Skip to main content

Decoherence

  • Chapter
  • First Online:
Compendium of Quantum Physics

The term decoherence is used in many fields of (quantum) physics to describe the disappearance or absence of certain superpositions of quantum states. Decoherence is a consequence of the unavoidable interaction of virtually all physical systems with their environment. In particular, macroscopic objects must be strongly entangled if quantum theory is universally valid [1,2]. Decoherence then explains within quantum theory why macroscopic objects seem to possess their familiar classical properties. No additional classical concepts are required for a consistent quantum description. Decoherence explains, for example, why particles appear localized in space (hence there is no need for an additional particle concept). Contradictory levels of description (classical and quantum) are no longer needed, instead a consistent description in terms of a universal ► wave function can be pursued.

The basic mechanism of decoherence is the unavoidable and generally irreversible disappearance of certain phase relations from the states of (local) systems by interaction with their environment according to the ► Schrödinger equation. Equivalently, decoherence describes irreversibly increasing entanglement as a consequence of a unitary global dynamics. Phase relations between certain states of a system are preserved globally (because of the assumed unitarity), but are no longer locally accessible, thus leading to apparent non-unitarity — or, in other words — to an apparent violation of the quantum ► superposition principle. This non-unitarity can be described as a disappearance of non-diagonal (in a certain basis) elements of the ► density matrix characterizing the local system. The two most important consequences of decoherence are suppression of interference and the selection of a set of preferred (dynamically stable) states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Primary Literature

  1. H.D. Zeh: On the interpretation of measurement in quantum theory. Found. Phys. 1, 69 (1970)

    Article  ADS  Google Scholar 

  2. E. Joos, H.D. Zeh: The emergence of classical properties through interaction with the environment. Z. Phys. B 59, 223 (1985)

    Article  ADS  Google Scholar 

  3. W.H. Zurek: Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516 (1981)

    ADS  MathSciNet  Google Scholar 

  4. M. Brune, E. Hagley, J. Dreyer, X. Ma î tre, A. Maali, C. Wunderlich, J.M. Raimond, S. Haroche: Observing the progressive decoherence of the “Meter” in a quantum measurement. Phys. Rev. Lett. 77, 4887 (1996)

    Article  ADS  Google Scholar 

  5. L. Hackermüller, K. Hornberger, B. Brezger, A. Zeilinger, M. Arndt: Decoherence of matter waves by thermal emission of radiation. Nature 427, 711 (2004)

    Article  ADS  Google Scholar 

  6. P. Sonnentag, F. Hasselbach: Measurement of decoherence of electron waves and visualization of the quantum-classical transition. Phys. Rev. Lett. 98, 200402 (2007)

    Article  ADS  Google Scholar 

  7. O. Kübler, H.D. Zeh: Dynamics of quantum correlations. Ann. Phys. (N.Y.) 76, 405 (1973)

    Article  ADS  Google Scholar 

  8. W.H. Zurek, S. Habib, J.P. Paz: Coherent states via decoherence. Phys. Rev. Lett 70, 1187 (1993)

    Article  ADS  Google Scholar 

  9. E. Joos: Why do we observe a classical spacetime? Phys. Lett. A116, 6–8 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Tegmark: Importance of quantum decoherence in brain processes. Phys. Rev. E61, 4194 (2000) — also quant/ph-9907009

    ADS  Google Scholar 

Secondary Literature

  1. E. Joos, H.D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, I.-O. Stamatescu: Decoherence and the Appearance of a Classical World in Quantum Theory: 2nd edn. Springer, Berlin (2003)

    Book  Google Scholar 

  2. W.H. Zurek: Decoherence, Einselection, and the Quantum Origin of the Classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Schlosshauer: Decoherence and the Quantum-to-Classical Transition. Springer 2007

    Google Scholar 

  4. C. Kiefer: Quantum Gravity. Oxford University Press, 2nd ed. (2007)

    Google Scholar 

  5. H.D. Zeh: Roots and Fruits of Decoherence. In: Quantum Decoherence, B. Duplantier, J.M. Raimond, V. Rivasseau, eds. (Birkhäuser 2006) — also quant-ph/0512078

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Joos, E. (2009). Decoherence. In: Greenberger, D., Hentschel, K., Weinert, F. (eds) Compendium of Quantum Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70626-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70626-7_48

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70622-9

  • Online ISBN: 978-3-540-70626-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics