ tc. Thus a cut corresponds to
a subset of X containing s but not t, a definition consistent with the usual one.
The capacity c(τ) of a cut τ is given by c(τ) = |τατ c|. It describes the maximal
flow amount which can be sent out from nodes in τ to nodes in τ c. A cut τ is
saturated by a flow ϕ if val(ϕ) = c(τ).
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Intuitively it is obvious that the value of all flows can not exceed the capacity
of a cut, because a cut forms a border between the source and the sink. This
basic fact is proved both in [Kaw] and [Glü].

Given a network N = (α : X ↔ X, s, t), our main aim is to determine a flow
of maximal value, i.e., a flow ϕ with the property val(ϕ) ≥ val(ψ) for all flows
ψ on N . An important criterion for the maximality of a flow is the so-called
Max-Flow Min-Cut Theorem:

Theorem 3.7 (Max-Flow Min-Cut Theorem). Let N = (α : X ↔ X, s, t)
be network and ϕ a flow on N . Then the following properties are equivalent:

(a) ϕ is maximal.
(b) t ⊓ sϕ∗

α = 0, or equivalently |sϕ∗
αt| = 0.

(c) There exists a cut τ that is saturated by ϕ.

Intuitively part (b) means that it is impossible to send flow from s to t in the
residual network of a maximal flow. Part (c) states that the value of a maximal
flow equals the capacity of a certain cut. Because the value of a flow is never
larger than the capacity of a cut, this cut must be minimal (hence the name
Max-Flow Min-Cut Theorem). Such a cut τ is saturated by a maximal flow ϕ;
in this case τατ c = τϕτ c holds. This means that every edge of α leading from τ
into its complement τ c carries the maximally possible amount of flow.

4 Networks with Lower Bounds

4.1 Definitions and Background

Definition 4.1 (Networks With Lower Bounds). A pseudo-network with
lower bounds over a node set X is a pair N = (α : X ↔ X,β : X ↔ X) with
β ⊑ α, where α and β are called the upper and lower bound. If additionally
α ⊓ α♯ = 0 then N is called a network with lower bounds.

Our definition of a (pseudo-)network with lower bounds corresponds to the
common one in an analogous way as that of an s-t-(pseudo-)network. The net-
work condition implies α ⊓ β♯ = 0, α♯ ⊓ β = 0 and β ⊓ β♯ = 0 (note that in the
semiring of fuzzy endorelations on X the zero 0 is meet-irreducible).

We represent networks with lower bounds in a graphical way analogous to
the common one for graphs. We associate the elements of the basic underlying
set with the nodes of a graph and label its edges with [β, α] where β and α
denote the lower and upper capacity bound of the edge, resp. Edges (x, y) with
α(x, y) = 0 (and hence β(x, y) = 0) are omitted in the depiction.
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Example 4.2.

a

b

c

d

[0
.1
, 0
.4
] [0.1, 0.3]

[0.2,0.5]
[0
, 0
.3
][0.2, 0.5]

In this example we have X = {a, b, c, d}. For the upper bound we have, e.g.,
α(b, d) = 0.5 or α(b, c) = 0.3 and for the lower bound β(a, b) = 0.1 or β(d, a) =
0.2. For pairs (x, y) ∈ X × Y without arcs in the depiction we have α(x, y) =
β(x, y) = 0, so for example α(a, c) = β(a, c) = 0 or α(a, d) = β(a, d) = 0. ⊓⊔

4.2 Circulations in Networks with Lower Bounds

Definition 4.3 (Circulation). A fuzzy relation γ in a pseudo-network N =
(α : X ↔ X,β : X ↔ X) with lower bounds is called a circulation if it is a flow
in the network α and satisfies the additional capacity constraint β ⊑ γ.

A circulation in a network with lower bounds need not always exist. A simple
counterexample is given here:

Example 4.4.

a b
[0.3, 0.5]

Every fuzzy endorelation γ on X fulfilling the capacity constraint and flow
conservation needs to satisfy 0.3 ≤ |γb| ≤ 0.5 and |bγ| = 0 and hence cannot
satisfy the requirement |γb| = |bγ|.

Contrary to this, our network with lower bounds from Example 4.2 admits
a circulation as one can see here:
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a

b

c

d

0.
4/

[0
.1
, 0
.4
] 0.2/[0.1, 0.3]0.2/[0.2,0.5]

0.
2/

[0
, 0
.3
]0.4/[0.2, 0.5]

An edge (x, y) carries the information γ(x, y)/[β(x, y), α(x, y)]. ⊓⊔

4.3 Extending Pseudo-Networks

In the next section we will need to add nodes to a network. To this end we
introduce some notation.

Definition 4.5 (Embedding). For a fuzzy endorelation α : X ↔ X on X and
a superset X̂ of X, the embedding ⌈α⌉ of α into X̂ is ⌈α⌉ : X̂ ↔ X̂, given by
⌈α⌉(x, y) = α(x, y) for all (x, y) ∈ X ×X and ⌈α⌉(x, y) = 0 otherwise.

This means that the nodes in X̂\X are added as isolated nodes to the graph
described by α.

The embedding of fuzzy relations distributes over join, meet, truncating
sum, truncating difference and composition, i.e., ⌈α ◦ β⌉ = ⌈α⌉ ◦ ⌈β⌉ for ◦ ∈
{⊔,⊓,⊕,⊖, ·}. In particular we have ⌈α⌉ = ⌈id⌉⌈α⌉ = ⌈α⌉⌈id⌉. Embedding also
commutes with converse, i.e., ⌈α♯⌉ = ⌈α⌉♯. Moreover, it is order-preserving:
α ⊑ β implies ⌈α⌉ ⊑ ⌈β⌉. The embedding ⌈τ⌉ of a test relation τ on X is a test
relation on X̂. Finally, embedding preserves cardinality: |⌈α⌉| = |α|.

The dual operation to embedding is projection:

Definition 4.6 (Projection). For a fuzzy endorelation α : X̂ ↔ X̂ its projec-
tion ⌊α⌋ : X ↔ X to a subset X ⊆ X̂ is given by ⌊α⌋(x, y) = α(x, y) for all
x, y ∈ X.

Projection has algebraic properties similar to the ones of embedding. It is
order preserving and commutes with converse and distributes over join, meet,
truncating sum and truncating difference, but in general not over composition.
The projection ⌊τ̂⌋ of a test relation τ̂ on X̂ is a test relation on X. Finally,
projection partially preserves cardinality: for σ, τ ⊆ X one has |⌊σα̂τ⌋| = |σα̂τ |.
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4.4 Existence of Circulations

Let N = (α : X ↔ X,β : X ↔ X) be a network with lower bounds with a
normalised fuzzy relation α as upper bound (recall that this means |α| ≤ 1).
This can be achieved by a suitable scaling of the upper bound. Note that if α is
normalised then β is, too. Because of xβ ⊑ β for an arbitrary point relation x
we have |xβ| ≤ 1 and analogously |βx| ≤ 1.

Now our intention is to develop in an algebraic way an algorithm that de-
termines whether a network with lower bounds admits a circulation and, if so,
computes one. This will be done using a maximal flow in an s-t-network derived
from the original network. The construction we will use is well known in the lit-
erature, cf. [Jun], Section 10.2. The advantage of our approach is that we avoid
big indexed sums by calculating with test relations and cardinalities.

To this end we define the s-t-pseudo-network N̂ = (α̂ : X̂ ↔ X̂, s, t) as
follows: we choose two new nodes s, t 6∈ X and set X̂ = X∪̇{s}∪̇{t}. For the
associated point relations s and t on X̂ this means s ⊓ t = 0 and (s ⊔ t) ⊓ x = 0
for all point relations x ⊑ X.

As abbreviations for ∇X̂X̂ ,0X̂X̂ and ∇XX ,0XX we use ∇̂, 0̂ and ∇,0, resp.

With this notation the equalities ⌊∇̂⌋ = ∇ and ⌊0̂⌋ = 0 hold.
We define the capacity constraint α̂ of N̂ by α̂ = α̂1⊔α̂2⊔α̂3 with three fuzzy

endorelations α̂1, α̂2 and α̂3 on X̂. First, α̂1 =
⊔

x∈X |βx|s∇̂⌈x⌉. Intuitively this
means that we have an edge from s to every point x of X having as capacity
the sum of the lower bounds of all edges entering x. α̂3 is defined in a similar
manner, namely as α̂3 =

⊔
x∈X |xβ|⌈x⌉∇̂t. This introduces an edge from every

point x of X to t having as capacity the sum of the lower bounds of all edges
leaving x. Finally, α̂2 is defined as α̂2 = ⌈α ⊖ β⌉. This means that every edge
in N becomes an edge in N̂ having as capacity the difference between its upper
and lower bounds (remember that β ⊑ α). The relation α̂ is well defined because
all terms of the form |xβ| and |βx| are guaranteed not to be larger than one.

