Skip to main content

Cluster States

  • Chapter
  • First Online:

Cluster states [1] form a class of multiparty entangled quantum states with surprising and useful properties. The main interest in these states draws from their role as a universal resource in the one-way quantum computer [2,3]: Given a collection of sufficiently many particles that are prepared in a cluster state, one can realize any ► quantum computation by simply measuring the particles, one by one, in a specific order and basis (see Fig. 1). By the measurements, one exploits ► correlations in quantum mechanics which are rich enough to allow for universal logical processing. Owing to this property, the cluster state has attracted considerable attention in recent foundational studies on the power of quantum computation. It has also become an interesting object from the perspective of multipartite entanglement theory and the study of quantum mechanical ► nonlocality.

Cluster states belong to the larger set of so-called graph states [4], which comprise many of the entangled states known in quantum information theory and foundations. Examples include the Bell or Einstein-Podolsky-Rosen (EPR) states, the Greenberger-Horne-Zeilinger (► GHZ) states, and states that appear in quantum error correction. Graph states have been providing a playground for the study of multipartite ► entanglement, and investigating their role as resources in measurement-based quantum computation has revealed connections to other fields, including quantum many-body physics, graph theory, topological codes, statistical physics, and even mathematical logic. For a recent review of these developments see e.g., [5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. H.J. Briegel, R. Raussendorf: Persistent entanglement in arrays of interacting particles. Physical Review Letters 86, 910–913 (2001).

    Article  ADS  Google Scholar 

  2. R. Raussendorf, H.J. Briegel: A one-way quantum computer. Physical Review Letters 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  3. R. Raussendorf, D.E. Browne, H.J. Briegel: Measurement-based quantum computation using cluster states. Physical Review A 68, 022312 (2003).

    Article  ADS  Google Scholar 

  4. M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, H.J. Briegel: Entanglement in graph states and its applications. In International School of Physics Enrico Fermi (Varenna, Italy), Course CLXII, Quantum computers, algorithms and chaos, eds. G. Casati et al. (2006). E-print available at http://arxiv.org/abs/quant-ph/0602096.

  5. H.J. Briegel, D.E. Browne, W. Dür, R. Raussendorf, M. Van den Nest: Measurement-based quantum computation, Nature Physics 5, 19–26 (2009).

    Article  Google Scholar 

  6. D. Jaksch, H.J. Briegel, J.I. Cirac, C.W. Gardiner, P. Zoller: Entanglement of atoms via cold controlled collisions. Physical Review Letters 82, 1975–1978 (1999).

    Article  ADS  Google Scholar 

  7. M.T. De Pue, C. McCormick, S. Lukman Winoto, S. Oliver, D.S. Weiss: Physical Review Letters 82, 2262–2265 (1999).

    Article  ADS  Google Scholar 

  8. H.J. Briegel, R. Raussendorf, A. Schenzle: Optical lattices as a playground for studying mul-tiparticle entanglement. In Laserphysics at the limit, ed. by H. Figger et al. (Springer, Berlin, 2002, 236–261).

    Google Scholar 

  9. K. Nelson, X. Li, D.S. Weiss: Imaging single atoms in a three-dimensional array. Nature Physics 3, 556–560 (2007).

    Article  ADS  Google Scholar 

  10. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  11. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller: Cold Bosonic atoms in optical lattices. Physical Review Letters 81, 3108–3111 (1998).

    Article  ADS  Google Scholar 

  12. O. Mandel, M. Greiner, A. Widera, T. Rom, T.W. Hänsch, I. Bloch: Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937–940 (2003).

    Article  ADS  Google Scholar 

  13. I. Bloch: Ultracold quantum gases in optical lattices. Nature Physics 1, 23–30 (2005).

    Article  ADS  Google Scholar 

  14. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, Vol. I (Wiley, 1977).

    Google Scholar 

  15. D. Schlingemann, R.F. Werner: Quantum error-correcting codes associated with graphs. Physical Review A 65, 012308–012315 (2002).

    ADS  Google Scholar 

  16. M. Hein, J. Eisert, H.J. Briegel: Multi-party entanglement in graph states. Physical Review A 69, 062311–062330 (2004).

    Article  ADS  Google Scholar 

  17. W. Zurek: Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics 75, 715–775 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  18. E. Schrödinger, Die gegenwärtige Situation in der Quantenmechanik, Naturwissenschaften 23 (1935).

    Google Scholar 

  19. W. Dür, H.J. Briegel: Stability of macroscopic entanglement under decoherence. Physical Review Letters 92, 180403–180406 (2004).

    Article  ADS  Google Scholar 

  20. M. Hein, W. Dür, H.J. Briegel: Entanglement properties of multipartite entangled states under decoherence. Physical Review A 71, 032350–032375 (2005).

    Article  ADS  Google Scholar 

  21. M.A. Nielsen, I.L. Chuang: Quantum computation and quantum information (Cambridge University Press, Cambridge, 2000).

    MATH  Google Scholar 

  22. P.W. Shor: Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings, 35th Annual Symposium on Fundamentals of Computer Science (IEEE Press, Los Alamitos, California, 1994.

    Google Scholar 

  23. D.E. Browne, H.J. Briegel: One-way quantum computation — a tutorial introduction. Preprint available at http://arxiv.org/abs/quant-ph/0603226

  24. M.A. Nielsen: Cluster-state quantum computation. Preprint available at http://arxiv.org/abs/quant-ph/0504097.

  25. R. Jozsa: An introduction to measurement-based quantum computation. Preprint available at http://arxiv.org/abs/quant-ph/0508124.

  26. R. Raussendorf, S. Bravyi, J. Harrington: Long-range quantum entanglement in noisy cluster states. Physical Review A 71, 062313 (2005).

    Article  ADS  Google Scholar 

  27. R. Raussendorf, J. Harrington, K. Goyal, Topological fault-tolerance in cluster state quantum computation, New Journal of Physics 9, 199 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  28. N. Kiesel, C. Schmid, U. Weber, G. Toth, O. Gühne, R. Ursin, H. Weinfurter: Experimental analysis of a four-qubit photon cluster state. Physical Review Letters 95, 210502 (2005).

    Article  ADS  Google Scholar 

  29. C.Y. Lu, X.Q. Zhou, O. Gühne, W.B. Gao, J. Zhang, Z.S. Yuan, A. Goebel, T. Yang, J.W. Pan: Experimental entanglement of six photons in graph states. Nature Physics 3, 91–95 (2007).

    Article  ADS  Google Scholar 

  30. G. Vallone, E. Pomarico, F. De Martini, P. Mataloni, V. Berardi: Realization and characterization of a 2-photon 4-qubit linear cluster state. Physical Review Letters 98, 180502 (2007).

    Article  ADS  Google Scholar 

  31. P. Walther, K.J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, A. Zeilinger: Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    Article  ADS  Google Scholar 

  32. R. Prevedel, P. Walther, F. Tiefenbacher, P. Bohl, R. Kaltenbaek, T. Jennewein, A. Zeilinger: High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007)

    Article  ADS  Google Scholar 

  33. K. Chen, C.-M. Li, Q. Zhang, Y.A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan: Experimental realization of one-way quantum computing with two-photon four-qubit cluster states. Physical Review Letters 99, 120503 (2007).

    Article  ADS  Google Scholar 

  34. G. Vallone, E. Pomarico, F. De Martini, P. Mataloni: Active one-way quantum computation with 2-photon 4-qubit cluster states. Physical Review Letters 100, 160502 (2008).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Briegel, H.J. (2009). Cluster States. In: Greenberger, D., Hentschel, K., Weinert, F. (eds) Compendium of Quantum Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70626-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70626-7_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70622-9

  • Online ISBN: 978-3-540-70626-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics