Skip to main content

A Symmetry-Free Subspace for Ab initio Protein Folding Simulations

  • Conference paper
  • 732 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 13))

Abstract

Ab initio protein structure prediction usually tries to find a ground state in an extremely large phase space. Stochastic search algorithms are often employed by using a predefined energy function. However, for each valid conformation in the search phase space, there are usually several counterparts that are reflective, rotated or reflectively rotated forms of the current conformation, imprecisely called isometric conformations here. In protein folding, these isometric conformations correspond to the different rotation states caused by admissible protein structure transitions. In structure prediction, these isometric conformations, owning the same energy value, not only significantly increase the search complexity but also degrade the stability of some local search algorithms. In this paper, we will prove that there exists a subspace that is unique (no two conformations in the space are isometric) and complete (for any valid conformation, there exists a corresponding conformation in the subspace that is a reflective or rotated form of it). We demonstrate that this subspace, which is about 1/24 of the conventional search space in the 3D lattice model and 1/8 in the 2D model contains the lowest energy conformation, and all other isometric lowest energy forms can then be obtained by protein rotation. Our experiments show that the subspace can significantly speed up existing local search algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Unger, R., Moult, J.: Finding the lowest free energy conformation of a protein is an NP-hard problem: proof and implications. Bulletin of Mathematical Biology 55, 1183–1198 (1993)

    MATH  Google Scholar 

  2. Unger, R., Moult, J.: Genetic algorithms for protein folding simulations. Journal of Molecular Biology 231, 75–81 (1993)

    Article  Google Scholar 

  3. Chen, W.W., Yang, J.S., Shakhnovich, E.I.: A knowledge-based move set for protein folding. Proteins 66, 682–688 (2007)

    Article  Google Scholar 

  4. Li, Z., Scheraga, H.A.: Monte Carlo-minimization approach to the multiple-minima prob-lem in protein folding. Proceedings of the National Academy of Sciences of the United States of America 84, 6611–6615 (1987)

    Article  MathSciNet  Google Scholar 

  5. Steinbach, P.J.: Exploring peptide energy landscapes: a test of force fields and implicit solvent models. Proteins 57, 665–677 (2004)

    Article  Google Scholar 

  6. Paluszewski, M., Hamelryck, T., Winter, P.: Reconstructing protein structure from solvent exposure using tabu search. Algorithms for Molecular Biology 1, 20 (2006)

    Article  Google Scholar 

  7. Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer Jr., E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., Tasumi, M.: The Protein Data Bank: a computer-based ar-chival file for macromolecular structures. Journal of Molecular Biology 112, 535–542 (1977)

    Article  Google Scholar 

  8. Berman, H., Henrick, K., Nakamura, H., Markley, J.L.: The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Research 35, 301–303 (2007)

    Article  Google Scholar 

  9. Chan, H.S., Dill, K.A.: Transition states and folding dynamics of proteins and heter-opolymers. The Journal of Chemical Physics 100, 9238–9257 (1994)

    Article  Google Scholar 

  10. Helling, R., Li, H., Melin, R., Miller, J., Wingreen, N., Zeng, C., Tang, C.: The designabil-ity of protein structures. Journal of Molecular Graphics and Modelling 19, 157–167 (2001)

    Article  Google Scholar 

  11. Park, B.H., Levitt, M.: The complexity and accuracy of discrete state models of protein structure. Journal of Molecular Biology 249, 493–507 (1995)

    Article  Google Scholar 

  12. Micheletti, C., Seno, F., Maritan, A.: Recurrent oligomers in proteins: an optimal scheme reconciling accurate and concise backbone representations in automated folding and de-sign studies. Proteins 40, 662–674 (2000)

    Article  Google Scholar 

  13. Pandini, A., Bonati, L., Fraternali, F., Kleinjung, J.: MinSet: a general approach to derive maximally representative database subsets by using fragment dictionaries and its applica-tion to the SCOP database. Bioinformatics 23, 515–516 (2007)

    Article  Google Scholar 

  14. Madras, N., Sokal, A.D.: The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk. Journal of Statistical Physics 50, 109–186 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Madras, N.N., Slade, G.D.: The Self-avoiding Walk. Birkhäuser, Boston (1993)

    Google Scholar 

  16. Toma, L., Toma, S.: Contact interactions method: a new algorithm for protein folding simulations. Protein Science 5, 147–153 (1996)

    Article  Google Scholar 

  17. de Gennes, P.G.: Reptation of a Polymer Chain in the Presence of Fixed Obstacles. The Journal of Chemical Physics 55, 572–579 (1971)

    Article  Google Scholar 

  18. Lesh, N., Mitzenmacher, M., Whitesides, S.: A complete and effective move set for sim-plified protein folding. In: Proceedings of the Seventh Annual International Conference on Research in Computational Molecular Biology. ACM, Berlin, Germany (2003)

    Google Scholar 

  19. Böckenhauer, H.-J., Bongartz, D.: Protein folding in the HP model on grid lattices with diagonals. Discrete Applied Mathematics 155, 230–256 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dill, K.A.: Polymer principles and protein folding. Protein Science 8, 1166–1180 (1999)

    Article  Google Scholar 

  21. Sali, A., Shakhnovich, E., Karplus, M.: Kinetics of protein folding. A lattice model study of the requirements for folding to the native state. Journal of Molecular Biology 235, 1614–1636 (1994)

    Google Scholar 

  22. Miller, R., Danko, C.A., Fasolka, M.J., Balazs, A.C., Chan, H.S., Dill, K.A.: Folding ki-netics of proteins and copolymers. The Journal of Chemical Physics 96, 768–780 (1992)

    Article  Google Scholar 

  23. Liang, F., Wong, W.H.: Evolutionary Monte Carlo for protein folding simulations. The Journal of Chemical Physics 115, 3374–3380 (2001)

    Article  Google Scholar 

  24. Miyazawa, S., Jernigan, R.L.: Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18, 534–552 (1985)

    Article  Google Scholar 

  25. Miyazawa, S., Jernigan, R.L.: Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. Journal of Molecular Biology 256, 623–644 (1996)

    Article  Google Scholar 

  26. Betancourt, M.R., Thirumalai, D.: Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Protein Science 8, 361–369 (1999)

    Google Scholar 

  27. Mirny, L., Shakhnovich, E.: Protein folding theory: from lattice to all-atom models. Annual Review of Biophysics and Biomolecular Structure 30, 361–396 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mourad Elloumi Josef Küng Michal Linial Robert F. Murphy Kristan Schneider Cristian Toma

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gan, X., Kapsokalivas, L., Albrecht, A.A., Steinhöfel, K. (2008). A Symmetry-Free Subspace for Ab initio Protein Folding Simulations. In: Elloumi, M., Küng, J., Linial, M., Murphy, R.F., Schneider, K., Toma, C. (eds) Bioinformatics Research and Development. BIRD 2008. Communications in Computer and Information Science, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70600-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70600-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70598-7

  • Online ISBN: 978-3-540-70600-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics