Skip to main content

Electron Interferometry

  • Chapter
  • First Online:
Compendium of Quantum Physics

Massive-particle interferometry can provide tests of fundamental ideas in quantum mechanics, due to the presence of mass and charge, not possible with the more familiar optical interferometry. Most importantly, since the first observation of electron diffraction in 1927 by Davisson, Germer and Thomson [1] (and the observation of electron Fresnel edge fringes by Boersch in 1940 [2]), it has been clear that matter diffracts, according to de Broglie's 1924 hypothesis. (► Davisson-Germer Experiment) The subsequent demonstration of Young's pinhole and biprism experiments (discussed below) with ► electrons about fifty years ago has since led to astonishing demonstrations of, for example, the diffraction of beams of buckyballs by a grating [3] and effects of gravity on neutron interferometry [4]. For neutrons and electrons, both Fermions, new effects due to ► spin and the ► exclusion principle might also be expected, not seen with photons (► light quantum). Perhaps the most famous experiments to date have been tests of the ► Aharonov-Bohm effect using electrons, and those using neutrons to see the effects of gravity on interference, but there have been many more (including an electron Sagnac interferometer and experiments on ► decoherence). The separate but closely related field of electron holography has come to prominence in recent decades, with applications in materials science and superconducting vortex imaging. Here we briefly review work on electron interferometry, first reviewed at an early stage by Denis Gabor [5], and also provide some guidance to the rapidly growing contemporary electron holography literature. Historically, it is of interest to note that the analysis of multiple scattering, and the role of the mean inner potential, in the experiments of Davisson and Germer by H. Bethe in his thesis work introduced Floquet's theorem into condensed matter physics for periodic structures, leading to the review article which founded modern condensed matter physics [6]. Bethe and Bloch were both students of A. Sommerfeldin 1928.

The construction of an electron interferometer requires a beam-splitter and a small, bright source of electrons. This should be of sufficiently small size d s to produce a spatial coherence width L c which spans the beam-splitter. (L c ~ λ/Θc for a source at distance L & d s/(2Θc) from the beamsplitter). Prior to the development of the field-emission electron source in 1968 [7] the use of heated tungsten wire pointed filaments produced values of L c < 1 micrometer, so that early workers understood the need for an extremely small beamsplitting device, which limited development of the field. But even before the peak of interest in the Aharonov-Bohm effect in the 1960s, both amplitude and wavefront dividing beamsplitters had been demonstrated for electron beams. The first, using Bragg scattering [8], has since been abandoned in favor of the Mollenstedt and Duker electrostatic biprism, which may be said to have founded the field of electron interferometry [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Primary Literature

  1. C.J. Davidson, L.H. Germer: Diffraction of electrons by a crystal of nickel. Phys.Rev.30, 705–15 (1927)

    Article  ADS  Google Scholar 

  2. H. Boersch: Fresnelsche Beugeung im Elecktrononmikroskop. Naturwissenschaften 28, 709–12 (1940)

    Article  ADS  Google Scholar 

  3. L. Hackermuller, S. Uttenthaler, K. Hornberger, E. Reiger, B. Brezger, A. Zeilinger, M. Arndt: Wave nature of biomolecules and fluorofullerenes. Phys. Rev. Lett. 91, 090408 (2003)

    Article  ADS  Google Scholar 

  4. R. Colella, A.W. Overhauser, S.A. Werner: Observation of gravitationally induced quantum interference” Phys.Rev. Lett. 34, 1472–74 (1975)

    Article  ADS  Google Scholar 

  5. D. Gabor: Theory of electron interference experiments. Rev Mod Phys. 28, 260–76 (1956)

    Article  ADS  Google Scholar 

  6. H. Bethe, A. Sommerfeld in: Handbuch der Physik. Ed H. Geiger Vol 14 (1928, Ch 3, p.333)

    Google Scholar 

  7. A.V. Crewe: Electron gun using a field-emission source. Rev. Sci. Instrum 39, 576–88 (1968)

    Article  ADS  Google Scholar 

  8. L. Marton: Electron beam interferometer. Phys. Rev. 90, 490–91 (1953)

    Article  ADS  Google Scholar 

  9. G. Mollenstedt, H. Ducker: Fresnelscher Interferenzversuch mit einem Biprism fur Electro-nenwellen. Naturwissenschaften 42, 41–41 (1955)

    Article  ADS  Google Scholar 

  10. J.C.H. Spence, M. Howells: Synchrotron soft X-ray sources and electron sources: a comparison. Ultramic 93, 213–22 (2002)

    Article  Google Scholar 

  11. H. Lichte: Electron interference: mystery and reality”. Phil. Trans. R. Soc. Lond. A360, 897–20 (2002)

    Article  ADS  Google Scholar 

  12. G.I. Taylor: Interference fringes with feeble light. Proc. Camb. Philos. Soc. 15, 114–15 (1909)

    Google Scholar 

  13. W. Ehrenberg, R. Siday: The refractive index in electron optics and the principles of dynamics. Proc. Phys. Soc. B62, 8–21 (1949)

    Article  ADS  Google Scholar 

  14. Y. Aharonov, D. Bohm: Significance of electromagnetic potentials in quantum theory. Phys Rev. 115, 485–91 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Peshkin, A. Tonomura: The Aharonov-Bohm effect”. Lecture notes in physics Vol. 340 (Springer, Berlin 1989). See also Phys. Rev. Lett. 56, 792–94 (1986)

    Book  Google Scholar 

  16. D. van Dyck, H. Lichte, J.C.H. Spence. Ultramic 81, 187–99 (2000). See also Ultramic 106, 1012–18 (2006) and references therein.

    Article  Google Scholar 

  17. M. Scheinfein, W. Qian, J.C.H. Spence. “Aberrations of emission cathodes: Nanometer diameter field-emission electron sources”. J. Appl. Phys. 73, 2057–68 (1993)

    Article  ADS  Google Scholar 

  18. F. Hasselbach: A ruggedized miniature UHV electron biprism interferometer for fundamental experiments”. Z. Phys. B (Cond. Matter.) 71, 443–48 (1988)

    Article  ADS  Google Scholar 

  19. F. Hasselbach, M. Nicklaus: Sagnac experiment with electrons. Phys. Rev. A48, 143–51 (1993)

    Article  ADS  Google Scholar 

  20. H. Kiesel, A. Renz, F. Hasselbach: Observation of Hanbury-Brown Twiss anticorrelations for free electrons. Nature 418, 392–94 (2002)

    Article  ADS  Google Scholar 

  21. M.P. Silverman: On the feasibility of observing electron antibunching in a field-emission beam. Phys Lett. A120, 442–46 (1987)

    Article  ADS  Google Scholar 

  22. J.C.H. Spence, W. Qian, M.P. Silverman: Electron source brightness and degeneracy from Fresnel fringes. J. Vac. Sci. Tech. A12(2), 542–47 (1994)

    Article  ADS  Google Scholar 

  23. P. Sonnentag, F. Hasselbach: Decoherence of electron waves due to induced charges moving through a nearby resistive material. Braz. J. Phys. 35, 385–90 (2005)

    Article  ADS  Google Scholar 

  24. J.R. Anglin, J.P. Paz, W.H. Zurek: Deconstructing decoherence. Phys Rev. A55, 4041–45 (1997)

    Article  ADS  Google Scholar 

  25. A. Orchowski, W. Rau, H. Lichte: Electron holography surmounts resolution limit of electron microscopy”. Phys. Rev Lett. 74, 399–02 (1995)

    Article  ADS  Google Scholar 

  26. M. Lehmann, H. Lichte: Electron holographic materials analysis at atomic dimensions. Cryst. Res. Technol. 40, 149–60 (2005)

    Article  Google Scholar 

  27. H. Hu, H. Wang, M. McCartney, D. Smith: Switching mechanisms for nanoscale Co elements studied by electron holography. Phys. Rev. B73, 153401 (2006)

    Article  ADS  Google Scholar 

  28. A. Tonomura. Electron holography and the A-B effect. Nucl. Instrum Meth. A314, 297–05 (1992)

    Article  ADS  Google Scholar 

Secondary Literature

  1. R. Loudon: The quantum theory of light (Oxford University Press, Oxford 2000)

    MATH  Google Scholar 

  2. The Feynman Lectures on Physics (Addison-Wesley 2005, Vol. 3)

    Google Scholar 

  3. J.C.H. Spence: Lensless (Diffractive) Imaging, in: Science of Microscopy. P. Hawkes, J.C.H. Spence Eds. (Springer, Berlin 2007, Ch. 19)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spence, J.C.H. (2009). Electron Interferometry. In: Greenberger, D., Hentschel, K., Weinert, F. (eds) Compendium of Quantum Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70626-7_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70626-7_61

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70622-9

  • Online ISBN: 978-3-540-70626-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics