Skip to main content

On Convex Quadrangulations of Point Sets on the Plane

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4381))

Abstract

Let P n be a set of n points on the plane in general position, n ≥ 4. A convex quadrangulation of P n is a partitioning of the convex hull \(\mathit{Conv}(P_n)\) of P n into a set of quadrilaterals such that their vertices are elements of P n , and no element of P n lies in the interior of any quadrilateral. It is straightforward to see that if P admits a quadrilaterization, its convex hull must have an even number of vertices. In [6] it was proved that if the convex hull of P n has an even number of points, then by adding at most \(\frac{3n}{2}\) Steiner points in the interior of its convex hull, we can always obtain a point set that admits a convex quadrangulation. The authors also show that \(\frac{n}{4}\) Steiner points are sometimes necessary. In this paper we show how to improve the upper and lower bounds of [6] to \(\frac{4n}{5}+2\) and to \(\frac{n}{3}\) respectively. In fact, in this paper we prove an upper bound of n, and with a long and unenlightening case analysis (over fifty cases!) we can improve the upper bound to \(\frac{4n}{5}+2\), for details see [9].

Supported by CONACYT of Mexico, Proyecto SEP-2004-Co1-45876, and PAPIIT (UNAM), Proyecto IN110802.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez-Amaya, V.M.: Gráficas Geométricas Sobre Conjuntos de Puntos Coloreados. B. Sc. Thesis, Facultad de Ciencias, Universidad Nacional Autónoma de México (July 2006)

    Google Scholar 

  2. Alvarez-Amaya, V.M., Sakai, T., Urrutia, J.: Bichromatic quadrangulations with Steiner points. (In preparation)

    Google Scholar 

  3. Aurenhammer, F., Klein, R.: Voronoi Diagrams. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 201–290. North Holland(2000)

    Google Scholar 

  4. Bern, M., Eppstein, D.: Mesh Generation and Optimal Triangulation. In: Du, D.-Z., Hwang, F.K. (eds.) Computing in Euclidean Geometry, pp. 23–90. World Scientific, Singapore (1992)

    Google Scholar 

  5. Bose, P., Toussaint, G.: Characterizing and efficiently computing quadrangulations of planar point sets. In: Computer Aided Geometric Design vol. 14, pp. 763–785 (1997)

    Google Scholar 

  6. Bremner, D., Hurtado, F., Ramaswami, S., Sacristan, V.: Small strictly convex quadrilateral meshes of point sets. Algorithmica 38(2), 317–339 (Nov. 2003)

    Article  MathSciNet  Google Scholar 

  7. Cortés, C., Márquez, A., Nakamoto, A., Valenzula, J.: Quadrangulations and 2-colorations. 21th European Workshop on Computational Geometry (2005)

    Google Scholar 

  8. Fortune, S.: Voronoi diagrams and Delaunay triangulations. In: Computing in Euclidean Geometry, 2nd edn., World Scientific, Singapore (1995)

    Google Scholar 

  9. Heredia, M.: Cuadrilaterizaciones convexas con pocos puntos Steiner. B. Sc. Thesis, Facultad de Ciencias, Universidad Nacional Autónoma de México (July 2006)

    Google Scholar 

  10. Heredia, M., Urrutia, J.: Convex quadrangulations with Steiner points. (In preparation)

    Google Scholar 

  11. Keil, J.M.: Polygon decomposition. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 491–518. North Holland (2000)

    Google Scholar 

  12. Preparata, F., Shamos, I.: Computational Geometry, an Introduction. Springer Verlag, Berlin Heidelberg New York (1985)

    Google Scholar 

  13. Ramaswami, S., Ramos, P., Toussaint, G.: Converting triangulations to quadrangulations. In: Computational Geometry. Theory And Applications, vol. 9, pp. 257–276 (1998)

    Google Scholar 

  14. Toussaint, G.: Quadrangulations of planar sets. In: Proceedings of the 4th International Workshop on Algorithms and Data Structures, pp. 218–227. Springer, Berlin Heidelberg New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jin Akiyama William Y. C. Chen Mikio Kano Xueliang Li Qinglin Yu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Heredia, V.M., Urrutia, J. (2007). On Convex Quadrangulations of Point Sets on the Plane. In: Akiyama, J., Chen, W.Y.C., Kano, M., Li, X., Yu, Q. (eds) Discrete Geometry, Combinatorics and Graph Theory. CJCDGCGT 2005. Lecture Notes in Computer Science, vol 4381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70666-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70666-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70665-6

  • Online ISBN: 978-3-540-70666-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics