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Protective Measurements

October 29, 2018

Protective measurement [1] is a method for measuring an expectation
value of an observable on a single quantum system. The quantum state of
the system can be protected by a potential, when the state is a nondegenerate
energy eigenstate with a known gap to neighboring states, or via Zeno effect
by frequent projection measurements.

Apart from protection, the procedure consists of a standard von Neumann
measurement with weak coupling which is switched on and, after a long
time, switched off, adiabatically. The interaction Hamiltonian for protective
measurement of O is:

Hint = g(t)PO, (1)

where P is a momentum conjugate toQ, the pointer variable of the measuring
device. The interaction Hamiltonian is small as in weak measurements [2]. In
both cases the initial state of the pointer is such that 〈Q〉in = 0, 〈P 〉in = 0.
In weak measurement, the weakness is due to small uncertainty in P which
requires a large uncertainty of the pointer variable Q. Thus, although for the
final wave function of the pointer, 〈Q〉fin = 〈Ψ|O|Ψ〉, a single measurement
does not allow obtaining significant information about 〈Ψ|O|Ψ〉. In protec-
tive measurement, the pointer is well localized at zero, which requires large
uncertainty in P and the weakness is due to a small value of the coupling
g(t). The coupling to the measurement device is weak, yet long enough so
that we still have

∫
g(t)dt = 1. The result is again 〈Q〉fin = 〈Ψ|O|Ψ〉, but

this time, the pointer is well localized, so we can learn the value of the expec-
tation value from a single experiment. This is so if during the measurement,
the quantum state of the system remains close to |Ψ〉. Given the adiabatic
switching of the measurement interaction, its small value, and the protection
of the state, this is indeed the case.
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One of the basic results of quantum mechanics is that when a measure-
ment of a variable O with eigenvalues oi is performed on a quantum system
described by the state |Ψ〉, the probabilities pi for obtaining outcome oi sat-
isfy:

〈Ψ|O|Ψ〉 =
∑

pioi. (2)

This is why the expression 〈Ψ|O|Ψ〉 is called the expectation value of O. In
protective measurements we obtain this value not as a statistical average,
but as a reading of a measuring device coupled to a single system.

A sufficient number of protective measurements performed on a single
system allow measuring its quantum wave function. This provides an ar-
gument against the claim that the quantum wave function has a physical
meaning only for an ensemble of identical systems. Therefore, protective
measurements have some merit even when the protection is achieved via fre-
quent projection measurements on the state |Ψ〉 with no new information
obtained during the whole procedure. If the protection of the state is via a
known energy gap to any orthogonal state, then the protection measurement
provides new information: we can find the whole wave function. Thus, pro-
tective measurement of the quantum wave function of an ion in a trap can
yield the the trap’s potential.

Numerous objections to the validity and meaning of protective measure-
ments have been raised [4, 5, 6, 7, 8]. The validity of the result was questioned
due to misunderstanding of what the protective measurement is [9, 10, 11].
The issue of meaning: “Is the wave function of a single particle an ontological
entity?” [3] is open to various interpretations. Some will say ‘yes’ even before
hearing about protective measurement, others say ‘no’ just because protec-
tive measurements are never 100% reliable. The protective measurement
procedure is not a proof that we should adopt one interpretation instead of
the other, but it is a good testbed which shows advantages and disadvan-
tages of various interpretations. For example, the Bohmian interpretation
does not provide a natural explanation of how a protective measurement can
“draw” the whole wave function of an ion in a ground state of a trap, since
the Bohmian position of the ion hardly changes during the measurement
[12, 13].

The protective measurements method can be extended to pre- and post-
selected systems described by a two-state vector 〈Φ| |Ψ〉 [14]. It requires
separate different protections for the forward and backward evolving quan-
tum states which are achieved by pre- and post-selection of quantum states
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of systems which provide the protection [15]. The outcome of such protective

measurements is not the expectation value, but the weak value, 〈Φ|O|Ψ〉
〈Φ|Ψ〉

[2].
A realistic setup for such protective measurement is a weak coupling to a
variable of a decaying system which is post-selected not to decay [16].

Theoretical analysis of protective measurements leads to deeper under-
standing of quantum reality while its experimental realization (which seems
feasible in a near future) might be useful for more effective gathering of in-
formation about quantum systems [17].
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