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Abstract. The thermodynamics of RNA-RNA interaction consists of
two components: the energy necessary to make a potential binding region
accessible, i.e., unpaired, and the energy gained from the base pairing of
the two interaction partners. We show here that both components can
be efficiently computed using an improved variant of RNAup. The method
is then applied to a set of bacterial small RNAs involved in translational
control. In all cases of biologically active SRNA target interactions, the
target sites predicted by RNAup is in perfect agreement with literature.
In addition to prediction of target site location, RNAup can be also be
used to determine the mode of SRNA action. Using information about
target site location and the accessibility change resulting form sRNA
binding we can discriminate between positive and negative regulators of
translation.

1 Introduction

A series of high-throughput transcriptomics projects, among them ENCODE
[1] and FANTOM [2] have demonstrated that mammalian genomes are perva-
sively transcribed, and that a large fraction of the transcripts does not code
for proteins. Concurrently, small RNAs, in particular microRNAs and siRNAs
have been identified as crucial regulators of gene expression, reviewed e.g. in [3].

** the first two authors contributed equally to this work
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Fig. 1. Interaction between two RNAs of comparable length. Since each molecule forms
intramolecular structures, the accessibility for an interactions differs along the molecule:
Unstructured regions can easily take part in an interaction. Regions that are involved
in an intramolecular structure, eg. the left hand side of the molecule drawn as a bold
line, are not easily accessibly for intermolecular binding.

Genome-wide mapping of small ncRNAs [4] revealed novel classes of ncRNAs,
implying that ncRNAs act by several, if not many, different mechanisms.

MicroRNAs, siRNAs, and snoRNAs require the direct interaction of ncRNAs
and their target by means of base-pairing [5]. The same is true for many of the
bacterial small RNAs that were discovered during the last decade, see e.g. [6].
Computational evidence [7] suggests, furthermore, that a significant fraction of
RNA candidates with evolutionary conserved RNAs [8] binds to mRNAs.

These observations have triggered increasing interest in methods to predict
“targets” via the evaluation of RNA-RNA interactions. For microRNAs, the
available tools are almost too numerous to list (see [9,10] for recent reviews),
targetRNA [11] is frequently used for bacteria, and a specific heuristic for orphan
snoRNAs was presented recently [12]. In the simplest case, only the base pairing
between the two interacting partners is taken into account [13-16,11]. In most
cases, however, RNA-RNA interaction does not cover the entire target. This
is maybe most evident in the case of short siRNAs or miRNAs targeting long
mRNAs. It becomes necessary in such cases, to explicitly consider the structure
of the target. In [17], anti-sense target are predicted as unpaired regions on the
target molecules. For siRNA and microRNA is was shown that the accessibility
of the target site correlates directly with the efficiency of cleavage [18,19].

Instead of treating the target independent of its binding partner, it seems
more appealing to compute the structure of the interaction complex. Just as the
folding problem with pseudoknots [20], finding the energetically optimal inter-
action structure is NP-complete [21]. Tt is, however not even desirable to solve
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the general “RIP” problem, because too highly entangled structures typically
are not formed in nature. Practical approaches there restrict the set of inter-
action structures that are searched. So far, four classes of structures have been
investigated in some detail:

1. Only base-pairs between the interacting RNAs are considered, no base pairs
are allowed within each structure. As argued above, disregarding the internal
structure of the interaction partners is too crude an approximation

2. Interactions between the two molecules are restricted to the external bases of
the two partners. Such structures can be computed by means of a straight-
forward generalization of the usual pseudoknot-free folding algorithm [22,
23]. This class of structures, however, is still too restrictives as it rules out
frequent motifs such as kissing-hairpins [24].

3. The other extreme is to consider all “tangle-free” interaction structures. This
leads to a rather expensive algorithm with a runtime O(m?-n?) and quartic
memory consumption [25,21,26,27], which is prohibitive for many large-
scale applications. Another problem is that the interaction structures contain
many types of complex loops for which energy parameters are unknown.

4. The RNAup approach [28] restricts the region of interaction to a single in-
terval on each of the interaction partners, while arbitrary pseudoknot free
structures are allowed elsewhere, Fig. 1. This model is sufficient for most but
not all known RNA-RNA interactions. For example, the OxyS—fhlA interac-
tion [29] contains two separate kissing complexes and can therefore not be
predicted using RNAup. Most bacterial sSRNAs however show one well defined
interaction with a typical interaction length from 9 bp up to 60 bp and vari-
able degrees of complementarity between ncRNAs and target sequence [30,
31]. In [28], only the target molecule was assumed to be structured, while
the ncRNA partner was assumed to be a miRNA or siRNA without internal
structure. Here we will drop this restriction.

Instead of directly computing the interaction structure, RNAup decomposes
the problem into three steps: For each subsequence (with bounds i and j) of an
RNA, we compute the probability P[i,j] that it is unpaired. This probability
is equivalent to the free energy of making the binding regions accessible. The
optimal interaction structure is than computed by assessing all possible combi-
nations of binding sites of both partners.

This conceptual decomposition of RNA/RNA binding into an unfolding and
an interaction contribution has most recently been utilized by several groups.
Long et al. [32] developed a model for modeling the interaction between a miRNA
and a target as a two-step hybridization reaction: nucleation at an accessible tar-
get site, followed by hybrid elongation to disrupt local target secondary structure
and form the complete miRNA-target duplex. Lu & Mathews [33] predicted the
cost of opening base pairs in the mRNA for hybridization to siRNA by calcu-
lating the structure once without constraints and then once with the constraint
that the nucleotides in the hybridization site are forced single-stranded. Kertesz
et al. [19] devised a parameter-free model for microRNA-target interaction that
computes the difference between the free energy gained from the formation of
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the microRNA-target duplex and the energetic cost of unpairing the target to
make it accessible to the microRNA.

In the following section we first describe an algorithmic improvement in the
computation of P[i,j] that leads to a significant speed-up, then we generalize
RNAup to accommodating two partners with internal secondary structures. These

improvements put us into the position to study translational control by bacterial
sRNA.

2 Algorithm

RNAup calculates the energetics of RNA-RNA interactions in a step-wise process.
The free energy of binding AG consists of the “breaking energies” AG,, that
are necessary to transform the binding site in each molecule into an accessible
conformation and a contribution AG), that describes the energy gain due to
hybridization:

AG = AGH + AGE + AG,, (1)

where A and B denote the two interacting molecules. In principle, Equ. 1 has
to be evaluated for every possible combination of interacting regions in molecule
A and B. In practice, our algorithm first computes the accessibilities AG,, for
all regions up to a maximal size w, and then combines these regions to compute
the hybridization energies AGYy,.

In order to compute free energies of binding we cannot rely on finding a single
optimal structure only. Instead, we have to compute the partition functions
associated with these three free energy terms. This can be done by (suitably
modified) variants of the algorithm introduced by McCaskill’s algorithm [34] and
and implemented in the Vienna RNA package [35]. Recall that the equilibrium
partition function is defined as

7= exp(~BF(9)), (2)
S

where F(S) is the free energy of a secondary structure S, and g = 1/(RT) stands
for the inverse of the temperature times Boltzmann’s constant (here expressed
as the gas constant, i.e., for energies per mol). Note that individual secondary
structures are assigned temperature dependent free energies with entropic contri-
butions arising from the ensemble of microscopic conformations that are assigned
to a single secondary structure as macrostate. Energy parameters used here are
taken from [36]

2.1 Calculation of Accessibility

Taken together, partition functions for subsequences contain the information
necessary to compute the frequency of structural motifs, in the simplest case
individual unpaired bases of base pairs [34]. Here, we are interested in the prob-
ability P,[i,j] that the sequence interval [, j] is unpaired, which is equivalent
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to the energy AG,[i,j] = —RT In(P,[i, j]) necessary to make the subsequence
from 7 to j single-stranded.

An unpaired interval [i, j] is either “exterior” , i.e. not enclosed by a basepair,
or there exists an enclosing base pair (p, q) such that p < i < j < ¢ and there is
no other pair (s,t) such that p < s < i < j <t < q. We can therefore express
P,[i,j] in terms of restricted partition functions for these two cases:

Z(Li-1)Z(+1,n)+ qu Ej<q Z(p, ) Zpqli, 7]

Pulisj) = i )

where Z (p,q) is the partition function outside base pair p,q, and Z,,[i, j] the
partition function inside a basepair p, ¢ given that the interval [¢, j] is unpaired.
We introduce here an improved recursion for Z (P, Q) Zpqt, j] that reduces the
CPU requirements of the previous implementation of RNAup [37] from O(n? - w)
to O(n?), where n is the length of the sequence and w is the maximal size of
the unstructured region [¢, j]. This results in a substantial performance gain that
considerably facilitates large-scale applications.

As in [37], we start from the observation that Z,,[i, j] consists of three contri-
butions, of which the summation of all multi-loop energies is the most complex
one. This multi-loop part is itself again split into three parts, dependings on
whether the unpaired region is to the left or to the right of all components of a
multi-loop or in between them, Fig. 2:

7m0 = Y Z(pa)x

p<i<j<q

ZM2(p 41,0 —1)e Pl 4 ZM2(j 41, g —1)e PP

left right

+ ZM(p+ 10— 1)e PUTHZM (G 41,4 - 1)

in-between

The crucial improvement is obtained by replacing the double sum in Eq. 3
by two separate summation steps. For the last, “in-between”, summand we use
the auxiliary variables

ZMM( Qi) = Y Zpg)ZM(p+1,i—1) (5)

1<p<i

for ZM(q)[i] where the unpaired region [i, ] lies to the left of all multi-loop
components, we introduce

ZMQll = > Zp.g)ZM (p+ 10— 1)e el (©)

1<p<i



VI U. Miickstein, H. Tafer et al.

b . : 4 P . . q
i J i 3j

A B

Fig. 2. Decomposition for calculating multiloop contributions: Base pair [p,q] that
includes the unpaired region [¢,j] is drawn as an arc connecting bases p and ¢. The
unpaired region [¢, j] is drawn as a bold black line. In the the one-sided multiloop case
(A) a structured region containing at least two structure components is on one side of
the unpaired region. In case (B) the unpaired region [i,j] is between two structured
regions. In case (B) we have to take care to make a unique decomposition of the
multiloop into a 3’ part that contains exactly one component and a 5’ part with at
least one component.

and an analgous term is used for the “right” contribution. Computing these
values costs O(n?). By using them, we can compute

Zmu”[i,j] _ Z ZM]VI(q) [i]efﬂc(g?l#l)
+ ; Z" (p)lj) (7)

+3° 26 + 1q - 1)+ ZM(g)li]

Jj<a

in O(n? - w) time, i.e., the entire algorithm is O(n?®). The computations for
hairpin and interior loop contributions are handled in the same way.

In comparison to McCaskill’s partition function algorithm, RNAup needs to
store five additional matrices (ZM2, ZMM 7, 7, and one additional matrix for
the interior loop case). Hence we buy the speed-up by O(w) by increasing the
memory requirements by only about a factor of 2.

2.2 Free Energy of Interaction

In [37] we used P,[i,j] only for the (long) target mRNA, assuming that the
siRNA or miRNA is unstructured due to its short length. This approximation
cannot be justified for most bacterial small RNAs, however. Hence, we extended
RNAup to take the secondary structure of both interacting molecules into account.

Suppose the interaction region covers the intervals [i*,j*] and [¢,j] in the
two RNAs. As in RNAhybrid and related programs, we allow interior loops and
bulges in the interaction region. The partition function over all these binding
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conformations is obtained by the following recursion:

Z'i, g% 5 = Y 2 ki ke PIRRTT) (8)
i<k<j
P> k> G
where I(k, k*;j,j*) is the energy contribution for the interior loop delimited by
the base pairs (k, k*) and (4, j*).

As we want to avoid having to keep track of a four dimensional array, we
compute the partition function Z*[i, j] over all structures where region [¢, j] in
the longer molecule is involved in the interaction. While doing this, we keep track
of the region where Z1[i,j,i*, j* is maximal. The recursion for the calculation
of Z*[i, j] is shown in Eq 9.

Z*i,5) = Pi,d) > PPli*, 5712 i, 3, i, 57 9)
>

From Z*[i,j] we can readily compute AG[ij], the free energy of binding
given the binding site is in region [¢, j]. For visual inspection, AG[ij] can be
reduced to the optimal free energy of binding at a given position i, see Eq 10.
The memory requirement for these steps is O(n - w?), the required CPU time
scales as O(n - w®), which, at least for long target RNAs, is dominated by the

first step, i.e., the computation of the P,[i, j].

AG(i, j] = =RTIn Z*[i, j]. (10)

AG[Z] = minkgigl{AG[k, l]}

The positional free energy, AG;, referring to position 7 in the target molecule,

is written to a file suitable for plotting. For the region with maximal ZZ[i, j,4*, j*,
we use RNAduplex to print out the optimal interaction structure.

3 Results

In order to test the reliability of RNAup for target sRNAs prediction, we used
a dataset consisting of 9 small regulatory RNAs from E.Coli, their 9 reported
mRNA targets and the fold-change in protein concentration induced by all 81
possible mRNA-ncRNA interactions [30]. Among those interactions, 8 targets
were downregulated, 2 were upregulated, and no or only marginal changes were
detected for the others (see Table 1). Downregulation usually occurs when the
hybridisation of the ncRNA with its cognate mRNA blocks the ribosome entry
sites on the target (for a review see [38]). In contrast, upregulation typically
disrupts intrinsic inhibitory structures that sequester the ribosome binding site
and/or the start codon [39-41]. In many cases the SRNA-mRNA interactions are
assisted by the RNA chaperone protein Hfq [42].

Target prediction was performed with the mRNA constructs (117-689 nts)
described in [30] and the full length sSRNAs (69-220 nts). The mRNA constructs
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Table 1. Binding site summary for the 10 functional interactions published by Urban
et.al [30]. The number in parenthesis represents the quantity of non-functional interac-
tions involving the same ncRNA with a higher interaction energy than the functional
hybrid. Column Position gives the binding position relative to the start codon computed
with RNAup.Column Position lit. gives the binding position found in the literature.

mRNA sRNA regulation AAG Position Pos.lit. cite
RyhB sodB - -11.50 -18,+4  -4,+5 [43]
DsrA  hns - -14.60 -10,+11 +7,+19 [44]
MicA ompA . 213.60 -21-6  -21,-6 [45]
MicC ompC - -15.80 -30,-15 -30,-15 [46]
MicF ompF - -17.80 -11,+9 -11,+10 [46]
Spot42 galK - -17.00 -18,+30 -19,+21 [47]
SgrS  ptsG - -17.33 -28,-10 -28,+4 [48]
GevB  dppA . -17.30 -30-7  -31,-14 [31]°
DsrA  rpoS + -14.52-126,-97 -119,-97 [40]
RprA rpoS + -15.90 -134,-94 -117,-94 [40]

GevB/dppA interaction was studied in Salmonella enterica serovar Typhimurium not in E.coli.

included a long 5’'UTR sequence (57-565 nts) and a comparably short fragment of
the CDS (35-139 nts). Both the hybridisation energy and the target site position
was computed with RNAup for all SRNA-mRNA combinations.

For each sRNA we tested which of the mRNA construct was predicted to
bind more strongly. To our satisfaction the most favorable binding energy for
each sSRNAs was found for their cognate targets (see Table 1).

Furthermore, we checked whether target sites returned by RNAup were in
agreement with the experimentally determined binding sites from [30]. In all
cases the predicted binding sites overlapped with experimental ones, in 9 out 10
cases the agreement was almost perfect.

It is of interest not only to predict interaction sites, but also the regula-
tory effect the interaction might have. Since the most common mechanism of
translational control is to influence ribosome binding at the shine-dalgarno (SD)
sequence, we checked the position and structural effects of the predicted inter-
actions.

For each of the 8 interactions that result in downregulation, we found the
binding site to be at or close to the shine-dalgarno sequence. This type of in-
hibition can thus be predicted by comparing RNAup predictions with sequence
features that are easy to recognize in bacterial genomic sequences.

Our data set contains only two examples of upregulation, namely binding
of DsrA and RprA to rpoS. In both cases, binding leads to the disruption of a
helix which normally sequesters the shine-dalgarno sequence as well as the start
codon. We remark that this is an example of the modifier RNA mechanism that
was proposed in [49,50].
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— rpoS breaking energy rpoS bllfeal.dng energy
before binding after binding

— mean breaking energy

Breaking Energy AG, kcal/mol
4
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Position in Sequence

Fig. 3. Opening energy, AG, plotted versus sequence position for the interaction of
DsrA with textitrpoS. The vertical gray line marks the position of the start codon.
The black line represents the average breaking energy for all E. Coli mRNAs. The
dark gray line represents the opening energy of unbound rpoS, the light gray line the
opening energy after binding DsrA. Unbound rpoS is less accessible than average (dark
gray area), while bound rpoS is more accessible than average (light gray area).

To assess the ability of RNAup to predict upregulating interactions we first
compared the accessibility of the region around the start codon of all 9 mRNAs,
with the mean accessibility of all 4463 genes in the E.Coli genome. Mean acces-
sibility was computed for regions of 401 nts, centered at the start codon. For
comparability we used, the same 401 nts regions of our 9 target genes rather
than the constructs used above. The accesssibilities and corresponding opening
eneries were computed with RNAup for unpaired regions of length 4.

With a local opening energy of 4.51 kcal/mol rpoS is the most inaccessible
transcripts among the 9 presented here. Genome-wide only 8.8% of the tran-
scripts have a less accessible start codon than rpoS. In contrast, the eight down-
regulated transcripts showed a higher than average (2.23 kcal/mol) accessibility,
ranging from 0.30 kcal/mol for ompA to a maximum of 1.27 kcal/mol for ryhB.

After binding DsrA, the accessibility of the rpoS start codon changes dra-
matically. With only 1.40 kcal/mol, bound rpoS is much more accessible than
the average transcript and belongs to the 33% most accessible genes, see fig. 3.
The same effect is seen upon binding with RprA, with a local accessibility after
binding of 1.90 kcal/mol. Technically, accessibilities after binding can be com-
puted easily by adding the constraint that nucleotides in the binding site remain
single stranded.
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4 Conclusion

Translational control by sSRNAs is an important regulatory function throughout
all bacteria. In contrast to e.g. micro RNAs, these regulatory RNAs are mostly
structured. We have improved RNAup to take both target and sRNA structure
into account. As we have also increased the speed of RNAup, it is now suitable
for the computational identification of mRNA targets of bacterial sSRNAs.

Furthermore, we find that RNAup can be used to predict the regulatory effect
of sSRNA binding by investigating the location of the binding site and the struc-
tural changes induced by binding in the vicinity of the start codon of the mRNA.
A predicted binding close to the start codon or the shine-dalgarno sequence is
a clear indicator for downregulation. While results look promising for upregu-
lation, too, a bigger data set is needed to confirm that RNAup can accurately
predict that, too.

Our algorithm captures the most common types of interaction between reg-
ulatory RNAs and their targets, even though more complicated types of in-
teractions, such H/ACA snoRNA with their target rRNAs or OxyS—fhlA; are
neglected. The speed of RNAup is clearly sufficient for genome wide searches for
sRNA-mRNA interactions in bacteria. In principle, the approach is equally ap-
plicable to interaction search in higher organisms. However, the larger genome
size and longer UTR regions pose challenges both in terms of computation time
and false positives.
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