Example 4.7. If we apply this construction to the network with lower bounds
shown in Example 4.2 we obtain the following network:

s a

b

c

d

t

0.
3 0.2

0.3

0.
30.3

0.2

0.1

0.2

0.1

0.3

0.2

0.1

The edge from c to t has not been forgotten, but we have α̂(c, t) = 0 and
according to our conventions we omit the arc corresponding to this pair. ⊓⊔
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Lemma 4.8. N̂ is an s-t-network.

Proof. We have to show α̂ ⊓ α̂♯ = 0̂. As a preparation we calculate

α̂ ⊓ α̂♯

= {[ definition and rules for converse ]}

(α̂1 ⊔ α̂2 ⊔ α̂3) ⊓ (α̂♯
1 ⊔ α̂

♯
2 ⊔ α̂

♯
3)

= {[ distributivity ]}⊔3
i=1

⊔3
j=1(α̂i ⊓ α̂

♯
j) .

If we succeed in showing that all meets inside the two big joins become 0̂ we are
done.

For the case i = j = 1 we have

α̂♯
1

= {[ converse distributes over join ]}⊔
x⊑X |βx|⌈x⌉♯∇̂♯s♯

= {[ universal and test relations are their own converses ]}⊔
x⊑X |βx|⌈x⌉∇̂s

= {[ rules for embedding ]}⊔
x⊑X |βx|⌈id⌉⌈x⌉∇̂s .

Hence

α̂1 ⊓ α̂
♯
1

= {[ distributivity ]}⊔
x,y∈X |βx|s∇̂⌈x⌉ ⊓ |βy|⌈id⌉⌈y⌉∇̂s

≤ {[ isotony of meet and join ]}⊔
x,y∈X s∇̂⌈x⌉ ⊓ ⌈id⌉⌈y⌉∇̂s

= {[ by s⌈id⌉ = 0̂ and Lemma 2.11(a) ]}⊔
x,y∈X 0̂

= {[ lattice algebra ]}

0̂ .

In the case i = 3 and j = 1 we have to consider α̂3 ⊓ α̂
♯
1. Calculations similar

to those above lead to α̂3 ⊓ α̂♯
1 =

⊔
x,y∈X |xβ|⌈x⌉∇̂t ⊓ |βy|⌈y⌉∇̂s. Because of

st = 0̂ we obtain again 0̂ by Lemma 2.11(a).
The other cases, except i = j = 2, can be treated in a similar manner

(note that α̂2 = ⌈id⌉α̂2 = α̂2⌈id⌉). For i = j = 2 we calculate α̂2 ⊓ α̂♯
2 =

⌈α⊖β⌉⊓⌈α⊖β⌉♯ ⊑ ⌈α⌉⊓⌈α⌉♯ = ⌈α⊓α♯⌉, and this equals 0̂ by the requirement
that N be a network with lower bounds. ⊓⊔

Lemma 4.9. A maximal flow on N̂ with value |β| saturates the cuts s and tc.

Proof. First we show that the capacities of the cuts s and tc in N̂ both equal
|β|. We have

13



c(s)

= {[ definition of capacity ]}

|sα̂sc|

= {[ definition of α̂ ]}

|s(α̂1 ⊔ α̂2 ⊔ α̂3)s
c|

= {[ analogously to previous proof ]}

|sα̂1|

= {[ definition of α̂1 ]}

|s
⊔

x∈X |βx|s∇̂⌈x⌉|

= {[ idempotence of test multiplication, distributivity and
disjointness of the x-indices in the big join ]}

Σx∈X | |βx|s∇̂⌈x⌉ |

= {[ by |s∇̂⌈x⌉| = 1 ]}

Σx∈X |βx|.

Rewriting the join in the opposite direction we obtain Σx∈X |βx| = |
⊔̇

x∈Xβx|
= |βidX | = |β|.

In the same manner one can show c(tc) = |β|. According to the assertions of
the Max-Flow Min-Cut Theorem a maximal flow with value |β| has to saturate
both cuts. ⊓⊔

Theorem 4.10. There is a circulation on N iff the value of a maximal flow on
N̂ is exactly |β|.

Proof. (⇐) Let ϕ̂ be a flow on N̂ with value val(ϕ̂) = |β|. Then we define a
fuzzy relation γ : X ↔ X by γ = ⌊ϕ̂⌋ ⊕ β. Because ϕ̂ is a flow on N̂ it has to
respect the capacity constraint, which implies γ ⊑ ⌊α̂⌋ = α̂⊖β and hence γ ⊑ α̂.
β ⊑ γ is clear because of the definition of γ. If we succeed in showing that γ
satisfies flow conservation on N we are done.

Consider an arbitrary test relation τ : X ↔ X. Because of the flow properties
of ϕ̂ we have

|⌈τ⌉ϕ̂| = |ϕ̂⌈τ⌉| .

We introduce a test relation X on X̂ by X = ⌈idX⌉ = (s ⊔ t)c. Note that
idX̂ = X ⊔ s ⊔ t.

Now we reason as follows:

|⌈τ⌉ϕ̂| = |ϕ̂⌈τ⌉|

⇔ {[ identity ]}

|⌈τ⌉ϕ̂ idX̂ | = |idX̂ ϕ̂⌈τ⌉|

⇔ {[ above remark ]}

|⌈τ⌉ϕ̂(X ⊔ s ⊔ t)| = |(X ⊔ s ⊔ t)ϕ̂⌈τ⌉|

⇔ {[ X, s, t disjoint and Lemma 2.11(b) ]}

|⌈τ⌉ϕ̂X| + |⌈τ⌉ϕ̂s| + |⌈τ⌉ϕ̂t| = |Xϕ̂⌈τ⌉| + |sϕ̂⌈τ⌉| + |tϕ̂⌈τ⌉|

⇒ {[ α̂s = 0̂ ∧ ϕ̂ ⊑ α̂⇒ ϕ̂s = 0̂, analogously tϕ̂ = 0̂ ]}
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|⌈τ⌉ϕ̂X| + |⌈τ⌉ϕ̂t| = |Xϕ̂⌈τ⌉| + |sϕ̂⌈τ⌉|

⇒ {[ ϕ̂ maximal with value |β|, Lemma 4.9 ]}

|⌈τ⌉ϕ̂X| + |⌈τ⌉α̂t| = |Xϕ̂⌈τ⌉| + |sα̂⌈τ⌉|

⇒ {[ definition of α̂ ]}

|⌈τ⌉ϕ̂X| + |τβ| = |Xϕ̂⌈τ⌉| + |βτ |

⇒ {[ definition of X ]}

|τ⌊ϕ̂⌋| + |τβ| = |⌊ϕ̂⌋τ | + |βτ |

⇒ {[ ⌊ϕ̂⌋ ⊑ ⌊α̂⌋ = α⊖ β, rules of cardinality ]}

|τ(⌊ϕ̂⌋ ⊕ β)| = |(⌊ϕ̂⌋ ⊕ β)τ | .

(⇒) Let γ be a circulation on N . Then we construct a fuzzy relation ϕ̂ : X̂ ↔ X̂
by ϕ̂ = sα̂⊔⌈γ⊖β⌉⊔ α̂t. Because γ satisfies the capacity constraint and because
of the construction of ϕ̂ the capacity constraint on N̂ is satisfied by ϕ̂. The value
of the thus constructed flow is |sα̂| = |β|, and it is maximal because it saturates
the cut s. Flow conservation can be shown similarly as above. ⊓⊔

4.5 Algorithmic Aspects

We wouldn’t be computer scientists if we didn’t give an algorithm for computing
a circulation in a network with lower bounds. The construction from the proof
of Theorem 4.10 can immediately be used to construct from an algorithm for the
computation of a maximal flow in an s-t-network an algorithm for determining
a circulation in a network with lower bounds:

(1) Determine the s-t-network N̂ as described above.

(2) Determine a maximal flow ϕ on N̂ .

(3) If val(ϕ) 6= β then no circulation in N is possible; otherwise return γ as
described above.

An algorithm for computing a maximal flow in an s-t-network based on fuzzy
relations has been derived in [Kaw].

Now we try out the above algorithm on our running example. E.g. by Kawa-
hara’s method one can find the following flow on the induced s-t-network:
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s a

b

c

d

t

0.
2/

0.
3 0/0.2

0/0.3

0.
1/

0.
30.1/0.3

0.2/0.2

0.1
/0.

1

0.2/0.2

0.1/0.1

0.3/0.3

0.2
/0.

2

0.1/0.1

This flow is indeed maximal, because it saturates the cut s. Applying our algo-
rithm we obtain the following circulation:

a

b

c

d

0.
3/

[0
.1
, 0
.4
] 0.1/[0.1, 0.3]0.2/[0.2, 0.5]

0.
1/

[0
, 0
.3
]0.3/[0.2, 0.5]

This circulation is different from the one already shown in the second picture of
Example 4.4.

4.6 Another Existence Criterion

We will now derive a more elegant criterion for the existence of a flow in a
network with lower bounds. We notice that there is a bijective mapping between
tests on N and cuts on N̂ : for a test relation τ on N we choose the cut s ⊔ ⌈τ⌉
as corresponding cut on N̂ ; the converse direction is obvious.

For the capacity of such a cut s ⊔ ⌈τ⌉ we can calculate as follows (note that
by construction sc = X ⊔ t, tc = s⊔X, Xc = s⊔ t and ⌈τ⌉c = ⌈τ c⌉ ⊔ s⊔ t hold):
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c(s ⊔ ⌈τ⌉)

= {[ definition of capacity ]}

|(s ⊔ ⌈τ⌉)α̂(s ⊔ ⌈τ⌉)c|

= {[ above remark ]}

|(s ⊔ ⌈τ⌉)α̂(⌈τ c⌉ ⊔ t)|

= {[ distributivity of composition over join ]}

|sα̂⌈τ c⌉ ⊔ ⌈τ⌉α̂⌈τ c⌉ ⊔ sα̂t ⊔ ⌈τ⌉α̂t

= {[ disjointness and Lemma 2.11(b) ]}

|sα̂⌈τ c⌉| + |⌈τ⌉α̂⌈τ c⌉| + |sα̂t| + |⌈τ⌉α̂t|

= {[ sα̂t = 0̂ by construction ]}

|sα̂⌈τ c⌉| + |⌈τ⌉α̂⌈τ c⌉| + |⌈τ⌉α̂t|

= {[ definition of α̂ ]}

|βτ c| + |τβ| + |τ(α⊖ β)τ c|

= {[ distributivity of test multiplication over ⊖ ]}

|βτ c| + |τβ| + |τατ c ⊖ τβτ c|

= {[ properties of cardinality, τβτ c ⊑ τατ c ]}

|βτ c| + |τβ| + |τατ c| − |τβτ c|

= {[ for all ξ there are the decompositions ξ = τξ ⊔̇ τ cξ = ξτ ⊔̇ ξτ c ]}

|τβτ c| + |τ cβτ c| + |τβτ | + |τβτ c| + |τατ c| − |τβτ c|

= {[ arithmetic and rearrangement ]}

|τατ c| + |τβτ | + |τβτ c| + |τ cβτ c|

= {[ β = τβτ ⊔̇ τβτ c ⊔̇ τ cβτ ⊔̇ τ cβτ c ]}

|τατ c| − |τ cβτ | + |β| .

By the previous theorem N admits a circulation iff the value of a maximal
flow on N̂ equals |β|, so according to the Max-Flow Min-Cut Theorem |τατ c| −
|τ cβτ | has to be ≥ 0 for all test relations τ on N iff N admits a circulation. So
we have proved the following theorem:

Theorem 4.11. A network with lower bounds N = (α : X ↔ X,β : X ↔ X)
admits a circulation iff the condition |τατ c| ≥ |τ cβτ | holds for all test relations
τ on X.

This theorem is not very suitable for application in practice (the number of
test relations is growing exponentially in the number of nodes!), but it can serve
well in the theoretical investigation of networks with lower bounds.

5 Conclusion and Future Work

We have applied Kawahara’s methods developed for flows in networks success-
fully to circulations in networks with lower bounds. As shown in [GlüI], it is not
difficult to do the same for circulations in networks with additional imports as
described in [Jun], Chapter 7. There a node can receive an additional amount
of flow by the environment or flow can disappear from a node to the outside.
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In all cases the basic mathematical tools are fuzzy relations and their cardi-
nality. As we detail in the Appendix, these form a semiring (and even a Kleene
algebra) with tests. Since automated reasoning about Kleene algebras is on the
rise (cf. [HS]), we expect the first automatically proved theorems in this area
soon.

Another challenge in this area will be the description of min-cost flows (cf.
[Jun], Chapter 10) with fuzzy relational methods. This will be a little bit more
difficult, because in the problem of a min-cost flow the amount of flow is mul-
tiplied by a cost function on the edge it crosses. For this purpose we have first
to define an operation for the edgewise multiplication of fuzzy relations and to
explore its algebraic laws and its behavior in connection with the cardinality.

Acknowledgment We are grateful to Peter Höfner, Yasuo Kawahara, Walter
Vogler and the anonymous referees for helpful comments and suggestions.

A Appendix: Semirings and Kleene Algebras

In this section we embed fuzzy relations into the more general mathematical
framework of semirings and Kleene algebras. This allows re-use of many results
from there and also automatic proofs of some relevant properties.

A.1 Introduction

Definition A.1 (Semiring). A semiring is a quintuple (M,+, ·, 0, 1) fulfilling
the following properties:

• (M,+, 0) is a commutative monoid.
• (M, ·, 1) is a monoid.
• 0 is an annihilator with respect to · , i.e.,

∀m ∈M : m · 0 = 0 ·m = 0

• · distributes over +, i.e.,

∀a, b, c ∈M : a · (b+ c) = (a · b) + (a · c), (a+ b) · c = (a · c) + (b · c)

We call + and · addition and multiplication, resp.

Elements of a semiring can, e.g., be considered as modelling some sort of
transition relation, such as the transition from one graph node to another along
an edge. An element x+ y corresponds to a choice between x and y, while x · y
corresponds to the sequential composition of x and y in that order.

As one can see the fuzzy endorelations over a set X form a semiring with join
as addition, composition as multiplication, 0XX as zero and idX as one. Other
examples for semirings are (N,+, ·, 0, 1) or (P(X),∪,∩, ∅,X) for an arbitrary
fixed set X.
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Definition A.2 (Idempotent semiring). If x+x = x holds for all elements x
of a semiring the semiring is called idempotent. On such an idempotent semiring
a partial order ⊑ is defined by x ⊑ y ⇔ x+ y = y.

The order x ⊑ y means that the choices offered by x are contained in the ones
offered by y. The operations · and + are ⊑-isotone in both arguments; moreover
0 is the least element w.r.t. ⊑.

The fuzzy relations over a set X form an idempotent semiring and the or-
dering introduced in Definition 2.4 coincides with the semiring-theoretical one.

A.2 Tests in Semirings

An important special subset of elements in an idempotent semiring are the so-
called tests.

Definition A.3 (Test). An element p of an idempotent semiring with natural
order ⊑ is called a test if there is an element ¬p, called the complement of p,
with the properties p+ ¬p = 1 and p · ¬p = 0 = ¬p · p.

This definition is basically due to [MB]; a slightly more liberal definition of
tests is given in [KozT]. The definition implies that p ⊑ 1 holds for all tests p
and that the complement of an element is unique.

Tests are the algebraic counterparts of assertions in programs or predicates
characterising subsets of nodes in graphs. Addition and multiplication of tests
correspond to their disjunction and conjunction, resp., while ¬ corresponds to
logical negation. The definition implies that 0 and 1 are tests; they correspond
to the everywhere false and to the everywhere true predicate, resp.

Consider a general semiring element x and a test p. Then, by isotony of
multiplication, px ⊑ 1x = x. So px is a part of x; it omits all transitions of x
that do not start in a point satisfying p. This models enforcing the precondition
p. Similarly, xp removes all transitions of x that do not end in a point satisfying
p; it enforces p as a postcondition.

This implies the following important property of tests:

Lemma A.4. Let p, q be tests and a, b arbitrary elements in a semiring such
that pq = 0. If z ⊑ pa and z ⊑ qb then z = 0.

This means that elements with disjoint sets of starting points (remember
that the product of tests is their conjunction) are disjoint as well.

The tests in the semiring Rel(X,X) are precisely the test relations from
Definition 2.10.

A.3 Kleene Algebras

Now we add the concept of finite iteration.
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Definition A.5 (Kleene Algebra). A Kleene algebra [KozKA] is a structure
(S,+, 0, ·, 1,∗ ) such that the reduct (S,+, 0, ·, 1) is a semiring and the finite
iteration operator ∗ satisfies the unfold and induction axioms

1 + xx∗ ≤ x∗ , 1 + x∗x ≤ x∗

and the star induction axioms

y + xz ≤ z ⇒ x∗y ≤ z , y + zx ≤ z ⇒ yx∗ ≤ z .

The semiring Rel(X,X) forms a Kleene algebra under the operation ∗ defined
in Section 2.2.
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